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Summary

Electromagnetic Fields and Interactions in 3D Cylindrical Structures:
Modeling and Application

The demand for more efficient and compact actuation systems results in a search
for new electromagnetic actuator configurations. To obtain actuators that meet
these challenging specifications, accurate modeling of the electromagnetic fields is
often a prerequisite. To date, analytical modeling techniques are widely used to
predict electromagnetic fields in classical rotary and linear machines represented
in two dimensional coordinate systems. One specific technique that is used to
analyze and design electromagnetic devices is based on Fourier series to describe
sources and the resulting magnetic fields. This thesis presents the extension of
this analytical modeling technique to predict the 3D field distribution in cylindrical
actuator configurations in a fast and accurate manner.

The presented 3D harmonic modeling technique can be used to describe electro-
magnetic fields due to presence of permanent magnets in regular and irregular shaped
3D cylindrical structures. It can be applied to current-free cylindrical problems ex-
hibiting periodicity or a soft-magnetic boundary in the axial direction. The cylindrical
structure can posses either circumferential slots, axial slots or rectangular cavities.
The assignment and a method to solve the various boundary conditions are discussed
in a generic manner to enable model application to a wide range of 3D cylindrical
structures. The magnetic field solutions are provided, and the model implementation
is presented in matrix form. Model validation is presented by means of a comparison
of the magnetic fields in a cylindrical structure with a 3D magnetization array and a
rectangular cavity calculated using the analytical model and a finite element model.

To calculate the magnetic interactions, i.e., attraction and cogging forces due
to permanent magnets, the Maxwell stress tensor is analytically evaluated. The
harmonic magnetic field solution is used in this evaluation resulting in compact force
equations describing the 3D force components between concentric cylinders.
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iv SUMMARY

The 3D harmonic modeling technique is applied to analyze and develop a single
body two degrees of freedom (2-DoF) rotary-linear actuator. This actuator replaces
cascaded single-DoF actuators, and it is designed for a pick and place machine to
populate printed circuit boards. To achieve the specified high force and low torque,
a novel magnetization pattern is proposed. Three different realizations of this pattern
are presented based on introducing parasitic field effects in a single-DoF linear
tubular actuator. Various stator configurations are explored to obtain an actuator with
a high force/torque density without introducing a complex manufacturing process.
Electromagnetic and thermal analyses are conducted to obtain a final actuator design.

A prototype of the newly developed actuator is manufactured, and the realization
and experimental validation are presented. The experimental results demonstrate
that the actuator complies with the requirements for the pick and place application,
that is, a mover acceleration in the axial direction of az = 150ms−2 over a stroke
of 30 mm for a duty-cycle of 34%, and a static positioning error in this direction of
4µm, whereas a maximum error of 5µm is specified. In the rotational direction,
a mover acceleration of αθ = 3500rads−2 for a duty-cycle of 47% is demonstrated,
and the static positioning error is less than 0.35 mrad. Furthermore, the combined
rotation-translation motion profile results in a continuous dissipation of 13.5 W,
causing a temperature rise of the actuator of approximately 30◦C. The results of
the experimental validation are in good agreement with the results of the developed
harmonic model, and demonstrate the applicability of the modeling technique to
analyze cylindrical structures containing permanent magnets.
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1

Introduction

Abstract - In this chapter, an introduction is given on the electromagnetic field theory
related to magnetostatic fields in electromagnetic devices. Comprehensive equations
describing magnetic fields and their interactions are presented, and an overview of
methods to solve these equations is given. The limitations of the state-of-the-art field
modeling techniques are discussed, which lead to the definition of the research goal
of this thesis. The research contributions are presented, and finally the outline of the
thesis is given.

11



12 1. Introduction

1.1 Electromagnetic field theory
Various electrostatic and magnetostatic phenomena have been known from the
ancient times. For example, the Greeks experienced the electrification of bodies
by friction and other phenomena of electric repulsion and attraction. In due time,
numerous experiments were conducted to investigate the magnetic properties of
lodestone, a piece of the mineral magnetite which can be naturally magnetized. These
properties were discovered because the material attracted other pieces of lodestone
and iron parts. Later, lodestone was employed in the first magnetic compasses used
for navigation [43].

The experiments on both electrostatics and magnetostatics took place as two
independent but closely analogous sciences until about two centuries ago. The
phenomena were more systematically investigated by Coulomb, Ampère, Faraday and
Oersted in the 18th and 19th century. At that time, the close relation between electric
and magnetic phenomena was discovered and people started to formulate a unified
electromagnetic field theory. Ultimately, a set of differential equations, called the
Maxwell equations, were defined by James Clerk Maxwell describing the macroscopic
observable electromagnetic phenomena.

1.1.1 Quasi-static Maxwell equations

The Maxwell equations are a mathematical formulation to describe the interaction of
charged matter and the behavior of electromagnetic fields, and provide a fundamental
understanding of a wide range of phenomena [84]. In general, electromechanical
phenomena can be described by the quasi-static Maxwell equations under the as-
sumption that the effects due to time varying fields are small. This assumption is valid
if the time variation of the magnetic field is much smaller than the time required for
the field to penetrate the region of interest [34]. For example, consider a cubical region
of free space with all sides measuring 1.0 m. As the electromagnetic field travels with a
velocity of c = 3×108 m/s, any field variation is felt within 58 ns throughout the whole
region. This system is called quasi-static if the electromagnetic fields change much
more slowly than 58 ns. The quasi-static Maxwell equations in differential form are
defined as

∇× ~H =~J f Ampère’s circuit law, (1.1)

∇·~B = 0 Gauss’s law for magnetism, (1.2)

∇×~E =−
∂~B

∂t
Maxwell-Faraday law, (1.3)

∇·~D = ρ Gauss’s law. (1.4)
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In these equations the sources are described by ρ, the free electrical charge density,
and~J f , the current density which can be interpreted as the movement of free charge.
The fields are defined as follows; ~H is the magnetic field strength, ~E is the electric field
strength, ~B is the magnetic flux density and ~D is the electric flux density. To solve the
differential Maxwell equations, an additional set of equations is required to describe
the relations between the physical quantities in a specific medium.

Constitutive relations

Two independent equations provide the relations between the field strength and the
flux density in equations (1.1) to (1.4) in a given medium. These constitutive relations
are in literature generally defined as

~B =µ0
(
~H + ~M

)
, (1.5)

~D = ε0~E +~P , (1.6)

where µ0 and ε0 are the permeability and permittivity of free space, respectively, ~M is
the magnetization or magnetic moment, and ~P is the polarization.

Magnetization

In the formulation of the electromagnetic field theory, distinction is made between
fields due to sources within a material and those related to currents originated from
moving charges. Both sources can be described by currents, the sources within a
material can be described by a magnetization current density, Jm , whereas the one
describing moving charges is generally called a free current. The equivalence between
a magnetized material and a current in terms of its electromagnetic effect was firstly
noted by Ampère and Oersted. This concept is useful to treat the microscopic currents
on atomic level in a macroscopic theory [119, 135].

In the case that ~B is a single-valued function of ~H , i.e. the material exhibits no
hysteresis, a common definition of the magnetization, ~M , is that it provides a measure
for the material response when a magnetic field is applied to it. In this definition the
relation between the field strength ~H and the magnetization of the material is given
by

~M =χm ~H , (1.7)

where χm is the magnetic susceptibility that can be a function of ~H in case of non-
linear materials. This simplifies the constitutive relation (1.5) to

~B =µ0
(
1+χm

)
~H

=µ~H , (1.8)
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where the permeabilityµ is defined by the permeability of free space times the relative
permeability of the specific material µr

µ=µ0µr. (1.9)

Description of a permanent magnet

In hard magnetic material (i.e. a permanent magnet), the orientation of magnetic
moments is aligned such that a given volume of this material has a net magnetic
moment without an applied external field. This material property can be included
by means of χm in (1.7). However, a more convenient representation of a permanent
magnet is to introduce an additional magnetic moment term, M0, in the constitutive
relation [66, 104, 121]

~B =µ0
(
~H + ~M + ~M0

)
=µ0µr~H +µ0 ~M0. (1.10)

In this definition the magnetic moment, ~M0, referred to as the remanent magnetiza-
tion vector, is defined as

~M0 =
~Brem

µ0
, (1.11)

where ~Brem is the remanent flux density of the permanent magnet.

1.1.2 Lorentz force equation

Using the Maxwell equations, the electromagnetic fields originated by currents and
permanent magnets are described. In the research on electromechanical systems,
the main interest of these electromagnetic fields is the interaction with other elec-
tromagnetic fields and materials resulting in a mechanical force. In literature, several
methods are described to calculate the exerted force on a body in an electromagnetic
field. Historically, the force experienced by a charge q moving with a velocity ~v is
described by the experimentally found Lorentz force equation

~f = q
(
~E +~v ×~B)

. (1.12)

According to the Lorentz electron theory, the only electromagnetic force of physical
significance can be ascribed to electrically charged particles. In literature, the Lorentz
force equation is also used as a definition of the magnetic field ~B and the electric
field ~E instead of a definition of the force experienced by a charged particle in an
electromagnetic field [66, 135]. In this thesis, the equation is solely used as the
definition for the force.
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The Lorentz force consists of two parts, the first part is the force exerted on a free
charge, q , in an electric field, ~E . The second force component is the one exerted on
moving charges (free current) in a magnetic field, ~B . Under the assumption that in the
considered electromechanical devices ~E is zero outside the coil-conductor, the first
force component does not contribute to the total force and (1.12) can be rewritten as

~f = q~v ×~B . (1.13)

Using the definition that a current represents movement of charges, the total force on
an object is given by the volume integral of ~f [136]

~F =
∫

V

~J f ×~B dv. (1.14)

1.1.3 Maxwell stress tensor

From the Lorentz force equation the force on a current carrying wire in a magnetic
field can be directly calculated. However, to obtain the force between two objects,
e.g. a permanent magnet and a soft-magnetic object, (1.14) does not provide a direct
solution. A more general description of the force on an object due to electromagnetic
field interaction is given using the Maxwell stress tensor, T

~F =
∫

V
∇·T dv, (1.15)

where the volume V contains the considered object [37]. Using Gauss’s theorem,
the Maxwell stress tensor force description can be rewritten to a more convenient
equation

~F =
∮

S
T ·~n ds, (1.16)

where S is a surface enclosing the considered body. The Maxwell stress tensor, T, is
coordinate system independent and defined as

Ti j =
Bi B j

µ0
−δi j

|~B |2
2µ0

, (1.17)

where i and j represent the components in the specific coordinate system and δi j is
the Kronecker delta

δi j =
{

1 for i = j ,

0 for i 6= j .
(1.18)

As can be seen, the force expressed by means of the Maxwell stress tensor, equation
(1.15), consists of the magnetic field only, while the Lorentz force equation is a
function of both field and sources. The Maxwell stress tensor force description can
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be derived from the Lorentz force equation by including the microscopic currents at
atomic level into the current density [66]

~F =
∫

V

~J ×~B dv. (1.19)

Instead of calculating the cross product of the free current density and the magnetic
flux density, the total current density in the domain has to be considered, i.e., the sum
of all free and microscopic currents at atomic level. In other words, the magnetization,
both ~M and ~M0, has to be expressed by means of equivalent currents. Consequently,
the magnetic field, as defined by Ampère’s circuit law (1.1), is now defined by the total
current instead of only the free current,~J f . As such, the magnetization vanishes from
(1.5) and the relation between the total current and the magnetic flux density yields to

∇×~B =µ0~J . (1.20)

Consequently, (1.19) can be rewritten as

~F =
∫

V

(
∇×

~B

µ0

)
×~B dv. (1.21)

Using vector identities, as given in Appendix A, (1.15) and (1.21) yield to

µ0∇·T= (∇×~B)×~B + (∇·~B)
~B . (1.22)

Since the divergence of ~B is zero (∇·~B = 0), defined in (1.2), the second term vanishes,
and one can see that the Lorentz force and the Maxwell stress tensor are equivalent
and can be used to calculate the force of electromagnetic origin.

1.1.4 Boundary conditions

As all sets of differential equations describing physical phenomena, the Maxwell
equations cannot be solved without applying boundary conditions at the interfaces
between different media. The Maxwell equations in differential form, defined in (1.1)
to (1.4), describe the magnetic field locally at each time in space. Using the divergence
theorem and Stokes’ theorem, the Maxwell equations can be cast to the integral form
[53]. The resulting Maxwell equations for magnetic fields in integral form become∮

C

~H ·d~l =~j f , (1.23)∮
S

~B ·~n ds = 0, (1.24)

where~j f is the surface current and~n is a unit vector normal to the surface S. Consider
the closed contour C through medium 1 and medium 2 in Figure 1.1(a) with l >> h.
Applying (1.23) to this contour with h → 0 results in
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Figure 1.1: Interface between two media for the definition of the boundary conditions.
(a) Closed contour C for the definition of the boundary condition on the magnetic
field strength. (b) Closed surface S for the definition of the boundary condition on the
magnetic flux density.

∫
l1

~H1 ·d~l −
∫

l2

~H2 ·d~l =~j f , (1.25)

where l1 and l2 are the parts of C through medium 1 and medium 2, respectively, and
~H1 and ~H2 are the magnetic field strength in medium 1 and medium 2, respectively.
Consequently, if the surface current at the interface between the two media is zero, the
conclusion drawn from this equation is that the tangential component of the magnetic
field strength has to be continuous at the interface.

A general boundary condition for the magnetic flux density is derived similarly
using (1.24). In Figure 1.1(b), a Gaussian pill-box is shown with surface S. Consider
that w >> h and apply (1.24) to the surface with h → 0, this yields to∫

S1

~B1 ·~n ds −
∫

S2

~B2 ·~n ds = 0, (1.26)

where S1 and S2 are the surfaces at the top and bottom of the Gaussian pill-box,
respectively, and ~B1 and ~B2 are the magnetic flux density in medium 1 and medium 2,
respectively. Consequently, the normal component of the flux density is continuous
at the interface between two media.

1.2 Electromagnetic field analysis
To obtain a numerical or analytical solution for the magnetic fields, the Maxwell
equations (1.1) to (1.4) have to be solved considering the constitutive relations as given
in (1.5) and (1.6). A direct solution for these differential equations can be obtained,
however, the four dependent first order differential equations can be rewritten to two
second order differential equations. By solving one of these second order differential
equations, the magnetic field solution can be obtained.
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1.2.1 Magnetic vector potential

The Maxwell equations can be rewritten by introducing the magnetic vector potential,
~A, defined as

∇×~A = ~B , (1.27)

By using the vector calculus as given in Appendix A, substitution of (1.27) into (1.1)
considering the constitutive relation (1.10) yields to

∇(∇·~A)−∇2~A =µ0
(
µr~J f +∇× ~M0

)
. (1.28)

As the curl of the vector potential is defined in (1.27), the divergence of the vector
potential can be chosen arbitrarily. For convenience, ∇ · ~A = 0, as such, two second
order differential equations define the magnetic vector potential in regions with or
without sources, referred to as the Poisson and Laplace equation, respectively

∇2~A =−µ0
(
µr~J f +∇× ~M0

)
Poisson equation, (1.29)

∇2~A = 0 Laplace equation. (1.30)

1.2.2 Magnetic scalar potential

The magnetic scalar potential is a second potential to describe the magnetic fields.
This potential can be used only in current-free regions, i.e., J f = 0. As such, (1.1) yields
to

∇× ~H = 0. (1.31)

The magnetic scalar potential, ϕ, is introduced as

−∇ϕ= ~H . (1.32)

Substitution of (1.32) into (1.1) and taking into account the constitutive relation (1.10)
yields to another Poisson and Laplace equation for regions with permanent magnets
or source free regions,

∇2ϕ= 1

µr
∇· ~M0 Poisson equation, (1.33)

∇2ϕ= 0 Laplace equation. (1.34)

The advantage of the scalar potential is the reduced complexity compared to the
vector potential in three dimensional problems where the vector ~A consists of three
components. In two dimensional problems the vector potential reduces to a scalar as
one of the three components of the flux density has to be zero. Hence, the advantage
vanishes in 2D problems.
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1.3 Electromagnetic field modeling techniques
A wide variety of modeling techniques is developed over the years to obtain a
solution for the partial differential equations (PDEs) describing the potentials and
magnetic fields as presented in the preceding sections. The goal of these modeling
techniques is to provide an accurate potential or magnetic field description as a
function of sources of magnetic fields in an arbitrary geometry. These techniques can
be classified as numerical or analytical although the division is not always evident. For
example, modeling techniques describing the magnetic fields by means of an infinite
Fourier series are sometimes referred to as semi-analytical due to the approximation
of the infinite sum [38]. Generally, analytical methods describe the potentials or
fields by analytical expressions as a function of physical parameters, e.g., geometric
dimensions. Numerical methods do not provide functions but only numerical values
of the potentials or magnetic fields at certain points in the geometry.

1.3.1 Numerical methods

The Finite Element Method (FEM) is a commonly used numerical method to find
approximate solutions of PDEs [65]. In this method, the geometry of interest is dis-
cretized in a finite number of mesh elements small enough to satisfy the assumption
that the potential and fields inside these elements can be approximated by a first or
second order polynomial. Therefore, an a-priori knowledge of the magnetic field or an
iterative adaptive mesh is required to create a suitable mesh distribution. The finite
element method obtains the correct solution for a model by minimizing the energy
functional [111].

A disadvantage of meshing a structure is the finite number of elements which inher-
ently requires that the geometry should be bounded. In structures with soft-magnetic
materials or in structures exhibiting periodicity, the boundaries can be defined by a
Neumann or Dirichlet boundary condition. However, in ironless structures without
a well defined boundary, a suitable mesh requires a very high number of elements
[58]. Meshing large structures with small details where the field varies will result in
a very high number of mesh elements as these details require a high mesh density,
and a proper mesh has to alter gradually from fine to coarse. The same effect appears
in large structures with a small airgap between the moving and stationary part. The
energy-conversion takes place in this airgap and therefore, a high mesh density is
required. Generally, increasing the mesh density provides more accurate results
although numerical instability can occur if the mesh density is too high. Furthermore,
the computational time will rise and meshing the structure can become the dominant
time factor in the solving process.

Finite element modeling is considered to be the most generic approach to analyze
electromagnetic problems as it provides an accurate solution for a wide range of
applications, e.g., transient, steady state and multi-physical domains. Furthermore,
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complex geometric shapes can be modeled and non-linear non-homogeneous mate-
rial properties can be considered. The availability of powerful software packages to
analyze two and three dimensional structures has made this modeling technique very
popular in research and engineering.

One of the oldest numerical methods is the Finite Difference Method (FDM) which
uses a similar discretization as FEM to obtain a solution for the potential distribution
in the structure. However, in this method the mesh consists of orthogonal, often
uniformly spaced, elements which limits the number of geometries that can be
accurately discretized. The differential equation in this method is approximated by
a finite difference equation that relates the value of the solution of two neighboring
nodes. The complete solution is obtained by solving the total set of equations.

A numerical method that meshes only boundaries of permeable objects instead of
the complete domain is the boundary element method (BEM). In BEM, the partial
differential equations to be solved are formulated as integral equations. The fields are
solved only outside the objects using the given boundary conditions to fit boundary
values in the integral equation, where FEM and FDM fit values in the differential
equations throughout the complete domain. In a post-processing stage, the integral
equation is used to calculate the solution at any point in the domain. An advantage
over the aforementioned method is the significantly reduced number of required
mesh elements, however the accuracy is often lower. Furthermore, as only the
boundaries of objects are meshed, only homogeneous linear material properties can
be modeled.

1.3.2 Analytical methods

Various analytical methods are developed and being used in analysis, design and
optimization of electromagnetic devices. In the following sections a selection of
common methods is presented. To obtain an analytical model of electromagnetic
fields, one can start from the PDEs describing the magnetic scalar potential and
magnetic vector potential as a function of the magnetic and electric sources (Laplace
and Poisson equations). Two commonly used approaches to solve the Laplace and
Poisson equations are described in this section.

Green functions

The first approach is to find a solution of the Poisson or Laplace equation in a finite
volume (or surface in 2D) with either a Dirichlet or a Neumann boundary condition
on the bounding surface (or contour in 2D) by means of Green’s theorem and so-
called Green functions [53]. The simplest Green function providing the solution for
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the Poisson equation in an unbounded space is

G(~x,~x ′) = 1

|~x −~x ′| , (1.35)

where ~x and ~x ′ are the observation and source point, respectively. This results in the
following solution for the vector potential

~A(~x) = µ0

4π

∫
V

~J (~x ′)
|~x −~x ′|dv ′+ µ0

4π

∫
S

~j (~x ′)
|~x −~x ′|ds′, (1.36)

where~J and ~j are the volume and surface current density, respectively [53, 119]. This
formulation is known as the Biot-Savart law and can be used to describe the magnetic
field due to current filaments [43] and current densities [125].

To find the field distribution due to permanent magnets by means of Biot-Savart,
an equivalent (atomic) currents description, mentioned in Section 1.1.3, can be used.
The equivalent currents are defined from the remanent magnetization vector ~M0

~Jm =∇× ~M0 Volume current density, (1.37)

~jm = ~M0 ×~n Surface current density, (1.38)

where ~n is the unit vector normal to the surface [119]. If the magnetization of the
permanent magnet is homogeneous and uniform within the magnet, the volume
current density ~Jm is zero. Inserting these magnetization currents in (1.36) provides
the magnetic vector potential distribution for a permanent magnet in free space.

The Green function (1.35) can also be applied to solve the Poisson equation for the
magnetic scalar potential, as such, (1.33) yields to

ϕ(~x) = 1

4π

∫
V

∇′ · ~M0(~x ′)
|~x −~x ′| dv ′+ 1

4π

∫
S

~M0(~x ′) ·~n
|~x −~x ′| ds′. (1.39)

The magnetization in this equation is often rewritten by introducing equivalent
magnetic charges defined as

ρm =∇· ~M0 Volume charge density, (1.40)

σm = ~M0 ·~n Surface charge density. (1.41)

This method to describe a permanent magnet is therefore referred to as the charge- or
Coulombian model [34]. For regular shaped permanent magnets in three dimensional
problems, this model is often preferred over the equivalent current model as only two
surfaces with charges have to be modeled instead of four surface currents. However,
this only holds when the magnetization is uniform within the permanent magnet and
perpendicular to four sides.



22 1. Introduction

In literature, modeling of permanent magnets by an equivalent current or equiv-
alent charges is widely described and analytical field equations are presented for
different PM shapes [59]. A comparison and extensive literature overview describing
these methods can be found in [110]. The main drawback of describing the permanent
magnet by an equivalent current or equivalent charges is the assumption of a relative
permeability equals one in the permanent magnets.

The Green function providing the Biot-Savart law as given in (1.35) gives a solution
for the Poisson equation in an unbounded problem. The form of a Green function
providing a solution for the Poisson equation in a bounded region depends on the
shape of the boundary. Hence, it is often complex (if not impossible) to determine
the appropriate Green function. Therefore, other approaches are developed to solve
the Poison equation with boundary conditions and to obtain the Green functions
in an indirect manner. The most common technique is the method of images that
replaces a region with boundaries by an enlarged region with images of the sources
instead of boundaries [10, 43, 119]. For example, consider a permanent magnet in
air with an infinite soft-magnetic plate in the vicinity. Instead of solving the Poisson
equation with a Neumann boundary condition on the plate, a second permanent
magnet is symmetrically placed with respect to the surface of the soft-magnetic plate.
The aforementioned approach with the Green function as given in (1.35) can now be
solved in an unbounded domain with two sources. This technique can be expanded
to angled interfaces [43, 119], problems with multiple boundaries [60], and materials
with finite permeability [43], however it is still limited to simple structures.

Separation of variables

The second approach to find an analytical solution of the Poisson or Laplace equation
is separation of variables [16, 34, 53]. Separation of variables is commonly considered
an analytical solution method that yields the solution of certain PDEs in terms of
an infinite series. The method is based on the assumption that the solution for the
potential, ϕ(u, v, w), can be written in the form

ϕ(u, v, w) =U (u)V (v)W (w). (1.42)

As such, the solution of the partial differential equation can be found in terms
of three ordinary differential equations. This technique can be applied in several
coordinate systems and is especially suitable to solve boundary value problems. In
these problems, the value of the potential (Dirichlet boundary condition) or the value
of the normal derivative of the potential (Neumann boundary condition) is defined
at the boundary of a finite volume. The form of the functions U (u),V (v) and W (w)
in this volume depends on the coordinate system, the boundary conditions and
the sources inside the volumes. By dividing the complete domain of the problem
into orthogonal contiguous regions (i.e., regions with interfaces orthogonal to one
coordinate axis) and applying boundary conditions to the interfaces between the
regions, a set of equations with unknown coefficients is obtained from which the



1.3 Electromagnetic field modeling techniques 23

potential or magnetic field can be found in all regions.

This method is widely used to model electromagnetic fields and is generally referred
to as harmonic or Fourier modeling or sometimes sub-domain modeling [41, 154].
The solution of the potential in this method is typically an infinite (Fourier) series in
one or two directions for 2D or 3D problems, respectively. As such, the method is
particularly suitable for periodic or symmetric problems or closed problems with a
soft-magnetic boundary where at least one of the magnetic flux density components
is zero. For example, rotary machines or long-stroke linear actuators which have a
certain periodicity can be modeled by considering one single period of the complete
structure. If no geometric periodicity is present, for example due to the finite length
of a linear actuator, periodicity can be mimicked by repeating the original geometry
[128]. The sources in the geometry, i.e. coils or permanent magnets, are represented
by a 1D or 2D Fourier series. As the model can take into account the permeability
of soft-magnetic materials in certain situations, global saturation can be modeled
by creating an iterative model. To include local saturation, the specific region has
to be subdivided into multiple regions each having a homogenous permeability.
However, this finer discretization of the domain results in an increased complexity
and computation time, and the model will loose its advantages with respect to FEM.
In [41] modeling of two dimensional structures in three different coordinate systems
(cartesian, polar, axissymmetric) is extensively described. This includes structures
with irregular shaped soft-magnetic regions, i.e., slots in the geometry.

Magnetic equivalent circuit

The most basic analytical method that is not directly obtained from the partial
differential equations is the magnetic equivalent circuit (MEC) model which is the
magnetic equivalent of the electric circuit theory [102, 113]. Instead of finding a direct
solution for the Poisson and Laplace equation, an equivalent circuit is constructed
based on Ampère’s circuit law in integral form. A significant difference between
magnetic flux and electric current is that unlike magnetic flux, electric current is
generally confined to neat traceable paths. As such, the definition of the magnetic
circuit is not as straight-forward as the definition of an electric circuit. To obtain the
magnetic circuit, the geometry has to be divided into a network of so-called flux tubes
with sources of magneto-motive force (MMF). The flux density is subsequently found
by means of Hopkinson’s law which is the magnetic equivalent of Ohm’s law, i.e., the
flux density is the product of the permeance of the flux tube and the MMF.

Similar to FEM, the geometry is discretized in this method, however, in MEC mod-
eling the number of elements (flux-tubes) is generally much smaller. Furthermore, it
is assumed that the magnetic flux enters a tube perpendicular to one of its surfaces, is
constant in the element, and leaves the opposite surface of the tube perpendicularly.
As such, describing a complex geometry requires a high level of discretization. Effects
as flux leakage and fringing are difficult to take into account as the flux tubes with
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the flux entering and leaving perpendicularly are not well-defined. Therefore, prior-
knowledge of the geometry and understanding of the magnetic structure is eminent
to define a MEC. Furthermore, the model is very sensitive to geometrical variations as
the flux paths tend to change and possibly require a redefinition of the flux tubes.

Local and global saturation can be taken into account by splitting a soft-magnetic
object into multiple flux tubes and making the permeance of each tube dependent
of the flux through the tube. The resulting network of permeances can be iteratively
solved.

In general, MEC modeling can be used to provide an estimation of flux levels in
different parts of soft-magnetic structures where the flux tubes are well-defined. The
method is inaccurate in ironless structures due to the absence of these well-defined
flux tubes. In PM based devices with a large effective airgap, flux leakage and fringing
restrain the definition of suitable flux tubes. This method is not favorable to apply in
design or optimization routines as geometric variations quickly result in inaccurate
results. The same holds if position dependent phenomena in actuators are analyzed.

1.3.3 Hybrid methods

To obtain an analytical model to describe the electromagnetic phenomena in a
structure, a set of assumptions is required to confine the complexity, for example,
linear and isotropic material properties or geometrical periodicity. The validity of
these assumptions depends on the geometry and physical properties of the modeled
problem. To overcome model limitations due to certain assumptions, hybrid methods
can be created to exploit the advantages of different methods. For example, in
[74, 144], a method is presented to couple an analytical magnetic field solution based
on a Fourier description in the airgap of an electric machine with standard finite
element equations used to model the other parts of the machine. In [51], a Fourier
model is coupled to a MEC model to consider saturation. In optimization routines the
computationally inexpensive analytical models can be combined with accurate FEM
models and space-mapping techniques to create fast and accurate design tools [31].
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1.3.4 Limitations of described modeling techniques

By means of FEM, almost all physical electromagnetic phenomena can be analyzed
in both two dimensional and three dimensional structures. However, as mentioned
before, FEM is less suitable for design and optimization purposes due to the com-
putation time and the absence of providing a direct relation between geometry and
outcome. In particular modeling three dimensional structures in FEM is very time-
consuming. Even simple structures where creation of the mesh can become the
dominant time factor in the solving process. Therefore, analytical methods can be
very beneficial especially to analyze three dimensional structures.

The analytical model based on Green functions is applied in the 2D and 3D domain
[59]. In a 2D problem, the volume and surface integrals in (1.36) and (1.39) reduce
to a surface and a line integral, respectively. In both 2D and 3D, the integrals have
analytical solutions for simple coil or PM shapes. To include soft-magnetic regions
in the model is complex as derivation of the Green function is more complicated for
these structures. In electromagnetic devices soft-magnetic materials are widely used
to enhance the force density, hence, this analytical technique is generally less suitable.

In literature, the harmonic modeling technique based on separation of variables
is used to model a wide variety of actuators containing soft-magnetic materials. The
technique is applied to problems with regular or irregular soft-magnetic shapes where
the 3D nature of the geometry is nearly always approximated by a 2D representation.
As a result, the existing models provide an accurate electromagnetic field distribution
for structures showing periodicity or negligible dependency on one of the three
dimensions in space. However, if the electromagnetic field distribution exhibits three
dimensional phenomena, the existing models cannot be used. This deficiency of
harmonic models that provide a full three dimensional field distribution in cylindrical
structures has been identified as one of the areas within electromechanics that still
require much additional research.
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1.4 Thesis contributions
The research challenge set out in this thesis is: Derivation of a 3D analytical har-
monic model to determine the electromagnetic field distribution in both regular
and irregular shaped cylindrical devices. To evaluate this 3D modeling technique in
an application, a second research goal is defined: Analysis and realization of a 2-DoF
rotary-linear actuator for a pick and place application.

The main contributions of this thesis are summarized as:

Extension of the two dimensional harmonic modeling technique to describe
electromagnetic fields in three dimensional cylindrical structures. By means
of this extended model, one can describe magnetic fields due to three di-
mensional permanent magnet arrays in or at cylindrical soft-magnetic tubes
[86, 87, 92]. This includes irregular structures with:

• slots in the axial direction of a soft-magnetic tube,

• slots in the circumferential direction of a soft-magnetic tube,

• rectangular cavities in a soft-magnetic tube.

Description of an implementation method for the three dimensional har-
monic model. The 3D harmonic modeling technique is based on Fourier
series, and the resulting set of equations with unknown coefficients contains
summations over these series. The described implementation method can be
used to rewrite these equations in a matrix form to be able to obtain the values
of the unknown coefficients [87].

Derivation of an analytical description of the passive electromagnetic force in
three dimensional cylindrical structures. The force description is based on the
Maxwell stress tensor method and employs the electromagnetic field solution
in the airgap of an electromagnetic device, calculated by the aforementioned
harmonic model [96].

Presentation of a novel permanent magnet array concept for a 2-DoF rotary-
linear actuator. A patented magnetization concept is proposed which provides
an additional parameter to vary the force-torque ratio within rotary-linear
actuators, which is especially useful in applications where the required force
and torque densities differ significantly [94, 126].

Introduction of possible realizations of the novel permanent magnet array.
The provided realizations can be used in actuators that require a high force
density and a reduced torque density [95].

Modeling of a 2-DoF actuator based on an innovative permanent magnet
mover and stator. Using the aforementioned 3D modeling technique, a descrip-
tion of the magnetic field distribution in the actuator is obtained. Furthermore,
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2D models are created to approximate the actuator enabling elaborated analy-
ses [95].

Design of a 2-DoF actuator for a pick and place application. The aforemen-
tioned developed 2D and 3D models are used to obtain an actuator design
having a high mover acceleration and low copper loss [91].

Realization of a prototype of the designed actuator. A prototype of the
designed actuator with an integrated position sensor is successfully realized.

Experimental validation of the realized prototype in a lab environment. Var-
ious experiments are conducted to validate the models used to design the
actuator. Furthermore, the performance of the actuator is validated with the
requirements.

1.5 Thesis outline
The content of this thesis is split in three parts. The first part elaborates on extension
of the harmonic electromagnetic modeling technique, while the second part presents
application of this modeling technique to analyze and design a rotary-linear actuator.
In the third part the conclusions are drawn and recommendations for future research
are presented.

Part I: Modeling

Chapter 2 The harmonic modeling technique is extended to include the three
dimensional effects in cylindrical structures. As such, by means of the technique
presented in this chapter, one can model a broad class of cylindrical permanent
magnet devices. The chapter focuses on model definition, creation of a model
of an irregular shaped cylindrical structure and numerical implementation.

Chapter 3 In this chapter, the Maxwell stress tensor is used to calculate passive
attraction forces in cylindrical structures. The magnetic field description pre-
sented in Chapter 2 is exploited, and analytical expressions are obtained which
enable fast and accurate force calculations.

Part II: Application

Chapter 4 This chapter introduces two degree of freedom rotary-linear actua-
tors and specifies the requirements of this type of actuator in a pick and place
application. Prior-art rotary-linear actuators are discussed, and supporting and
opposing arguments are provided for the presented actuator topologies.
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Chapter 5 To obtain an actuator that complies with the requirements as given
in Chapter 4, a new actuator topology is presented in Chapter 5. Possible
realizations of this type of actuator are discussed, and one configuration is
selected for further research. Analytical models for the selected configuration
are derived and validated with finite element analyses.

Chapter 6 The analytical models, presented in Chapter 5, are utilized to analyze
the selected configuration of the two degrees of freedom actuator. Winding
configurations are explored, a thermal analysis is conducted, and the influ-
ence of the geometric parameters on the actuator performance is investigated.
Subsequently, cogging and electromagnetic damping effects are evaluated.
Based on this synthesis, a final actuator design is obtained, which meets the
requirements set presented Chapter 4.

Chapter 7 The final design of the 2-DoF actuator, given in the Chapter 6, is
realized for experimental verification. The realization of the stator and mover
assembly is presented and manufacturing issues are mentioned. The prototype
is tested in a lab environment and measurement results are discussed.

Part III: Closing

Chapter 8 In this chapter the main conclusions from the thesis are summa-
rized. Furthermore, recommendations for future research are given.
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Harmonic modeling of electromagnetic
fields in 3D cylindrical structures

Abstract - The harmonic modeling technique discussed in the previous chapter
is extended to include the three dimensional electromagnetic effects in cylindrical
structures. As such, by means of the technique presented in this chapter, one
can model a broad class of cylindrical permanent magnet devices. The chapter
starts with a short review on harmonic modeling and the definitions to describe
cylindrical structures in 2D and 3D coordinate systems. Subsequently, a model of an
example structure is defined, the boundary conditions are evaluated, and the model
is validated by means of a finite element analysis.

This chapter is based on:

• K. J. Meessen, J. J. H. Paulides and E. A. Lomonova, "General Formulation of Fringing Fields in 3D
Cylindrical Structures Using Fourier Analysis", Transactions on Magnetics, 48(8):2307-2323, 2012.

• K. J. Meessen, J. J. H. Paulides and E. A. Lomonova, "Analysis of 3-D Effects in Segmented Cylindrical
Quasi-Halbach Magnet Arrays", Transactions on Magnetics, 47(4):727-733, 2011.

• K. J. Meessen, B. L. J. Gysen, J. J. H. Paulides and E. A. Lomonova, "Three-Dimensional Magnetic
Field Modeling of a Cylindrical Halbach Array", Transactions on Magnetics, 46(6):1733-1736, 2010.

• K. J. Meessen, B. L. J. Gysen, J. J. H. Paulides and E. A. Lomonova, "Halbach Permanent Magnet
Shape Selection for Slotless Tubular Actuators", Transactions on Magnetics, 44(11):4305-4308, 2008.
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2.1 Introduction to harmonic modeling
The previous chapter discussed modeling techniques for electromagnetic devices.
These analytical techniques provide the basis for fast and accurate analysis and design
tools. This chapter elaborates on the harmonic modeling technique to describe 3D
magneto-static fields by means of Fourier series. This technique, as introduced in
Section 1.3.2, provides a direct solution for the Maxwell equations using separation of
variables, and is widely described in literature.

2.1.1 2D magnetic field modeling

The method originates from Hague [43], who described the magnetic field from
current carrying wires between two concentric iron cylinders representing a rotor
and a stator of an electrical machine in 1929. In this problem, the airgap is the only
region considered, and the two cylinders are assumed to have infinite permeability
represented by a boundary condition. Mishkin [98] applied the method to model a
squirrel-cage induction machine in 1953. However, only the fundamental harmonic
of the magnetic field was considered. In 1984, Bolte calculated the magnetic field in
both the airgap and the stator slots of an induction machine [13]. By using different
spatial harmonics in the stator slots and airgap, he was the first to obtain a complete
harmonic model taking into account the effect of the stator slots on the magnetic field
in the airgap.

Permanent magnet devices

Since the availability of high-energy rare-earth permanent magnet materials as sama-
rium-cobalt (SmCo) in the 1970s and neodymium-iron-boron (NdFeB) in the 1980s,
the analytical calculation of magnetic fields in PM devices has received renewed
interest. Numerous publications can be found on modeling of these devices. Boules
described in [14] the magnetic fields in a cylindrical rotary machine in the cartesian
coordinate system. The permanent magnets in this machine are described by equiv-
alent currents as explained in Section 1.3.2. Furthermore, saturation is taken into
account by iteratively varying the airgap length and the stator slotting is considered
by means of the Carter coefficient. As the soft-magnetic parts of the machine are
modeled having an infinite permeability, the problem consists of only two regions,
the airgap and the magnet region. In [15] Boules describes the same structure in the
polar coordinate system.

In the same period, Qishan calculated the magnetic field in the airgap of a PM
machine by means of the magnetic scalar potential in the cartesian coordinate system
[106]. Instead of using an equivalent current description, the permanent magnets are
described by a Fourier expansion of the magnetization having a relative permeability
equals one. The work was extended in [107] to include the effect of the stator slots
on the magnetic field by means of the Carter factor. Subsequently, in 1986 Qishan
presented a model to describe fringing due to the finite axial length of a PM electrical
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machine [108]. To create a periodic model, he proposed a segmented permanent
magnet model where multiple machines are repeated along the machine axis with a
certain space between the subsequent machines. The variation along the armature
periphery is ignored to reduce the 3D problem to a 2D one. Three regions are
distinguished to represent the airgap, permanent magnets, and the space in between
the machines. As described before by Bolte [13], different spatial harmonics were
considered in the three regions to be able to solve the periodic boundary conditions
in the permanent magnet and airgap region. By solving the continuous boundary
conditions between the regions by means of mode matching, the fringing due to the
finite machine length is modeled.

The aforementioned work describes radial and parallel magnetized PMs in the
airgap of rotary machines. In [82] Marinescu complemented this with modeling of
permanent magnets magnetized in multiple directions, in particular quasi-Halbach
arrays. In 1993, Zhu extended the model by including the relative permeability of
the permanent magnets in rotary machines [152]. Subsequently, he described the
armature reaction field [149], and included the effect of the stator slots by means of a
relative permeance function [150]. All these results were combined to obtain the total
magnetic field distribution under load conditions in [151]. Ackermann used the mode
matching technique to calculate the magnetic field in a rotary machine in the polar
coordinate system [1]. The magnetic field formulation was derived from the magnetic
vector potential, and the unknown coefficients were solved iteratively. Liu proposed
in 2007 a matrix notation to solve the set of equations obtained by means of mode
matching which avoids the iterative solving technique of Ackermann [78]. In [69] Kim
introduced the analytical technique for predicting the magnetic field distribution in
the airgap region of permanent magnet motors with rotor eccentricity. The governing
equations and associated boundary conditions are formulated and solved using a
perturbation method. Zhilichev approximated the magnetic fields in a structure with
two eccentric cylinders in a cylindrical bipolar coordinate system [146].

Besides rotary electrical machines as presented above, the modeling technique is
also applied to linear machines. In 1996 Trumper used the model to describe linear
PM x y-stages with a magnetically levitating moving part [123]. The application to
tubular linear machines was presented by Wang in [132], where a general framework
is described to model various magnetization patterns in the axisymmetric coordinate
system. He extended his work to describe tubular linear machines with an axially
magnetized mover with soft-magnetic pole pieces in between the permanent magnets
and having a non-magnetic core [130]. As such, this was the first paper where a
structure was modeled with soft-magnetic blocks surrounded by material with a lower
relative permeability. A similar approach as described by Quishan in [108] is applied to
investigate the magnetic field at the stator ends of a tubular linear actuator by Wang
in [128, 129]. The presented literature comprises the analysis of the magnetic field
in electrical machines for slotless structures and structures that can be described by
a single slot per airgap period. However, in most situations, the structure contains
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multiple slots per airgap period to accommodate the three phase windings. For
example, Dubas extended the theory to include an integer slot number per airgap
period [30].

In the aforementioned work, the electromagnetic field distribution in two di-
mensional electromagnetic devices is described. Various papers present particular
structures in different coordinate systems. A comprehensive overview of the harmonic
modeling technique including model creation and a method to obtain and solve the
various boundary conditions is provided by Gysen et al. [41]. The work includes
the solution for the magnetic vector potential and magnetic flux density to describe
fields due to permanent magnets and current sources in the cartesian, polar and
axisymmetric coordinate system.

2.1.2 3D magnetic field modeling

The previous section shows that the harmonic modeling technique is widely applied
to calculate magnetic fields in two dimensions. As a large number of electromagnetic
devices have a negligible dependency in one of the three directions, they can be
represented by a 2D model and the results are accurate enough for analysis and
design purposes. If the structure does not possess invariancy in one direction, the
2D harmonic model can be extended to a 3D one by describing the sources by a 2D
Fourier series instead of a 1D series.

In [133], for example, the magnetic fields in a spherical machine are described
by a 3D harmonic model. As the field is described in the spherical coordinate
system, sources and fields are expanded into spherical harmonics consisting of the
associated Legendre polynomials. In disc-type actuators, neglecting one of the three
dimensions to create a 2D model often introduces significant inaccuracies. Quasi-3D
models are introduced to approximate the third dimension as shown in [7]. Zhilichev
used a Fourier series in circumferential direction and a Hankel transformation over
radial direction to create a 3D model. Instead of contiguous regions as used in
the literature described before, he uses overlapping regions to model the complete
geometry. Subsequently, the Schwartz’s method is introduced to solve the boundary
conditions of these overlapping regions iteratively [143]. An example of modeling
magnetic fields in the 3D cartesian coordinate system is given in [20], where a 2D
Fourier expansion is used to model magnetization patterns for planar motors. The
last reviewed 3D model represents a cylindrical rotary electrical machine. The finite
axial length of the machine as presented in 2D by Qishan [108], is modeled in 3D
in [139, 145]. In [145] the permanent magnets are expressed by a 2D magnetization
Fourier expansion while [139] uses a charge model to represent the magnets. In
both papers, the scalar potential is calculated between two concentric infinitely long
cylinders with permanent magnets with a finite axial length in between. As such, the
edge effects at the ends of the permanent magnets are considered to investigate the
effect of the finite length of rotary machines on their performance.
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2.1.3 Model application

In the previous sections, magnetic field modeling by means of Fourier expansion
for electromechanical permanent magnet devices is discussed. However, the real
quantities of interest are the effects of these magnetic fields. These effects can be
calculated from the magnetic field, or directly from the magnetic scalar or vector
potential. A short overview of the application of the results of the harmonic model
is presented below.

• Emf and force are calculated directly from the harmonic model to predict the
actuator performance [127, 128].

• Armature reaction and inductance calculation [4, 6, 40] in tubular surface-
inset permanent-magnet actuators, rotary slotless machines, tubular surface-
mounted permanent magnet actuators.

• Cogging force calculation, by means of the harmonic model to calculate the
airgap flux density and complex permeances to include the slotting effect [142].
Cogging force calculation in tubular actuators by considering the magnetic field
in both the airgap and the slot regions [38].

• Unbalanced magnetic pull, forces in the radial direction due to an unbalanced
magnetic circuit in rotary electrical machines [147, 153].

• End-effect forces in linear machines due to the finite stator length [129].

• Eddy current calculation in the non-magnetic conductive parts of electro-
magnetic devices [5]. Instead of using the diffusion equation, the magnetic
field is calculated by the Poisson equation (1.29), and the eddy current loss is
approximated from the magnetic field distribution.

• Optimization and design of linear and rotary machines are presented in [39, 83],
respectively.

• Control or commutation of planar actuators based on the magnetic field distri-
bution calculated by the analytical model [57].
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2.2 Modeling of cylindrical structures
The vast majority of electromagnetic devices have a cylindrical shape, since tradi-
tional rotating electrical machines are the most common devices to transform electri-
cal energy in mechanical energy and vice versa. Two dimensional representations of
the geometry of these machines are often used to model electromagnetic phenomena
to avoid time-consuming 3D analyses. Representing a geometry in a 2D coordinate
system implies that this geometry has no, or little, variation in one direction. As such,
proper selection of a 2D coordinate system depends on the considered geometry.

2.2.1 2D representation in polar coordinates

The polar coordinate system defines a point in a 2D plane by its distance to the origin,
r , and the angle, θ, to a reference as shown in Figure 2.1. To represent a cylindrical
machine in the polar coordinate system, the cross-section has a circular shape, and
the variation in the axial, z-, direction is neglected. As such, a geometry modeled in
the polar coordinate system is assumed to be infinitely long. This coordinate system
is widely used to represent rotating electrical machines and provides proper results if
the axial length is sufficiently long to neglect the end-effects at the rotor and/or stator
ends [152].

The general solution of the Laplace equation in this coordinate system can be found
by means of separation of variables. The solution consists of a Fourier series in the
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Figure 2.1: (a) A cylinder in the cartesian coordinate system. (b) Definition of a
point (r1,θ1) in the 2D polar coordinate system (r,θ) defined with respect to cartesian
coordinate system (x, y).
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circumferential direction and a power function in the radial direction

Br (r,θ) =
∞∑

n=1

[(
a1r wn−1 +b1r−wn−1)sin(wnθ)+ (

a2r wn−1 +b2r−wn−1)cos(wnθ)

]
,

(2.1)

Bθ(r,θ) =
∞∑

n=1

[(
a1r wn−1 −b1r−wn−1)cos(wnθ)− (

a2r wn−1 −b2r−wn−1)sin(wnθ)

]
,

(2.2)

where wn is the spatial frequency with harmonic number n and a1, a2,b1 and b2 are
unknown coefficients to be found by applying boundary conditions.

2.2.2 2D representation in the axisymmetric coordinates

The axisymmetric coordinate system defines a point in a 2D plane by its distance to
the origin, r , and the distance to the x-y plane, z, illustrated in Figure 2.2. It can
be seen that a point in the r -z plane is a circle in the three dimensional cartesian
coordinate system. Therefore, to obtain a correct representation of a cylindrical
machine in this coordinate system, the structure should have no, or limited, variation
in the circumferential direction. An electromagnetic device that can be described in
this coordinate system is the tubular linear actuator [11, 90, 132]. As this actuator has
no variation in the circumferential direction, i.e. is axisymmetric, no assumption is
necessary in the direction normal to the r -z plane to describe this three dimensional
structure in a 2D coordinate system. Due to the choice of the Fourier series in the
axial, z-, direction to describe the magnetic fields, the model implies symmetry or
periodicity in the axial direction. To model the effects of a finite axial length of an
axisymmetric structure, one can select the period of the Fourier series in the airgap
equal to the total actuator length [128]. The finite length of a permanent magnet
translator in a tubular actuator can be approximated by adjusting the period of the
magnet array, discussed in Section 6.5.1.

The general solution of the Laplace equation in this coordinate system, obtained
from the separation of variables technique, consists of a Fourier series in the axial
direction and Bessel functions in the radial direction

Br (r, z) =
∞∑

k=1

[(
a1I1 (mk r )−b1K1 (mk r )

)
sin(mk z)

+ (
a2I1 (mk r )−b2I1 (mk r )

)
cos(mk z)

]
, (2.3)

Bz (r, z) =
∞∑

k=1

[(
a1I0 (mk r )+b1K0 (mk r )

)
cos(mk z)

− (
a2I0 (mk r )+b2I0 (mk r )

)
sin(mk z)

]
, (2.4)
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Figure 2.2: (a) A cylinder in the cartesian coordinate system. (b) Definition of a point
(r1, z1) in the 2D axisymmetric coordinate system (r, z) defined with respect to cartesian
coordinate system (x, y, z).

where mk is the spatial frequency with harmonic number k and a1, a2,b1 and b2 are
unknown coefficients to be found by applying boundary conditions. Io (...) andKo (...)
are modified Bessel functions of the first and second kind, respectively, with order o.

2.2.3 Quasi-3D representations

If a cylindrical structure does not exhibit periodicity or symmetry in the axial or
circumferential direction, representation of the structure in one of the previous
coordinate system does not give accurate results. However, in some structures the
magnetic field in the direction normal to the 2D coordinate system is small and can
be neglected. In these structures, quasi-3D representations are often used to avoid
a full three dimensional model. For example, to model a skewed rotary machine, a
multi-sliced model is introduced [134]. The geometry of the machine is split into
multiple slices in the axial direction which are rotated with respect to each other to
represent skewing. The magnetic field of each slice is obtained using a calculation in
the two dimensional polar coordinate system. The total magnetic field of all slices is
obtained by superposition of the magnetic fields of the slices. The resulting magnetic
field components in the radial and circumferential direction are a good approximation
if the magnetic field in the axial direction, between two slices, can be neglected.

Another cylindrical machine that exhibits no periodicity in the axial or circum-
ferential direction is the axial flux machine [36]. This class of machines consists
of (at least) two parallel circular discs which rotate with respect to each other. As
such, modeling this machine in the polar or axisymmetric coordinate system does
not provide accurate results. In [7, 105], a quasi-3D model is presented that starts
from a 2D field description in the θ-z plane with a Fourier series in the θ-direction.
This plane can be interpreted as a plane in the cartesian, x-y , coordinate system.
Consequently, the radial dependency of the flux density has to be included by
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Figure 2.3: (a) Definition of a point (r1,θ1, z1) in the 3D cylindrical coordinate system
(r,θ, z) defined with respect to cartesian coordinate system (x, y, z). (b) Definition of
transformation of local coordinate system (r ′,θ′, z′) with respect to (r,θ, z), where ∆θ
and ∆z represent the displacement in the rotational and axial direction, respectively.

means of an approximation function to be able to describe the magnetic field in this
cylindrical structure.

2.2.4 3D cylindrical structures

In three dimensional structures where the quasi-3D representation of a cylindrical
structure does not provide an accurate description of the geometry, the cylindrical
coordinate system can be used. The cylindrical coordinate system (r,θ, z), shown in
Figure 2.3, is a combination of the polar and the axisymmetric coordinate system. A
point in this coordinate system is defined by its distance to the z-axis, r , the angle
around the z-axis in the x-y plane, θ, and the distance to the x-y plane in the cartesian
coordinate system, z.

In this chapter, a 3D harmonic model is derived in the cylindrical coordinate
system. By means of this model, magnetostatic fields originating from permanent
magnets can be calculated in 3D cylindrical structures. These structures should ex-
hibit (quasi-)periodicity or soft-magnetic boundaries in the axial and circumferential
direction. However, contrary to the aforementioned 2D representations, the magnetic
fields variation in three dimensions due to three dimensional permanent magnet
arrays is taken into account . The structure can contain full soft-magnetic cylinders,
cylinders containing slots in the axial and circumferential direction, and rectangular
cavities. That is, also fringing fields can be predicted accurately. Examples of these
3D cylindrical structures are shown in Figure 2.4. The examples consist of a soft-
magnetic core with a PM array, an airgap and a soft-magnetic cylinder enclosing the
structure. The first structure, Figure 2.4(a), illustrates a slot in soft-magnetic cylinder
in the circumferential direction. Figure 2.4(b) shows a slot in the axial direction, and
in Figure 2.4(c) the soft-magnetic cylinder has a rectangular cavity.
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(a) (b) (c)
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θ

Figure 2.4: Examples of three dimensional structures consisting of a soft-magnetic core
with a permanent magnet array, an airgap and a soft-magnetic cylinder enclosing the
structure with (a) a slot in the circumferential direction, (b) a slot in the axial direction,
and (c) a rectangular cavity.

2.3 Harmonic model definition
The harmonic model definition in the cylindrical coordinate system is similar to the
model definition in the 2D coordinate systems which is extensively described in [41].
In the 2D coordinate systems, the magnetic field is described by a 1D Fourier series.
In the polar coordinate system (Section 2.2.1), the Fourier series is defined in the
θ-direction, and in the axisymmetric coordinate system (Section 2.2.2), the Fourier
series is defined in the z-direction. The model in the cylindrical coordinate system as
presented in this thesis is based on a 2D Fourier series to describe the magnetic field
in the θ- and z-direction.

2.3.1 2D Fourier series

The 2D Fourier series to describe a function in the θ-z plane is defined as follows:
Consider a periodic function f as function of θ and z, this function can be described
by

f (θ, z) =
∞∑

k=1

∞∑
n=1

c1(k,n) sin

(
2nπ

Tθ
θ

)
sin

(
2kπ

Tz
z

)
+ c2(k,n) sin

(
2nπ

Tθ
θ

)
cos

(
2kπ

Tz
z

)
+

∞∑
k=1

∞∑
n=1

c3(k,n) cos

(
2nπ

Tθ
θ

)
sin

(
2kπ

Tz
z

)
+ c4(k,n) cos

(
2nπ

Tθ
θ

)
cos

(
2kπ

Tz
z

)
+

∞∑
k=1

c3(k,0) sin

(
2kπ

Tz
z

)
+ c4(k,0) cos

(
2kπ

Tz
z

)
+

∞∑
n=1

c2(0,n) sin

(
2nπ

Tθ
θ

)
+ c4(0,n) cos

(
2nπ

Tθ
θ

)
+ c4(0,0), (2.5)

where Tθ is the fundamental period of the function f in the circumferential direction,
and Tz is the fundamental period in the axial direction. Furthermore, n and k are the
harmonic number of the Fourier series in the θ- and z-direction, respectively. The
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unknown coefficients c1(k,n) to c4(k,n) can be found by solving the following integrals

c1(k,n) = 4

Tz Tθ

∫ Tz

0

∫ Tθ

0
f (θ, z)sin

(
2nπ

Tθ
θ

)
sin

(
2kπ

Tz
z

)
dθdz, (2.6)

c2(k,n) = 4

sTz Tθ

∫ Tz

0

∫ Tθ

0
f (θ, z)sin

(
2nπ

Tθ
θ

)
cos

(
2kπ

Tz
z

)
dθdz, (2.7)

c3(k,n) = 4

sTz Tθ

∫ Tz

0

∫ Tθ

0
f (θ, z)cos

(
2nπ

Tθ
θ

)
sin

(
2kπ

Tz
z

)
dθdz, (2.8)

c4(k,n) = 4

sTz Tθ

∫ Tz

0

∫ Tθ

0
f (θ, z)cos

(
2nπ

Tθ
θ

)
cos

(
2kπ

Tz
z

)
dθdz, (2.9)

where

s =


1 for n > 0, k > 0,
2 for n = 0, k > 0,
2 for n > 0, k = 0,
4 for n = 0, k = 0.

(2.10)

The variable s is used in the definition of the DC-components in the two directions in
the Fourier series.

Tangential and normal direction

Due to the definition of the Fourier series in the θ-z plane, a strong similarity is found
in the analysis between the θ- and z-direction. Therefore, the circumferential, θ-,
and axial, z-, direction are referred to as the tangential direction, and the radial, r -
direction is referred to as the normal direction.

2.3.2 Model assumptions

To reduce the complexity of the electromagnetic model, the following geometrical and
physical assumptions are considered:

1. All material properties are linear, homogeneous and isotropic.

2. The soft-magnetic parts are infinitely permeable.

3. The problem can be described by periodicity in the axial direction or has soft-
magnetic interfaces normal to the axial direction.

4. The problem can be described by periodicity in the circumferential direction or
has soft-magnetic interfaces normal to the circumferential direction.

5. The problem is current free.
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The analytical field solution considers linear, homogeneous and isotropic material
properties, hence no saturation, local or global, is taken into account. The permanent
magnets are modeled with a linear B-H characteristic, a remanent flux density, Brem,
and a relative permeability, µr.

The soft-magnetic parts within the considered domain are modeled with infinite
permeability. This implies that the magnetic field is not calculated in these parts, and
that the material is represented by a boundary condition at its surface. Instead of
modeling the soft-magnetic parts with an infinite permeability, a finite permeability
can be considered under the constraints presented in the next section. Although
the permeability of soft-magnetic materials is inherently non-linear, the infinite
permeability assumption provides valid results in many devices. Generally, the
magnetic circuit contains an airgap and often PMs which have a permeability close
to one. As a result, the permeability of these parts is dominant in the flux path and the
reduced permeability of the soft-magnetic parts introduces a minor error. Further,
the non-linear material properties can be minimized by limiting the magnetic flux
density in the material by predicting this flux density by means of a magnetic circuit,
and adjusting the geometry accordingly, explained in Section 6.4.4.

The magnetic scalar potential is used to solve the Maxwell equations, as such, the
complete domain has to be current free. This implies that the only source terms in the
domain are permanent magnets.

2.3.3 Division in regions

To obtain the magnetic field distribution in the structure, the complete structure is di-
vided into concentric orthogonal regions. Within these regions, the field distribution
in the tangential direction is described by a Fourier series. The function describing the
field distribution in the normal direction follows from the solution of the differential
equation in the cylindrical coordinate system and is given in Section 2.4.

Four types of regions can be distinguished each having the following properties:

1. Each region has six interfaces which coincides with a plane having one of its
coordinates constant and is either parallel or orthogonal to the other interfaces.

2. A source, if any, is invariant in the radial direction.

3. The permeability within the region is constant.

4. Adjacent regions in the tangential direction have the same permeability.

5. Each interface normal to the tangential direction is either periodic or soft-
magnetic with an infinite permeability.
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Each region should have at least two interfaces in the radial direction, and the
sources in these regions have to be invariant in the radial direction. This implies
that for example trapezoidal permanent magnets or soft-magnetic shapes cannot be
considered as a single region. A method to model these shapes is presented in [85] by
Meessen et al., where trapezoidal shaped permanent magnets are approximated using
a finite number of stacked rectangular shaped permanent magnets.

Since the permeability within a region has to be constant, a region with an array
of consecutive PMs with air in between can only be modeled having a constant
permeability. However, the permeability of the PMs is generally 5-10% higher than the
permeability of vacuum. As the space (air) between the PMs in a PM array is generally
small, modeling this space having the same permeability as the permanent magnets
introduces only a minor error. If the material adjacent to a region is soft-magnetic,
this material can only be modeled as a material having an infinite permeability.

In Figures 2.5 and 2.6, the four region types are shown where x is the region number
of interest. These regions are defined by:

1. Figure 2.5(a) : A region with periodicity in both tangential directions and a width
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Figure 2.6: Three dimensional view of the four region types defined in Figure 2.5.

of 2τx
z in the axial direction and a width of 2τx

θ
in the circumferential direction.

2. Figure 2.5(b) : A region representing a slot in soft-magnetic material in the
circumferential direction is shown. The region has periodicity in the θ-direction
and soft-magnetic interfaces at z = ∆z and z = ∆x

z +τx
z . The width of the slot is

τx
z and the width in the circumferential direction is 2τx

θ
.

3. Figure 2.5(c) : A region representing a slot in soft-magnetic material in the axial
direction having periodicity in the z-direction and soft-magnetic interfaces at
θ =∆x

θ
and θ =∆x

θ
+τx

θ
and a slot width of τx

θ
. The width in the axial direction is

2τx
θ

.

4. Figure 2.5(d) : A rectangular cavity in soft-magnetic material with soft-magnetic
interfaces at the sides. This region has a width of τx

z in the axial direction and a
width of τx

θ
in the circumferential direction.

In conclusion, the width of a region with soft-magnetic boundaries is τx while the
width of a periodic region is 2τx , the reason for this choice is explained in Section 2.5.

To simplify and generalize the magnetic field description in all regions, each of them
has its local coordinate system that is shifted in the axial direction, or rotated in the
circumferential direction. This local coordinate system is defined by

r x = r, (2.11)

θx = θ−∆x
θ , (2.12)

zx = z −∆x
z , (2.13)

where x is the region of interest, and ∆x
θ

and ∆x
z are the offsets in the circumferential

and axial direction, respectively, as shown in Figure 2.3(b). Using these local coordi-
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Figure 2.7: Source description in a region with soft-magnetic boundaries. Using the
imaging method [43]. (a) A permanent magnet with normal magnetization has to be
mirrored with respect to the surface zx = τx and/or θx = τx . (b) A permanent magnet
with a tangential magnetization has to be repeated.

nate systems, regions can be displaced with respect to each other which is useful when
a structure consists of a combination of the aforementioned regions.

The fundamental period of a Fourier series in a periodic region is defined by the
periodicity of the geometry or the sources in the region. To simplify the analysis in a
structure with multiple periodic regions, the fundamental period, 2τx , of all periodic
regions in a structure is equal. If the period of the geometry is different than the period
of the sources, one should select the largest period as the fundamental period for all
periodic regions.

2.3.4 Magnetic sources

Because the magnetic scalar potential is used in this analysis, only permanent mag-
nets can be considered as sources. In all four types of regions shown in Figure 2.5,
sources can be described by the remanent magnetization vector, defined in (1.11).
This vector has to be described using a Fourier series, where the coefficients can be
obtained using a Fourier expansion, defined in (2.6) to (2.9), where the fundamental
period, Tθ or Tz , is equal to the width of the region, 2τx .

Since the width of a region with soft-magnetic boundaries is τx , illustrated in
Figure 2.5(b,c,d)), and the fundamental period of the Fourier series is 2τx , only half
of the period of the Fourier series describes the physical magnet. Therefore, the
magnetization definition has to be extended to describe a complete period using
the imaging method [43]. The resulting remanent magnetization vector is shown in
Figure 2.7(a,b). As can be seen, for the normal component of the magnetization,
the PM has to be mirrored with respect to the plane zx = τx and/or θx = τx

(Figure 2.7(a)), while for the tangential component of the magnetization, the PM has
to be repeated without mirroring (Figure 2.7(a)). Consequently, the Fourier series
describing the normal component of the magnetization contains only sine terms,
and the Fourier series of the tangential component contains only cosine terms. By
applying equations (2.6) to (2.9) to the waveforms shown in Figure 2.7(a,b), the
required Fourier coefficients of the magnetization can be found.



46 2. Harmonic modeling of electromagnetic fields in 3D cylindrical structures

r

z
θ

interface r2

interface r1

interface θ1

interface θ2

interface z2
interface z1

Figure 2.8: Definition of the interfaces of a region.

2.3.5 Boundary conditions

The harmonic modeling technique can be considered as a boundary value problem.
In these problems, a solution to a differential equation in a region with constraints
on its boundaries is obtained [34]. Boundary value problems can often be solved
analytically when each interface of the region coincides with a plane having one of
its coordinates constant in a curvilinear orthogonal coordinate system. To obtain the
field solution in the complete structure, three general boundary conditions have to be
applied as derived in Section 1.1.4:

1. The tangential component of the magnetic field strength, ~H , is continuous at
the interfaces of a region.

2. The normal component of the magnetic flux density, ~B , is continuous at the
interfaces of a region.

3. The magnetic scalar potential, ϕ, is zero at the center of the coordinate system
(r = 0) and at infinity.

The boundary conditions have to be applied on the six interfaces of a region as shown
in Figure 2.8 and can be subdivided into boundary conditions on:

1. interfaces normal to the tangential direction, i.e., on interfaces θ1,θ2, z1 and z2,

2. interfaces normal to the radial direction, i.e., on interfaces r1 and r2.

The evaluation of these boundary conditions is discussed in Section 2.5 and Sec-
tion 2.6.
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2.4 Harmonic field and source description
The magnetic field in the θ-z plane is described by a 2D Fourier series. To complete
the 3D magnetic field description, the Fourier components have to be a function of
the radial position, r . In this section the complete description of the magnetic field is
given derived from the magnetic scalar potential. Using the Laplace equation, defined
in (1.34), the homogeneous solution for the magnetic scalar potential can be found.
The Poisson equation (1.33) provides the non-homogeneous solution of the magnetic
scalar potential defined due to the 2D Fourier description of the magnetization.
The complete description of the magnetic scalar potential can be found using the
separation of variables technique [16], that is

ϕx (r,θ, z) = R(r )Θ(θ)Z (z). (2.14)

A general solution for Θ(θ) and Z (z) that satisfies equations (1.33) and (1.34) is a
Fourier series as used in the previous sections

Θ(θ) =
∞∑

n=1

(
c1 sin(wnθ)+ c2 cos(wnθ)

)
, (2.15)

Z (z) =
∞∑

k=1

(
c3 sin(mk z)+ c4 cos(mk z)

)
. (2.16)

The solution for the radial function R(r ) is a set of different functions where the one
that has to be selected depends on the value of the harmonic numbers k and n [34]

R(r ) =


c6 for n = 0, k = 0,
c5r wn + c6r−wn for n > 0, k = 0,
c5Iwn (mk r )+ c6Kwn (mk r ) for n ≥ 0, k > 0.

(2.17)

It can be seen that the solution of R(r ) for n > 0, k = 0 is the same as in the
polar coordinate system presented in Section 2.2.1, while the solution for R(r ) for
k > 0, n = 0 is the solution in the axisymmetric coordinate system, presented in
Section 2.2.2. A combination of these functions provides the total solution in the
cylindrical coordinate system. From this general form an expression for the magnetic
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scalar potential is obtained in the following form

ϕx (r,θ, z) =−
∞∑

k=1

∞∑
n=1

1

mk

(
Rx

7 (r,k,n)+Gx
ϕ1(r,k,n)

)
sin(wnθ)sin(mk z)

−
∞∑

k=1

∞∑
n=1

1

mk

(
Rx

8 (r,k,n)+Gx
ϕ2(r,k,n)

)
sin(wnθ)cos(mk z)

−
∞∑

k=1

∞∑
n=0

1

mk

(
Rx

9 (r,k,n)+Gx
ϕ3(r,k,n)

)
cos(wnθ)sin(mk z)

−
∞∑

k=1

∞∑
n=0

1

mk

(
Rx

10(r,k,n)+Gx
ϕ4(r,k,n)

)
cos(wnθ)cos(mk z)

+
∞∑

n=1

1

wn

(
Rx

11(r,n)+Gx
ϕ5(r,n)

)
sin(wnθ)

+
∞∑

n=1

1

wn

(
Rx

12(r,n)+Gx
ϕ6(r,n)

)
cos(wnθ)

+Rx
13(r )+Gx

ϕ7(r ), (2.18)

where R is the homogeneous solution and G the non-homogeneous solution for the
Poisson equation as given in Appendix B.2. Hence, G is zero in the source free regions.

Field description

By means of the definition of the magnetic scalar potential, equation (1.32), the
magnetic field strength can be obtained

H x
r (r,θ, z) =

∞∑
k=1

∞∑
n=1

1

2

(
Rx

1 (r,k,n)+Gx
r 1(r,k,n)

)
sin(wnθ)sin(mk z)

+
∞∑

k=1

∞∑
n=1

1

2

(
Rx

2 (r,k,n)+Gx
r 2(r,k,n)

)
sin(wnθ)cos(mk z)

+
∞∑

k=1

∞∑
n=0

1

2

(
Rx

3 (r,k,n)+Gx
r 3(r,k,n)

)
cos(wnθ)sin(mk z)

+
∞∑

k=1

∞∑
n=0

1

2

(
Rx

4 (r,k,n)+Gx
r 4(r,k,n)

)
cos(wnθ)cos(mk z)

−
∞∑

n=1

(
Rx

5 (r,n)+Gx
r 5(r,n)

)
sin(wnθ)

−
∞∑

n=1

(
Rx

6 (r,n)+Gx
r 6(r,n)

)
cos(wnθ)

−Gx
r 7, (2.19)
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H x
θ(r,θ, z) =

∞∑
k=1

∞∑
n=1

wn

mk r

(
Rx

7 (r,k,n)+Gx
θ1(r,k,n)

)
cos(wnθ)sin(mk z)

+
∞∑

k=1

∞∑
n=1

wn

mk r

(
Rx

8 (r,k,n)+Gx
θ2(r,k,n)

)
cos(wnθ)cos(mk z)

−
∞∑

k=1

∞∑
n=1

wn

mk r

(
Rx

9 (r,k,n)+Gx
θ3(r,k,n)

)
sin(wnθ)sin(mk z)

−
∞∑

k=1

∞∑
n=1

wn

mk r

(
Rx

10(r,k,n)+Gx
θ4(r,k,n)

)
sin(wnθ)cos(mk z)

−
∞∑

n=1

(
Rx

11(r,n)+Gx
θ5(r,n)

)
cos(wnθ)

+
∞∑

n=1

(
Rx

12(r,n)+Gx
θ6(r,n)

)
sin(wnθ), (2.20)

H x
z (r,θ, z) =

∞∑
k=1

∞∑
n=1

(
Rx

7 (r,k,n)+Gx
z1(r,k,n)

)
sin(wnθ)cos(mk z)

−
∞∑

k=1

∞∑
n=1

(
Rx

8 (r,k,n)+Gx
z2(r,k,n)

)
sin(wnθ)sin(mk z)

+
∞∑

k=1

∞∑
n=0

(
Rx

9 (r,k,n)+Gx
z3(r,k,n)

)
cos(wnθ)cos(mk z)

−
∞∑

k=1

∞∑
n=0

(
Rx

10(r,k,n)+Gx
z4(r,k,n)

)
cos(wnθ)sin(mk z), (2.21)

where R, the homogeneous solution, consists of two parts; the unknown coefficients,
ax

... and bx
..., that have to be found by applying the boundary conditions and a part that

describes the r -dependency of the magnetic field in a region

Rx
1 (r,k,n) = ax

1 (k,n)
(
Iwn−1 (mk r )+Iwn+1 (mk r )

)
−bx

1 (k,n)
(
Kwn−1 (mk r )+Kwn+1 (mk r )

)
, (2.22)

Rx
2 (r,k,n) = ax

2 (k,n)
(
Iwn−1 (mk r )+Iwn+1 (mk r )

)
−bx

2 (k,n)
(
Kwn−1 (mk r )+Kwn+1 (mk r )

)
, (2.23)

Rx
3 (r,k,n) = ax

3 (k,n)
(
Iwn−1 (mk r )+Iwn+1 (mk r )

)
−bx

3 (k,n)
(
Kwn−1 (mk r )+Kwn+1 (mk r )

)
, (2.24)

Rx
4 (r,k,n) = ax

4 (k,n)
(
Iwn−1 (mk r )+Iwn+1 (mk r )

)
−bx

4 (k,n)
(
Kwn−1 (mk r )+Kwn+1 (mk r )

)
, (2.25)
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Rx
5 (r,n) = ax

5 (n)r wn−1 +bx
5 (n)r−wn−1, (2.26)

Rx
6 (r,n) = ax

6 (n)r wn−1 +bx
6 (n)r−wn−1, (2.27)

Rx
7 (r,k,n) = ax

1 (k,n)Iwn (mk r )+bx
1 (k,n)Kwn (mk r ) , (2.28)

Rx
8 (r,k,n) = ax

2 (k,n)Iwn (mk r )+bx
2 (k,n)Kwn (mk r ) , (2.29)

Rx
9 (r,k,n) = ax

3 (k,n)Iwn (mk r )+bx
3 (k,n)Kwn (mk r ) , (2.30)

Rx
10(r,k,n) = ax

4 (k,n)Iwn (mk r )+bx
4 (k,n)Kwn (mk r ) , (2.31)

Rx
11(r,n) = ax

5 (n)r wn−1 −bx
5 (n)r−wn−1, (2.32)

Rx
12(r,n) = ax

6 (n)r wn−1 −bx
6 (n)r−wn−1, (2.33)

Rx
13(r ) = ax

7 . (2.34)

Source description

The method to describe permanent magnets by means of the remanent magnetization
vector is introduced in Section 2.3.4. To be able to use the magnetization in the
analysis, the Fourier terms are defined in the same form as the magnetic field strength
in the previous section. As such, the general description of the magnetization,
consisting of three components, is described by

~M0 =
Brem

µ0
(Mr~er +Mθ~eθ+Mz~ez ) (2.35)

Mr (θ, z) =
∞∑

k=1

∞∑
n=1

Mr ss (k,n) sin(wnθ)sin(mk z)+Mr sc (k,n) sin(wnθ)cos(mk z)

+
∞∑

k=1

∞∑
n=0

Mr cs (k,n) cos(wnθ)sin(mk z)+Mr cc (k,n) cos(wnθ)cos(mk z)

+
∞∑

n=1
Mr s (n) sin(wnθ)+Mr c (n) cos(wnθ)+Mr 0, (2.36)

Mθ(θ, z) =
∞∑

k=1

∞∑
n=1

Mθss (k,n) sin(wnθ)sin(mk z)+Mθsc (k,n) sin(wnθ)cos(mk z)

+
∞∑

k=1

∞∑
n=0

Mθcs (k,n) cos(wnθ)sin(mk z)+Mθcc (k,n) cos(wnθ)cos(mk z)

+
∞∑

n=1
Mθs sin(wnθ)+Mθc cos(wnθ)+Mθ0, (2.37)
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Mz (θ, z) =
∞∑

k=1

∞∑
n=1

Mzss (k,n) sin(wnθ)sin(mk z)+Mzsc (k,n) sin(wnθ)cos(mk z)

+
∞∑

k=1

∞∑
n=0

Mzcs (k,n) cos(wnθ)sin(mk z)+Mzcc (k,n) cos(wnθ)cos(mk z)

+
∞∑

n=1
Mzs sin(wnθ)+Mzc cos(wnθ)+Mz0. (2.38)

Using Fourier expansion defined by (2.6) to (2.9), the magnetization coefficients can
be found using the following relations

Mxss =
1

sτzτθ

∫ 2τz

0

∫ 2τθ

0
Mx (θ, z)sin(wnθ)sin(mk z)dθdz for k > 0, (2.39)

Mxsc =
1

sτzτθ

∫ 2τz

0

∫ 2τθ

0
Mx (θ, z)sin(wnθ)cos(mk z)dθdz for k > 0, (2.40)

Mxcs =
1

sτzτθ

∫ 2τz

0

∫ 2τθ

0
Mx (θ, z)cos(wnθ)sin(mk z)dθdz for k > 0, (2.41)

Mxcc =
1

sτzτθ

∫ 2τz

0

∫ 2τθ

0
Mx (θ, z)cos(wnθ)cos(mk z)dθdz for k > 0, (2.42)

Mxs =
1

2τzτθ

∫ 2τz

0

∫ 2τθ

0
Mx (θ, z)sin(wnθ)dθdz for n > 0, (2.43)

Mxc =
1

2τzτθ

∫ 2τz

0

∫ 2τθ

0
Mx (θ, z)cos(wnθ)dθdz for n > 0, (2.44)

Mx0 =
1

4τzτθ

∫ 2τz

0

∫ 2τθ

0
Mx (θ, z)dθdz, (2.45)

where x denotes the magnetization component of interest, i.e. r, θ or z and

s =
{

1 for n > 0,
2 for n = 0.

(2.46)

2.5 Boundary conditions on interfaces θ1,θ2, z1 and z2

The magnetic field as a function of the tangential direction is described by a Fourier
series, hence, boundary conditions on the interfaces θ1,θ2, z1 and z2 are inherently
solved by selecting the proper fundamental period of the Fourier series. In the 2D
Fourier series, used in this analysis, two spatial frequencies are defined,

wn = nπ

τθ
, (2.47)

mk = kπ

τz
. (2.48)

For both Fourier series holds that the fundamental frequency is equal to 2τ. In
Figure 2.5, the relation between the width of a region and the fundamental period
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Table 2.1: Possible Fourier terms of the magnetic field components to satisfy one set
of boundary conditions of the regions as defined in Figure 2.5 where θx and zx are the
coordinates in the local coordinate system of the specific region.

Region a Region b Region c Region d

Hr Hθ Hz Hr Hθ Hz Hr Hθ Hz Hr Hθ Hz
∞∑

k=1

∞∑
n=1

sin(w x
nθ

x )sin(mx
k zx ) • • • • • • • •

∞∑
k=1

∞∑
n=1

sin(w x
nθ

x )cos(mx
k zx ) • • • • • • •

∞∑
k=1

∞∑
n=1

cos(w x
nθ

x )sin(mx
k zx ) • • • • • • •

∞∑
k=1

∞∑
n=1

cos(w x
nθ

x )cos(mx
k zx ) • • • • •

∞∑
k=1

sin(mx
k zx ) • • •

∞∑
k=1

cos(mx
k zx ) • • •

∞∑
n=1

sin(w x
nθ

x ) • • •
∞∑

n=1
cos(w x

nθ
x ) • • •

of the Fourier series in the z- and θ-direction is shown. As can be seen in this figure,
the fundamental period of the magnetic field is equal to 2τp when periodic boundary
conditions apply. Due to this definition, the periodicity in this direction is inherently
obtained.

In Figure 2.5(b,c), the regions are bounded by soft-magnetic material at two sides. At
the interfaces at these sides, the components of the magnetic field strength tangential
to the interface have to be zero due to the assumption that the permeability of the
soft-magnetic material is infinite. By selecting a Fourier series for these magnetic
field components having only sine terms in the direction normal to the interface,
this boundary condition can be satisfied. To be able to include a DC-term in the
magnetic field in this region the width of the region is half the fundamental period of
the Fourier series. That is, the fundamental period is 2τp , and the width of the region
is τp . In Figure 2.9, the fundamental, second and third harmonic of the Fourier series
describing Hθ or Hr in a circumferential slot are shown to illustrate that the boundary
condition is satisfied by means of the aforementioned analysis.

The resulting possible Fourier terms for the field components in each region
illustrated in Figure 2.5 is shown in Table 2.1. As can be seen, the radial magnetic
field component in a periodic region (a) can contain both sine and cosine terms.
Conversely, the field components in region (d) consist of solely sine terms due to the
soft-magnetic boundaries at four sides of the region.
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µr =∞ µr =∞

τx
z

region x

r x

zx

Figure 2.9: Fundamental, second and third harmonic of Hθ or Hr in a circumferential
slot, region x, as shown in Figure 2.5(b). As illustrated, the magnetic field strength
components tangential to the soft-magnetic interface are set to zero by selecting solely
sine terms for the Fourier series to describe the magnetic field.

2.6 Boundary conditions between regions with
equal Fourier series

In Figure 2.5, the possible regions in the z-θ plane are shown. Because the complete
domain has to be divided into regions, these regions have to be stacked in the radial
direction to obtain the complete model. To solve the magnetic fields in all regions,
boundary conditions between these (radially) stacked regions have to be solved on
the interfaces normal to the radial direction, i.e., r1 and r2. In the previous section the
boundary conditions on interfaces θ1, θ2, z1 andz2 are satisfied by selecting a proper
period of the Fourier series. In this section the boundary conditions on interfaces r1

and r2 of two subsequent regions have to be solved using the coefficients of the Fourier
series, ax and bx . Three different situations can be recognized for this boundary
condition:

1. The interface is a soft-magnetic boundary.

2. The regions at both sides of the interface are periodic in two directions and the
two Fourier series have the same fundamental period, τ, and offset, ∆, at both
sides. That is, the regions at both sides are of type Figure 2.5(a).

3. One or both fundamental period(s) and or offsets of the Fourier series on both
sides of the interface are unequal.

The technique to satisfy the boundary conditions (1) and (2) is explained in the this
section where two adjacent regions are considered, region p and region q . Boundary
condition (3) is discussed in the next section.

1) Soft-magnetic interface

If the interface r1 or r2 of a region is soft-magnetic, the tangential component of the
magnetic field strength is set to zero at that radius. As this boundary condition should
hold for the complete interface, i.e. for all zx and θx , the Fourier coefficients of these
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r
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region q

2τp
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interface r p
1

2τp
θ

2τq
z

2τq
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Figure 2.10: Illustration of two periodic regions, region p and region q , and the
interface in between, r

p
1 .

field components have to be zero at the interface. The normal component of the
magnetic field strength is not considered in a boundary condition at this interface.

2) Interface between two periodic regions

In the second case, the interface between two periodic regions, region p and region q
shown in Figure 2.10 is considered. As mentioned before, the fundamental period of
all periodic regions in a structure are equal. Hence, for the example in Figure 2.10
holds

τ
p
z = τq

z , (2.49)

τ
p
θ
= τq

θ
. (2.50)

Furthermore, to simplify the analysis one should use the same local coordinate system
for two adjacent periodic regions.

Two boundary conditions have to be applied on the interface between two periodic
regions; the component of the field strength tangential to the interface and the
component of the flux density normal to the interface have to be continuous over the
interface. Due to the definition of (2.49) and (2.50), the two boundary conditions can
only be satisfied when the values of the Fourier coefficients in region p and region q
are equal. If the region is periodic in only one direction, for example the regions in
Figure 2.5(b,c), the values of the Fourier coefficients in region p and region q are equal
in only that specific direction. To solve the boundary condition for the Fourier series
in the other direction, the technique described in the next section has to be applied.
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2.7 Boundary conditions between regions with
unequal Fourier series

In case that the fundamental period of one of the Fourier series is not equal at both
sides of the interface, the previously described approach cannot be used to satisfy
the boundary conditions. The same holds when the local coordinate systems of the
two regions are displaced, i.e., ∆p

θ
6= ∆

q
θ

and/or ∆p
z 6= ∆

q
z . This section presents an

approach to solve the boundary conditions between these two regions.

Consider the geometry shown in Figure 2.11(a) where a cavity in a soft-magnetic
shell is enclosed by an air shell. Periodic region p is assigned to the air shell
and region q to the cavity having soft-magnetic boundaries in the two tangential
directions. To simplify the analysis, only the relative transformation of the two
coordinate systems of the regions is used defined by

∆z =∆q
z −∆p

z , (2.51)

∆θ =∆q
θ
−∆p

θ
. (2.52)

The interface where the boundary condition has to be solved is interface r p
1 as

r

z

θ

region p

region q

∆θ
∆z

τ
q
z

τ
q
θ

2τp
θ

S
2τp

z

r

z

θ

(a)

(b)

interface r p
1

Figure 2.11: (a) Illustration of a cavity in a soft-magnetic shell enclosed by a periodic
region. (b) Two regions having unequal Fourier series where region p is periodic in two
directions, and region q has soft-magnetic boundaries in the axial and circumferential
direction. S is the interface between the two regions.
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illustrated in Figure 2.11(b). The surface S denotes the overlapping part of interface
r p

1 and r q
2 . Region q is the only adjacent region of region p, therefore, interface r1 of

region p is soft-magnetic except for the part that coincides with surface S .

Two boundary conditions have to be solved on the interface r p
1

1. H p
t =

{
H q

t for z,θ ∈S ,

0 elsewhere,
(2.53)

2. B q
n = B p

n for z,θ ∈S , (2.54)

where

Ht =
{

Hz ,

Hθ,
(2.55)

Bn = Br (2.56)

=µ0µr Hr +µ0Mr . (2.57)

Using Table 2.1, the Fourier terms to describe the magnetic field at interface r p
1 in

region p are found resulting in

H p
r (θp , zp ) =

∞∑
k=1

∞∑
n=1

cp
1 (k,n) sin

(
wnθ

p)
sin

(
mk zp)+ cp

2 (k,n) sin
(
wnθ

p)
cos

(
mk zp)

+
∞∑

k=1

∞∑
n=0

cp
3 (k,n) cos

(
wnθ

p)
sin

(
mk zp)+ cp

4 (k,n) cos
(
wnθ

p)
cos

(
mk zp)

+
∞∑

n=1
cp

2 (0,n) sin
(
wnθ

p)+ cp
4 (0,n) cos

(
wnθ

p)
, (2.58)

H p
θ

(θp , zp ) =
∞∑

k=1

∞∑
n=1

cp
5 (k,n) sin

(
wnθ

p)
sin

(
mk zp)+ cp

6 (k,n) sin
(
wnθ

p)
cos

(
mk zp)

+
∞∑

k=1

∞∑
n=1

cp
7 (k,n) cos

(
wnθ

p)
sin

(
mk zp)+ cp

8 (k,n) cos
(
wnθ

p)
cos

(
mk zp)

+
∞∑

n=1
cp

6 (0,n) sin
(
wnθ

p)+ cp
8 (0,n) cos

(
wnθ

p)
, (2.59)

H p
z (θp , zp ) =

∞∑
k=1

∞∑
n=1

cp
9 (k,n) sin

(
wnθ

p)
sin

(
mk zp)+ cp

10(k,n) sin
(
wnθ

p)
cos

(
mk zp)

+
∞∑

k=1

∞∑
n=0

cp
11(k,n) cos

(
wnθ

p)
sin

(
mk zp)+cp

12(k,n) cos
(
wnθ

p)
cos

(
mk zp)

.

(2.60)

It can be seen that the magnetic field strength description is simplified by introducing
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unknown coefficient cp (k,n) to replace Rp (r,k,n) and Gp used in (2.19) to (2.21). The
field components in this definition are independent of r because they are defined at
interface r p

1 which has a constant radius.

The Fourier series describing the magnetic field in the cavity at interface r q
2 , which

coincides with r p
1 over the surface S , contains fewer components as defined in

Table 2.1

H q
r (θq , zq ) =

∞∑
l=1

∞∑
j=1

cq
1 (l , j ) sin

(
w jθ

q )
sin

(
ml zq )

)
, (2.61)

H q
θ

(θq , zq ) =
∞∑

l=1

∞∑
j=1

cq
7 (l , j ) cos

(
w jθ

q )
sin

(
ml zq )

, (2.62)

H q
z (θq , zq ) =

∞∑
l=1

∞∑
j=1

cq
10(l , j ) sin

(
w jθ

q )
cos

(
ml zq )

. (2.63)

As in both regions different Fourier series are used, two new harmonic numbers are
introduced in region q ; l and j . Consequently, the two spatial frequencies of the
Fourier series, w j ,ml , in region q are

w j =
jπ

τ
q
θ

, (2.64)

ml =
lπ

τ
q
z

. (2.65)

2.7.1 Continuous tangential component of magnetic field

To solve the continuous boundary condition of the tangential component of the
magnetic field strength given in (2.53), the Fourier coefficients of H p

θ
are defined by

a Fourier expansion of H q
θ

. By means of definition (2.6) to (2.9), this yields to the
following set of equations

cp
5 (k,n) = 1

τ
p
θ
τ

p
z

∫ 2τ
p
z

0

∫ 2τ
p
θ

0
H q
θ

(θq , zq )sin
(
wnθ

p)
sin

(
mk zp)

dθp dzp for k ≥ 1,n ≥ 1,

(2.66)

cp
6 (k,n) = 1

sτp
θ
τ

p
z

∫ 2τ
p
z

0

∫ 2τ
p
θ

0
H q
θ

(θq , zq )sin
(
wnθ

p)
cos

(
mk zp)

dθp dzp for k ≥ 0,n ≥ 1,

(2.67)
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cp
7 (k,n) = 1

τ
p
θ
τ

p
z

∫ 2τ
p
z

0

∫ 2τ
p
θ

0
H q
θ

(θq , zq )cos
(
wnθ

p)
sin

(
mk zp)

dθp dzp for k ≥ 1,n ≥ 1,

(2.68)

cp
8 (k,n) = 1

sτp
θ
τ

p
z

∫ 2τ
p
z

0

∫ 2τ
p
θ

0
H q
θ

(θq , zq )cos
(
wnθ

p)
cos

(
mk zp)

dθp dzp for k ≥ 0,n ≥ 1,

(2.69)

where

s =
{

1 for k > 0,n > 0,

2 for k = 0,n > 0.
(2.70)

For the remainder of the analysis, only equation (2.66) is considered since (2.67) to
(2.69) can be solved using the same approach.

Because H p
θ

should be equal to H q
θ

on the surface S and zero elsewhere, the
integration interval is bounded by S . Therefore, (2.66) yields to

cp
5 (k,n) = λ

τ
p
θ
τ

p
z

Ï
S

H q
θ

(θq , zq )sin
(
wnθ

p)
sin

(
mk zp)

dS for k ≥ 1,n ≥ 1, (2.71)

where λ= 1. The equation for H q
θ

is inserted and the surface integral is split into two
functions where each function contains an integral over one dimension to create a
more general formulation

cp
5 (k,n) =

∞∑
l=1

∞∑
j=1

cq
7 (l , j )κc (θ, j ,n)κs (z, l ,k) for k ≥ 1,n ≥ 1, (2.72)

where

κc (ν,nq ,np ) = λ

sτp
ν

∫ ∆ν+τq
ν

∆ν

cos

(
nqπ

τ
q
ν

νq
)

sin

(
npπ

τ
p
ν

νp
)

dνp , (2.73)

κs (ν,nq ,np ) = λ

sτp
ν

∫ ∆ν+τq
ν

∆ν

sin

(
nqπ

τ
q
ν

νq
)

sin

(
npπ

τ
p
ν

νp
)

dνp , (2.74)

where ν is either z or θ, ∆ν = ∆
q
ν −∆p

ν and λ = 1. These function are referred to
as correlation functions as they define the correlation between the Fourier series in
two subsequent regions. The solution of these correlation functions can be found in
Appendix B.1. To be able to evaluate (2.67) to (2.69) in the same manner, two more
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functions have to be defined to find the correlation between all Fourier components

ςc (ν,nq ,np ) = λ

sτp
ν

∫ ∆ν+τq
ν

∆ν

cos

(
nqπ

τ
q
ν

νq
)

cos

(
npπ

τ
p
ν

νp
)

dνp , (2.75)

ςs (ν,nq ,np ) = λ

sτp
ν

∫ ∆ν+τq
ν

∆ν

sin

(
nqπ

τ
q
ν

νq
)

cos

(
npπ

τ
p
ν

νp
)

dνp . (2.76)

Consequently, equation (2.67) to (2.69) yield to

cp
6 (k,n) =

∞∑
l=1

∞∑
j=1

cq
7 (l , j )κc (θ, j ,n)ςs (z, l ,k) for k ≥ 0,n ≥ 1, (2.77)

cp
7 (k,n) =

∞∑
l=1

∞∑
j=1

cq
7 (l , j )ςc (θ, j ,n)κs (z, l ,k) for k ≥ 1,n ≥ 1, (2.78)

cp
8 (k,n) =

∞∑
l=1

∞∑
j=1

cq
7 (l , j )ςc (θ, j ,n)ςs (z, l ,k) for k ≥ 0,n ≥ 1. (2.79)

In the example, region p is considered to be periodic in the circumferential and
the axial direction. In case that region p has soft-magnetic boundaries in the axial
direction, the same analysis holds except that λ= 2 in the aforementioned correlation
functions for ν = z. In case that region p has soft-magnetic boundaries in the
circumferential direction, λ= 2 in the aforementioned correlation functions for ν= θ.

The complete boundary condition concerns the tangential component of the
magnetic field strength, hence, both the θ-component and the z-component have to
be considered to satisfy the boundary condition (2.53). Repeating the aforementioned
analysis for Hz results in the same set of equations and two additional equations to
describe the relation between cp

11(k,0), cp
12(k,0) and cq

10(l , j )

cp
11(k,0) =

∞∑
l=1

∞∑
j=1

cq
10(l , j )ςs (θ, j ,0)κc (z, l ,k) for k ≥ 1,n = 0, (2.80)

cp
12(k,0) =

∞∑
l=1

∞∑
j=1

cq
10(l , j )ςs (θ, j ,0)ςc (z, l ,k) for k ≥ 0,n = 0. (2.81)

Axial or circumferential slot

In case that region q is a slot in the axial or circumferential direction illustrated in
Figure 2.5(b,c), the region will have periodicity in the direction of the slot instead of
soft-magnetic boundary conditions. Consequently, the Fourier series used to describe
the field in that direction will have the same fundamental period and harmonic
number as the Fourier series in region p and the offset between the two regions, ∆ν,
can be set to zero without consequences. The integration surface S used in (2.71)
covers a full period in the direction of the slot. By means of the aforementioned
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analysis, a similar set of equations with correlation functions can be derived except
that the correlation functions in the direction of the slot disappear as the Fourier series
in regions p and q are the same in that direction. As such, the correlation functions in
the direction of the slot have to be replaced by a Kronecker delta, δnp nq .

Multiple regions with soft-magnetic boundaries

In the aforementioned example illustrated in Figure 2.11, a region p is considered with
one adjacent region q having soft-magnetic boundaries. However in most devices
or structures, one region has multiple adjacent regions, e.g. a slotted actuator. In
these cases, one region p is considered with multiple adjacent regions q1, q2...qγ.
Consequently, equation (2.66) to (2.69) should contain the magnetic field strength in
all γ regions. Hence, (2.72),(2.77)-(2.81) have to be rewritten as

cp
5 (k,n) =

γ∑
i=1

[ ∞∑
l i=1

∞∑
j i=1

cq i

7 (l i , j i )κc (θ, j i ,n)κs (z, l i ,k)

]
, (2.82)

cp
6 (k,n) =

γ∑
i=1

[ ∞∑
l i=1

∞∑
j i=1

cq i

7 (l i , j i )κc (θ, j i ,n)ςs (z, l i ,k)

]
, (2.83)

cp
7 (k,n) =

γ∑
i=1

[ ∞∑
l i=1

∞∑
j i=1

cq i

7 (l i , j i )ςc (θ, j i ,n)κs (z, l i ,k)

]
, (2.84)

cp
8 (k,n) =

γ∑
i=1

[ ∞∑
l i=1

∞∑
j i=1

cq i

7 (l i , j i )ςc (θ, j i ,n)ςs (z, l i ,k)

]
, (2.85)

cp
11(k,0) =

γ∑
i=1

[ ∞∑
l i=1

∞∑
j i=1

cq i

10 (l i , j i )ςs (θ, j i ,0)κc (z, l i ,k)

]
, (2.86)

cp
12(k,0) =

γ∑
i=1

[ ∞∑
l i=1

∞∑
j i=1

cq i

10 (l i , j i )ςs (θ, j i ,0)ςc (z, l i ,k)

]
. (2.87)

2.7.2 Continuous normal component of magnetic flux density

Besides the continuous tangential magnetic field component on the interface, the
normal component of the magnetic flux density has to be continuous over the
interface. As in the previous section, two Fourier series having different fundamental
periods have to be matched. The same approach is used here, with one difference
that instead of writing H p as function of H q , the components of B q are written as a
function of B p .

As defined in (2.57), the radial component of the magnetization has to be taken
into account in this boundary condition. Although the example shown in Figure 2.11
does not contain a source, this magnetization component will be taken into account
in region p and region q to generalize the analysis. The radial component of the
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magnetization in region p and q is defined using Section 2.3.4 and Section 2.4
resulting in

M p
r (θ, z) =

∞∑
k=1

∞∑
n=1

M p
r ss (k,n) sin(w p

nθ
p )sin(mp

k zp )+M p
r sc (k,n) sin(w p

nθ
p )cos(mp

k zp )

+
∞∑

k=1

∞∑
n=0

M p
r cs (k,n) cos(w p

nθ
p )sin(mp

k zp )+M p
r cc (k,n) cos(w p

nθ
p )cos(mp

k zp )

+
∞∑

n=1
M p

r s (0,n) sin(w p
nθ

p )+M p
r c (0,n) cos(w p

nθ
p ), (2.88)

M q
r (θ, z) =

∞∑
l=1

∞∑
j=1

M q
r ss (l , j ) sin(w q

j θ
q )sin(mq

l zq ). (2.89)

Consequently, combining (2.54) and (2.57) and writing B q
r +M q

r as a Fourier expansion
of B p

r +M p
r yields to

µr cq
1 (l , j )+M q

r ss =
λ

τ
q
θ
τ

q
z

Ï
S

(
µr H p

r +M p
r
)

sin
(
w jθ

q )
sin

(
ml zq )

dS for l ≥ 1, j ≥ 1.

(2.90)

Instead of integrating over one full period of the Fourier series in region q (i.e.,
2τq ), the integration is bounded by S as the boundary condition only applies on
this interface. The surface S has a width of τq

θ
and a length of τq

z , which is half the
fundamental period in both directions, hence, the Fourier integral covers only one
fourth of one period of the total 2D Fourier series. Because B q

r is anti-symmetric, i.e.
contains only sine components as explained in Section 2.5, λ= 4 at the right hand side
of (2.90). If region q is a slot in the axial or circumferential direction λ = 2 because S
covers half the period of the 2D Fourier series. Inserting H p

r and M p
r into (2.90) and

rewriting the equation as in the previous section yields to

µr cq
1 (l , j )+M q

r ss =
∞∑

k=1

∞∑
n=1

(
µr cp

1 (k,n)+M p
r ss

)
εs (θ,n, j )εs (z,k, l )

+
∞∑

k=1

∞∑
n=1

(
µr cp

2 (k,n)+M p
r sc

)
εs (θ,n, j )εc (z,k, l )

+
∞∑

k=1

∞∑
n=0

(
µr cp

3 (k,n)+M p
r cs

)
εc (θ,n, j )εs (z,k, l )

+
∞∑

k=0

∞∑
n=0

(
µr cp

4 (k,n)+M p
r cc

)
εc (θ,n, j )εc (z,k, l )

+
∞∑

n=1

(
µr cp

2 (0,n)+M p
r s

)
εs (θ,n, j )εc (z,0, l )

+
∞∑

n=1

(
µr cp

4 (0,n)+M p
r c

)
εc (θ,n, j )εc (z,0, l ) for l ≥ 1, j ≥ 1,

(2.91)
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where the correlation functions, εs and εc , are defined as

εs (ν,np ,nq ) = 2

τ
q
ν

∫ τ
q
ν

0
sin

(
npπ

τ
p
ν

νp
)

sin

(
nqπ

τ
q
ν

νq
)

dνq , (2.92)

εc (ν,np ,nq ) = 2

τ
q
ν

∫ τ
q
ν

0
cos

(
npπ

τ
p
ν

νp
)

sin

(
nqπ

τ
q
ν

νq
)

dνq . (2.93)

As explained the previous section, the aforementioned correlation functions yield to
Kronecker delta functions when the cavity is replaced by a slot in one direction.

2.8 Model validation
The results of the analytical model are compared with results of a linear and a non-
linear finite element (FE) model to validate the presented model. The modeled
structure consists of three regions and represents a soft-magnetic cylinder with
surface mounted permanent magnets in a checkerboard pattern (region I), an air-
gap (region II) and a soft-magnetic cylinder with a cavity (region III) as shown in
Figure 2.12. The permanent magnet array consists of alternating radially magnetized
permanent magnets in the circumferential and axial direction. The coordinate system
of the permanent magnet and airgap region is defined such that the magnetization

Rr

Rm

Ri

r

z τIII
z

τIII
θ

θ

∆z

∆θ

2τI,II
z

Ro

core

PMs

soft-magnetic cylinder

Figure 2.12: 3D illustration of cylindrical structure used for model validation.
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Table 2.2: Geometrical dimensions and properties of the structure used for the model
validation.

Parameter Value Description

Rr [mm] 6.0 Inner radius PM array

Rm [mm] 9.0 Outer radius PM array

Ri [mm] 10.0 Inner radius soft-magnetic cylinder

Ro [mm] ∞ Outer radius soft-magnetic cylinder

τI,II
z [mm] 10.0 Pole pitch PM array, z-direction

τI,II
θ

[deg] 180 Pole pitch PM array, θ-direction

αpz [-] 0.8 Pole pitch to magnet pitch ratio, z-direction

αpθ [-] 0.8 Pole pitch to magnet pitch ratio, θ-direction

τIII
z [mm] 12.0 Width region III (cavity), z-direction

τIII
θ

[deg] 125 Width region III (cavity), θ-direction

∆z [mm] 2.0 Offset region III w.r.t. region I, z-direction

∆θ [deg] 110 Offset region III w.r.t. region I, θ-direction

Brem [T] 1.2 Remanent flux density PMs

µr [-] 1.05 Relative permeability PMs

N [-] 29 Number of harmonics θ-direction, region I,II

K [-] 17 Number of harmonics z-direction, region I,II

J [-] 19 Number of harmonics θ-direction, region III

L [-] 19 Number of harmonics z-direction, region III

can described by solely sine terms, i.e.,

Mr ss (k,n) =
16sin

(
kπ
2

)
sin

(
αpz kπ

2

)
sin

( nπ
2

)
sin

(
αpθnπ

2

)
knπ2 . (2.94)

The dimensions and properties of the structure are listed in Table 2.2.

The magnetic field description defined in (2.19) to (2.21) is used where the unknown
coefficients are obtained by solving the following boundary conditions:

1. ϕIII = 0
∣∣∣
r=∞

0 < θIII < τIII
θ ,

0 < zIII < τIII
z ,

2. H I
z = 0

∣∣∣
r=Rr

, H I
θ = 0

∣∣∣
r=Rr

∀ z,θ,

3. H I
z = H II

z

∣∣∣
r=Rm

, H I
θ = H II

θ

∣∣∣
r=Rm

∀ z,θ,

4. B I
r = B II

r

∣∣∣
r=Rm

∀ z,θ,
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5. H II
z = H III

z

∣∣∣
r=Ri

, H II
θ = H III

θ

∣∣∣
r=Ri

∆θ < θ <∆θ+τIII
θ ,

∆z < z <∆z +τIII
z ,

H II
z = 0

∣∣∣
r=Ri

, H II
θ = 0

∣∣∣
r=Ri

elsewhere,

6. B III
r = B II

r

∣∣∣
r=Ri

0 < θIII < τIII
θ ,

0 < zIII < τIII
z .

The set of equations obtained from the boundary conditions consists of 2(8×N ×K +
4×K +4×N )+2×L× J equations and unknown coefficients. This set is implemented
in MATLAB according to the method described in Appendix B.3. The finite element
model used for the validation is constructed in the same manner as the analytical
model and implemented in FLUX3D. One period is modeled and periodicity in the
axial direction is used to obtain the correct solution. The depth of the cavity in the
radial direction is infinite in the analytical model, whereas in the FE model the depth
is equal to 25 mm.

2.8.1 Comparison with a linear finite element model

In the first step of the model validation, the results are compared with a linear FE
model where the soft-magnetic materials are modeled as boundary conditions, i.e.,
the tangential component of the magnetic field at the boundary is zero. Hence, the
assumptions in the finite element model and the analytical model are the same.

To illustrate the agreement between the two models, the flux density in the airgap
is shown in this section. In Figure 2.13 the three components of the flux density are
shown in 3D surface plots. These figures show clearly the global agreement between
the FE results and the analytical model. To show the accuracy of the analytical model,
two dimensional figures are added showing the flux density at a constant z or θ. In
Figure 2.14(a,c,e), the radial, circumferential and axial component of the flux density
are shown at a constant z. Figure 2.14(b,d,f) show the three components of the flux
density versus z at a constant θ crossing the area underneath the cavity. It can be
observed that in all figures very good agreement is found between the two models.
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(a) (b)

(c) (d)

(e) (f )

Figure 2.13: Flux density calculated in the middle of the airgap, r = Ri+Rm
2 in the

structure as illustrated in Figure 2.12 with the dimensions as listed in Table 2.2. (a)
Br analytical, (b) Br linear FEM, (c) Bθ analytical, (d) Bθ linear FEM, (e) Bz analytical,
(f ) Bz linear FEM.
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Figure 2.14: Flux density calculated in the middle of the airgap, r = Ri+Rm
2 in the

structure as illustrated in Figure 2.12 with the dimensions as listed in Table 2.2 by means
of the analytical model (ANA) and a linear finite element model (FEM). (a) Br versus θ
at z = 4.8mm, (b) Br versus z at θ = 110deg, (c) Bθ versus θ at z = 4.8mm, (d) Bθ versus
z at θ = 110deg, (e) Bz versus θ at z = 4.8mm, (f ) Bz versus z at θ = 110deg.
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2.8.2 Comparison with a non-linear finite element model

In Section 2.3.2 is explained that the soft-magnetic materials used in electromagnetic
devices have a non-linear permeability. However, this property is not considered in
the analytical model, but can be taken into account in the FE model. To evaluate
the analytical model in a realistic situation, an additional comparison is conducted
with a non-linear FE model. In this model, the core is modeled as a soft-magnetic
solid cylinder. The soft-magnetic cylinder and the walls of the cavity are represented
by a shell with a thickness of 1.0 mm, illustrated in Figures 2.12 and 2.15. The soft-
magnetic material used in this FE model has a non-linear B H-curve with a saturation
magnetization of approximately 1.6 T.

The modulus of the magnetic flux density in the soft-magnetic cylinder is shown
in Figure 2.15(a). It can be seen that at several positions the flux density exceeds the
saturation level. Figure 2.15(b) illustrates the relative permeability distribution in the
soft-magnetic cylinder, which is significantly reduced at the positions with a high flux
density. To compare the results of the analytical model with the non-linear FE model,
the flux density in the airgap is calculated in both models and shown in Figure 2.16.
The analytical model still provides a very good approximation of the magnetic flux
density in this structure, albeit that it is saturated at various positions.

(a) (b)

Figure 2.15: Results of the non-linear finite element model of the structure illustrated
in Figure 2.12. (a) Modulus of the magnetic flux density at the interface of the soft-
magnetic cylinder. (b) Relative permeability at the interface of the soft-magnetic
cylinder.
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Figure 2.16: Flux density calculated in the middle of the airgap, r = Ri+Rm
2 in the

structure as illustrated in Figure 2.12 with the dimensions as listed in Table 2.2 by means
of the analytical model (ANA) and a non-linear finite element model (FEM). (a) Br
versus θ at z = 4.8mm, (b) Br versus z at θ = 110deg, (c) Bθ versus θ at z = 4.8mm, (d)
Bθ versus z at θ = 110deg, (e) Bz versus θ at z = 4.8mm, (f ) Bz versus z at θ = 110deg.
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2.9 Discussion
The model presented in this chapter is based on Fourier series to describe sources
and magnetic fields. Since these Fourier series do not provide analytical functions
but infinite summations to describe magnetic fields and sources, the accuracy of the
solution depend on the number of harmonics taken into account for the summations.
To implement the equations obtained by applying the boundary conditions, the set of
equations is rewritten in matrix form which results in a single linear matrix equation
to be solved, given by

EX = Y, (2.95)

where E contains all known coefficients, X contains all unknown coefficients in
the equation and Y contains the functions describing sources (further explained
in Appendix B.3). The size of the matrix E is defined by the number of regions
and the number of harmonics taken into account in these regions. The maximum
number of harmonics that can be considered depends on the available memory, the
desired calculation time and stability of the solution. The matrix E can become ill-
conditioned when the number of harmonics taken into account is increased because
Io (mk r ) rapidly increases while Ko (mk r ) rapidly decreases for higher harmonics.
Furthermore, in slotted structures, the number of harmonics has to be selected
carefully to obtain a correctly converged solution as extensively discussed in [41, 75].
Generally, solving equation (2.95) is the most time-consuming part of the model.
As a result, modeling an electromagnetic device with a high number of slots is
computationally expensive and the computational effort in terms of solving time
can ultimately exceed that of a finite element analysis. However, in contrast to the
implementation of the modeling technique presented in this chapter, finite element
routines have been optimized over the years. Further, in case of a parametric sweep,
the finite element model needs to remesh each step where the computation time of
the analytical model does not increase. Hence, the analytical model is very effective
for parametric searches.

Limiting the number of harmonics improves the stability and reduces the cal-
culation time, however affects the accuracy of the obtained solution. Especially
at interfaces between regions with unequal width, the field solution can become
inaccurate. Due to the limited number of harmonics, the Gibbs phenomenon can
become dominant at these positions [47]. This makes this model less suitable to
investigate local phenomena at, or close to, interfaces. However, the model is perfectly
suitable to calculate the magnetic field in, for example, the middle of the airgap region,
which is useful for force calculations.
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2.10 Summary and Conclusions
The harmonic modeling technique provides a direct solution for the Maxwell equa-
tions by means of a Fourier series. The method is widely used to describe magnetic
fields in two dimensional coordinate systems. Only a few implementations of this
modeling technique for 3D models have been found in literature, which are limited to
regular shaped geometries.

In this chapter, the modeling technique has been extended to describe electromag-
netic fields due to presence of permanent magnets in regular and irregular shaped
3D cylindrical structures. As such, 3D electromagnetic fields, including fringing, can
be investigated without the necessity of more time consuming FEA. The method
provides the basis for fast analysis and optimization routines of slotless and slotted
3D cylindrical magnetostatic problems. The model is based on 2D Fourier series to
describe the sources and magnetic fields. The modeling technique can be applied to
current-free cylindrical problems exhibiting periodicity or a soft-magnetic boundary
in the axial direction. The geometry can posses either circumferential slots, axial slots
or rectangular cavities. Additionally, these slots or cavities can contain permanent
magnets.

The model is created by dividing the geometry in contiguous regions. Each
region contains a solution of the magnetic field distribution consisting of unknown
Fourier coefficients. The values of these coefficients have to be found by solving
boundary conditions on the region interfaces. As a result, the model computational
requirements depend on the complexity of the geometry, or more specifically, the
number of regions. Therefore, the model accuracy and stability degrades for more
complex structures.

The assignment and a method to solve the various boundary conditions have
been discussed in a generic manner to enable model application to a wide range
of cylindrical structures. The magnetic field solutions have been provided, and
the model implementation has been presented in matrix form. The results of the
model are compared with a linear and a non-linear finite element model, and very
good agreement is found. The analytical model is especially suitable for parametric
searches since, contrary to a finite element model, no re-meshing is required after
a geometric parameter is updated. Although the accuracy of the predicted field is
lower at interfaces between regions due to Gibbs phenomena, the model is perfectly
suitable to calculate the magnetic field in the middle of the airgap region, providing
the possibility for accurate force predictions as presented in the next chapter.
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Electromagnetic force calculation in 3D
cylindrical structures

Abstract - In this chapter, the Maxwell stress tensor is used to calculate elec-
tromagnetic passive attraction forces in cylindrical structures. The magnetic field
description, as presented in Chapter 2, is exploited and analytical expressions are
obtained which enable fast and accurate force calculations.

This chapter is based on:
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3.1 Introduction to electromagnetic force calcula-
tions

An accurate force calculation is of great importance during the design of electrome-
chanical devices. For example, in high performance actuation systems a smooth force
without distortion due to cogging is desired [54]. In high speed machines, cogging
torque can lead to unwanted noise and vibrations [9, 50], and in vibration isolation
systems, accurate values of the force and the derivative of the force have to be obtained
to guarantee proper operation of the device [62].

The electromagnetic interaction between two objects resulting in a force can be
calculated using different methods. The most commonly used methods to calculate
the force in electromechanical devices are the Maxwell stress tensor, the Lorentz
force, and virtual work. These methods can often be applied in both analytical
and numerical modeling techniques. However, selecting the most suitable force
calculation method depends on the properties of the device and the applied field
modeling technique.

To calculate the magnetic force and torque acting on a movable body of an
electromagnetic device in a numerical (e.g. finite element) model, the virtual work
method is often used [23]. One of the main advantages of this method is that it
calculates the force from the volume integral of the energy, whereas the Maxwell
stress tensor relies on a surface integral of the magnetic fields. These magnetic
fields are obtained by differentiation of the potential introducing inaccuracies. In
[17, 22, 81, 99, 100, 112], the advantages and disadvantages of the methods are
further discussed. The accuracy of the calculated forces in finite elements models is
largely determined by the level of discretization. Furthermore, the path of integration
affects the results due to the magnetic field discontinuities at interfaces between two
media. The influence of this discretization to calculate cogging forces in finite element
models is extensively described in [49]. The virtual work method computes the force
on a body by calculating the change of co-energy by a virtual displacement of the body.
As a result, this method often requires two calculations. In [67, 68], a force calculation
technique is presented based on the virtual work method without the necessity of two
calculation steps. The resulting force equations are similar to the force expression
of the Maxwell stress tensor, however, this method does not require that the movable
body is surrounded by air, which is required when the Maxwell stress tensor is applied.

In analytical models of PM devices, the force is often calculated via the magnetic
field distribution by analytical or numerical evaluation of one of the force calculation
methods. For example, to calculate the force between PMs, charge models are
exploited to calculate the magnetic fields of these PMs [119]. Subsequently, the
force is calculated from these analytical magnetic field expressions by means of the
virtual work method [2, 138] or the Lorentz force equation [33, 61]. The global
force calculated in these papers provides the correct value, however, due to the
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mathematical abstraction within these models, the local force distribution has no
correct physical meaning. The interpretation of different force calculation methods
to calculate the force between two permanent magnets is discussed in [26, 27].

In classical rotating or linear machines, the Maxwell stress tensor, [73, 141, 148],
as well as the virtual work method, [25, 29, 35], are often used to calculate the
cogging torque. The choice for these field based calculation methods is evident, as
the analytical models used in these papers provide an expression for the magnetic
field. To elaborate these passive force models to predict the active force, the model
can be extended by current sheets representing an arbitrary current distribution.
Subsequently, the Lorentz force equation is employed to find the active force [25, 128].
In case of slotless or air-cored coils, the force can be calculated by integrating
analytically or numerically over the coil area. Another approach, specifically useful in
slotted devices, employs the total field solution including the armature reaction field
to calculate the total force using the Maxwell stress tensor [6, 149]. In [64, 77, 153], this
Maxwell stress tensor is used to calculate the unbalanced magnetic pull of a PM rotor
in a rotating machine. With the generic electromagnetic field analysis described in
[40, 42], the total field solution in the airgap can be calculated, including slotting effect
and armature reaction. Consequently, the total force in any electromechanical device
can be calculated using one of the magnetic field based force calculation methods.

In this chapter, the passive attraction and repulsion force is calculated starting from
the three dimensional analytical field description presented in the previous chapter.
This can be used to predict cogging forces, unbalanced magnetic pull, and attraction
forces due to the finite length of rotary actuators. The total force on the moving part
is calculated by means of the Maxwell stress tensor. Analytical expressions for the
different force components are derived and the method is validated using a 3D finite
element analysis.

3.2 3D force calculation
To calculate the exerted force on a body due to the electromagnetic field distribution,
the Maxwell stress tensor as presented in Section 1.1.3 is employed. The Maxwell
stress tensor in the cylindrical coordinate system is defined by

T= 1

µ0


B 2

r −B 2
θ
−B 2

z

2 Br Bθ Br Bz

BθBr
B 2
θ
−B 2

r −B 2
z

2 BθBz

Bz Br Bz Bθ
B 2

z−B 2
r −B 2

θ

2

 . (3.1)

The total force on an object can be obtained by integrating the Maxwell stress tensor
over a closed surface enclosing the object, as given by (1.16). Generally, in a cylindrical
structure or device, two concentric cylinders move with respect to each other. Hence,
the force between these two cylinders is the force of interest. Therefore, the integration
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S1

S2

S3

r

z
θ

2τz

Figure 3.1: Surfaces defining the Maxwell stress tensor integration path.

surface is placed inside the airgap between the two bodies with the normal vector
pointing outwards, illustrated in Figure 3.1.

Due to the model definition and the use of Fourier series, the structures are
considered to be periodic in the axial direction. Hence, the surface can be chosen such
that the integral over S1 is equal to minus the integral over S3, i.e., the axial length of
S2 is equal to the period of the airgap region, 2τz . Consequently, the Maxwell stress
tensor has to be evaluated at the surface S2 only resulting in the force density per
period. On this surface, the normal points in the positive radial direction, i.e.,

~n =~er , (3.2)

where~er is the unit vector in the radial direction. As such, the three force components
exerted on the cylinder are defined as

Fz =
1

µ0

∫
S2

Bz Br ds, (3.3)

Fθ =
1

µ0

∫
S2

BθBr ds, (3.4)

Fr =
1

µ0

∫
S2

B 2
r −B 2

θ
−B 2

z

2
ds. (3.5)

In the next sections, the three force components are evaluated using the magnetic
field description given in the previous section. As the surface enclosing the moving
cylinder is placed in the airgap, the Maxwell stress tensor is evaluated in air where the
flux density, ~B , is defined as

~B =µ0~H , (3.6)

where the components of the magnetic field strength, ~H , are defined in (2.19) to (2.21)
with the source functions, G, equal to zero.

The integrals describing the force components can be evaluated numerically using
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the analytical expression of the magnetic flux density. However, the accuracy of
the numerical integral over both θ and z depends on the spatial resolution of these
quantities. Furthermore, numerical integration requires the numerical solution of the
complete field distribution first resulting in an additional calculation step. Therefore,
the integrals are analytically evaluated. Consequently, the force can be calculated in
a faster manner, as it is a function of the unknown coefficients of the magnetic field
strength which avoids the numerical evaluation of the magnetic fields first.

3.2.1 Force in the axial direction

To calculate the force in the axial, z-, direction, the integral given in (3.3) has to be
evaluated. The magnetic fields, defined in (2.19) to (2.21), are inserted in the equation.
The integral over an integer multiple of the period of sin(•)cos(•), cos(•) and sin(•) is
zero, hence, (3.3) yields to

Fz =
rµ0

2

∫ 2τz

0

∫ 2π

0

[ ∞∑
k=1

∞∑
n=1

R7R2 sin2(wnθ)cos2(mk z)

−
∞∑

k=1

∞∑
n=1

R8R1 sin2(wnθ)sin2(mk z)

+
∞∑

k=1

∞∑
n=0

R9R4 cos2(wnθ)cos2(mk z)

−
∞∑

k=1

∞∑
n=0

R10R3 cos2(wnθ)sin2(mk z)

]
dθdz, (3.7)

where the functions R.. are defined in (2.22) to (2.34). Evaluating the integrals results
in

Fz =
rµ0π

2
τz

[ ∞∑
k=1

∞∑
n=1

[
R7R2 −R8R1

]+ ∞∑
k=1

∞∑
n=0

λn
[
R9R4 −R10R3

]]
, (3.8)

where λn is defined as

λn =
{

2 for n = 0,

1 for n > 0.
(3.9)

This can be rewritten using (2.22) to (2.34) and the following relation

Iwn (mk r )Kwn±1 (mk r )+Kwn (mk r )Iwn±1 (mk r ) = 1

mk r
, (3.10)
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resulting in

Fz =πµ0

[ ∞∑
k=1

∞∑
n=1

1

mk

(
c2(k,n)c3(k,n)− c1(k,n)c4(k,n)

)
+

∞∑
k=1

∞∑
n=0

λn

mk

(
c6(k,n)c7(k,n)− c5(k,n)c8(k,n)

)]
, (3.11)

which is the axial force per 2τz axial length, given that τθ =π. As can be seen, the force
in the axial direction, Fz , is only a function of the field coefficients c..(k,n).

3.2.2 Force in the circumferential direction

The same approach as given in the previous section is used to obtain the force Fθ .

Fθ =
1

µ0

∫
S2

BθBr ds (3.12)

= 1

µ0

∫ 2τz

0

∫ 2π

0
BθBr r dθd z. (3.13)

Inserting (2.19) to (2.21) and following the analysis of the previous section this yields
to

Fθ =
µ0π

r

[ ∞∑
k=1

∞∑
n=1

wn

m2
k

[
c2(k,n)c5(k,n)− c1(k,n)c6(k,n)+ c4(k,n)c7(k,n)− c3(k,n)c8(k,n)

]
+2

∞∑
n=1

c9(n)c12(n)− c10(n)c11(n)

]
, (3.14)

which is the circumferential force per 2τz axial length given that τθ = π, and can be
translated into the torque around the z-axis, Tz , by means of

Tz = r Fθ, (3.15)

where r is the radius where the circumferential force is evaluated.

3.2.3 Force in the radial direction

Due to the definition of the radial direction in the cylindrical coordinate system,
the interpretation of the radial force component is ambiguous. As can be seen
in Figure 2.3, the radial direction is pointing outwards the cylinder, hence, the
obtained value of the radial force does not reflect the distribution over the complete
circumference of the cylinder, it provides the magnitude only. A more sensible
definition of this force component is to rewrite it into two components Fx ,Fy where
the x- and y-direction are defined with respect to the cylindrical coordinate system as
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illustrated in Figure 2.3. By means of these two force components, the magnetic pull
between two concentric cylinders is defined [64, 77, 153].

To obtain Fx and Fy , the force distributions in the radial and circumferential
direction are used, fr (θ, z) and fθ(θ, z), respectively. Using the definition of the x-
and y-direction in Figure 2.3, Fx and Fy are defined as

Fx =
∫

S2

fr (θ, z)cos(θ)− fθ(θ, z)sin(θ)ds, (3.16)

Fy =
∫

S2

fr (θ, z)sin(θ)+ fθ(θ, z)cos(θ)ds, (3.17)

where

fr (θ, z) =
B 2

r (θ, z)−B 2
θ

(θ, z)−B 2
z (θ, z)

2µ0
, (3.18)

fθ(θ, z) = Bθ(θ, z)Br (θ, z)

µ0
. (3.19)

In the following sections, the integral equations (3.16) and (3.17) are analytically
evaluated.

Force in the x-direction

Combination of (3.16), (3.18) and (3.19) yields to

Fx = 1

µ0

Ï
S2

[
B 2

r −B 2
θ
−B 2

z

2
cos(θ)−BθBr sin(θ)

]
r dθdz. (3.20)

To clarify the analysis, the integral is split in four parts.

Fx,1 =
1

µ0

Ï
S2

B 2
r

2
cos(θ)r dθdz, (3.21)

Fx,2 =
1

µ0

Ï
S2

B 2
t

2
cos(θ)r dθdz, (3.22)

Fx,3 =
1

µ0

Ï
S2

B 2
z

2
cos(θ)r dθdz, (3.23)

Fx,4 =
1

µ0

Ï
S2

BθBr sin(θ)r dθdz, (3.24)

where

Fx = Fx,1 −Fx,2 −Fx,3 −Fx,4. (3.25)
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In the remainder of this analysis the period of the airgap region in the circumferential
direction is set to τθ =π. Hence, the spatial frequency in this direction is

wn = n. (3.26)

This assumption can be used because the Maxwell stress tensor is always evaluated in
the airgap where the period of the magnetic field can be set to 2π without constraints.
Furthermore, the following relations are used to evaluate the integral∫ 2π

0

( ∞∑
n=1

an sin(wnθ)
∞∑

n=1
bn sin(wnθ)

)
cos(θ)dθ = π

2

∞∑
n=1

(
anbn+1 +an+1bn

)
, (3.27)

∫ 2π

0

( ∞∑
n=0

an cos(wnθ)
∞∑

n=0
bn cos(wnθ)

)
cos(θ)dθ

= π

2

∞∑
n=1

(
anbn+1 +an+1bn

)+π(
a0b1 +a1b0

)
, (3.28)

∫ 2π

0

( ∞∑
n=1

an sin(wnθ)
∞∑

n=0
bn cos(wnθ)

)
cos(θ)dθ = 0. (3.29)

Inserting the magnetic field, (2.19) to (2.21) into (3.20) the first component of Fx yields
to

Fx,1 =
rµ0τzπ

8

[ ∞∑
k=1

∞∑
n=1

[
R1(r,k,n)R1(r,k,n+1)+R2(r,k,n)R2(r,k,n +1)

]
+

∞∑
k=1

∞∑
n=0

λn
[
Rx

3 (r,k,n)R3(r,k,n+1)+R4(r,k,n)R4(r,k,n+1)
]

+8
∞∑

n=1
R5(r,n)R5(r,n+1)+R6(r,n)R6(r,n+1)

]
, (3.30)

where λn is defined in (3.9). In the same manner, two other parts of Fx can be found

Fx,2 =
µ0τzπ

2

[ ∞∑
k=1

∞∑
n=1

wn wn+1

m2
k r

[
R9(r,k,n)R9(r,k,n+1)+R10(r,k,n)R10(r,k,n+1)

]
+

∞∑
k=1

∞∑
n=1

wn wn+1

m2
k r

[
R7(r,k,n)R7(r,k,n+1)+R8(r,k,n)R8(r,k,n+1)

]
+ r

∞∑
n=1

R12(r,n)R12(r,n+1)+R11(r,n)R11(r,n+1)

]
, (3.31)
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Fx,3 =
rµ0τzπ

2

[ ∞∑
k=1

∞∑
n=1

[
R8(r,k,n)R8(r,k,n+1)+R7(r,k,n)R7(r,k,n+1)

]
+

∞∑
k=1

∞∑
n=0

λn
[
Rx

10(r,k,n)R10(r,k,n+1)+R9(r,k,n)R9(r,k,n+1)
]]

. (3.32)

The following relations are used to evaluate the fourth integral Fx,4∫ 2π

0

( ∞∑
n=0

an cos(wnθ)
∞∑

n=1
bn sin(wnθ)

)
sin(θ)dθ = π

2

∞∑
n=1

(
anbn+1 −an+1bn

)+π(
a0b1

)
,

(3.33)∫ 2π

0

( ∞∑
n=1

an sin(wnθ)
∞∑

n=1
bn sin(wnθ)

)
sin(θ)dθ = 0, (3.34)∫ 2π

0

( ∞∑
n=0

an cos(wnθ)
∞∑

n=0
bn cos(wnθ)

)
sin(θ)dθ = 0. (3.35)

After applying these relations, Fx,4 yields to

Fx,4 =
µ0τzπ

4

[ ∞∑
k=1

∞∑
n=1
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mk

[
Rx

7 (r,k,n)Rx
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]
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∞∑
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∞∑
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mk

[
Rx

8 (r,k,n)Rx
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]
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∞∑
k=1
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[
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3 (r,k,n+1)−Rx
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]
+
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∞∑
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4 (r,k,n)

]
−

∞∑
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2
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[
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9 (r,k,1)Rx
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]
+4r
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n=1

[
Rx

11(r,n)Rx
5 (r,n+1)−Rx

5 (r,n)Rx
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]
+4r
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[
Rx

12(r,n)Rx
6 (r,n+1)−Rx

6 (r,n)Rx
12(r,n+1)

]]
. (3.36)

The total force per 2τz in the x-direction can be found by subtraction of the four
components

Fx = Fx,1 −Fx,2 −Fx,3 −Fx,4. (3.37)
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Force in the y-direction

The force in the y-direction is derived using the same approach, starting from (3.17)

Fy,1 =
1

µ0

Ï
S2

B 2
r

2
sin(θ) r dθdz, (3.38)

Fy,2 =
1

µ0

Ï
S2

B 2
t

2
sin(θ) r dθdz, (3.39)

Fy,3 =
1

µ0

Ï
S2

B 2
z

2
sin(θ) r dθdz, (3.40)

Fy,4 =
1

µ0

Ï
S2

BθBr cos(θ) r dθdz. (3.41)

Evaluation of these integrals by inserting the magnetic field, (2.19) to (2.21), and
applying the relations (3.27) to (3.29) and (3.33) to (3.35) yields to the solution of the
aforementioned equations.

Fy,1 =
−rµ0τzπ

8

[ ∞∑
k=1

∞∑
n=1

[
Rx

1 (r,k,n)Rx
3 (r,k,n+1)+Rx
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]
−

∞∑
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∞∑
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4 (r,k,n)Rx
2 (r,k,n+1)

]
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]]
, (3.42)
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−µ0τzπ
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∞∑
n=1

wn wn+1

m2
k r

[
Rx

8 (r,k,n)Rx
10(r,k,n+1)+Rx

10(r,k,n)Rx
8 (r,k,n+1)

]
−2r

∞∑
n=1

[
Rx

12(r,n)Rx
11(r,n+1)−Rx

11(r,n)Rx
12(r,n+1)

]]
, (3.43)

Fy,3 =
rµ0τzπ

2

[ ∞∑
k=1

∞∑
n=1

[
Rx

9 (r,k,n)Rx
7 (r,k,n+1)+Rx

10(r,k,n)Rx
8 (r,k,n+1)

]
−

∞∑
k=1

∞∑
n=0

λn
[
Rx

7 (r,k,n)Rx
9 (r,k,n+1)+Rx

8 (r,k,n)Rx
10(r,k,n+1)

]]
, (3.44)
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Fy,4 =
µ0τzπ

4

[ ∞∑
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∞∑
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Rx
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3 (r,k,n+1)+Rx
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]
+

∞∑
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mk

[
Rx

8 (r,k,n)Rx
4 (r,k,n+1)+Rx
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]
−
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mk

[
Rx

9 (r,k,n)Rx
1 (r,k,n+1)+Rx
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1 (r,k,n)

]
−
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mk

[
Rx

10(r,k,n)Rx
2 (r,k,n+1)+Rx

10(r,k,n+1)Rx
2 (r,k,n)

]
+
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k=1

2

mk

[
Rx

7 (r,k,1)Rx
3 (r,k,0)+Rx

8 (r,k,1)Rx
4 (r,k,0)

]
+4r

∞∑
n=1

[
Rx

11(r,n)Rx
6 (r,n+1)+Rx

6 (r,n)Rx
11(r,n+1)

]
−4r

∞∑
n=1

[
Rx

12(r,n)Rx
5 (r,n+1)+Rx

5 (r,n)Rx
12(r,n+1)

]]
. (3.45)

Consequently, the total force per 2τz in the y-direction can be found by

Fy = Fy,1 −Fy,2 −Fy,3 +Fy,4. (3.46)

3.3 Model validation
To validate the aforementioned force formulations, the equations (3.8), (3.14), (3.37)
and (3.46) are implemented in MATLAB and their results are compared with two finite
element analyses for the cylindrical structure illustrated in Figure 2.12. The magnetic
fields in this structure, based upon which the four force components are calculated,
are obtained by the analytical model which is presented in the previous chapter. The
structure consists of a cylindrical core with a checkerboard magnetization and a soft-
magnetic tube with a rectangular cavity. The dimensions of the structure are given
in Table 2.2 in Section 2.8. The Maxwell stress tensor is evaluated in the center of
the airgap, region II, between the PM pattern and the cylindrical outer tube with the
rectangular cavity.

Two coordinate systems are defined to provide a solvable model definition as
presented in the previous chapter. A stationary coordinate system is assigned to
the complete structure excluding the cavity, and a secondary coordinate system is
assigned to the geometry and magnetic fields within the cavity in the soft-magnetic
cylinder. The secondary coordinate system can be translated and/or rotated with
respect to the stationary coordinate system by means of ∆z and ∆θ as illustrated in
Figure 2.3(b). That is, the cavity is displaced with respect to the rest of the structure.
The Maxwell stress tensor is evaluated in the airgap, hence the force components
are defined with respect to the stationary coordinate system and provide the total
force on the PMs and the soft-magnetic core, i.e., the mover. To validate the force
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Figure 3.2: Torque, Tz , around the z-axis versus circumferential displacement.
Calculated by means of a linear FE model (FEM) and the analytical model (ANA).

components, the cavity is rotated with respect to the mover over 360 degrees and the
force is calculated for a model with a length of 2τI,II

z , which is the period of the model
and the Fourier series in the axial direction.

3.3.1 Comparison with a linear finite element model

In this section, the results of the analytical model are compared with a linear FE model
where the soft-magnetic materials are modeled as boundary conditions. Hence, the
assumptions in the finite element model and the analytical model are the same. In
Figure 3.2, the cogging torque around the z-axis is shown as a function of the rotation,
∆θ , being a waveform with a period of 180 degrees, clearly caused by the presence of
two poles (PMs) along the circumference interacting with one cavity. Figure 3.3 shows
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Figure 3.3: Force, Fz , in axial direction versus circumferential displacement, calculated
by means of a linear FE model (FEM) and the analytical model (ANA).
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Figure 3.4: Magnetic pull or force in the x-and y-direction versus circumferential
displacement. The total magnetic pull is presented as the modulus of Fx and Fy .
Calculated by means of a linear FE model (FEM) and the analytical model (ANA).

the force in the axial direction, Fz , as a function of the rotation. Due to the position
of the cavity with respect to the PMs in the z-direction, illustrated in Figure 2.12, the
center of the cavity tends to align with the transition of the PMs. This results in a
negative force on the mover. Although the axial position of the cavity is fixed, Fz

has a sinusoidal profile due to the finite width of the cavity in the circumferential
direction, τIII

θ
. As can be seen in Figure 3.2 and Figure 3.3, excellent agreement is

found between the FE model and the analytical model for the cogging torque and the
axial force component. The two other force components that are validated represent
the magnetic pull of the mover to the outer soft-magnetic cylinder. As introduced
in Section 3.2.3, the magnetic pull is split into a force component in the x- and y-
direction. These two components are shown in Figure 3.4, note that the force is
calculated in the stationary coordinate system. That is, the cavity revolves with respect
to the x- and y-axis resulting in a symmetric waveform around zero force. The total
magnetic pull of the mover to the outer cylinder is also shown being the modulus of
Fx and Fy . Also for these force components, the analytical and the FE model show
excellent agreement.

3.3.2 Comparison with a non-linear finite element model

To validate the force calculations in realistic situations, the analytical model is com-
pared to a finite element model where the soft-magnetic material has non-linear
properties. In this FE model, the soft-magnetic cylinder is a shell with a thickness
of 1.0 mm, presented in Section 2.8.2 and Figure 2.15. It can be seen in this figure that
the permeability of the soft-magnetic cylinder is significantly reduced.

The four force components, presented in this chapter, are compared with the results
of this non-linear FE model. The torque, Tz , around the z-axis is still in very good
agreement, the difference is less than 1 %. The amplitude of the force in the axial
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Figure 3.5: Magnetic pull or force in the x-and y-direction versus circumferential
displacement. The total magnetic pull is presented as the modulus of Fx and Fy .
Calculated by means of a non-linear FE model (FEM) and the analytical model (ANA).

direction, Fz , is reduced by approximately 4 %, while the waveform is not affected.
The force in the y-direction is shows the most significant difference as illustrated in
Figure 3.5. The difference between the analytical model and Fy is approximately 7 %,
caused by the reduced permeability of the soft-magnetic cylinder which results in a
lower attraction force of the PMs towards this cylinder. In conclusion, although the
B H-curve of the soft-magnetic cylinder is non-linear, and parts of the structure are
magnetically saturated, the analytical model still provides a good estimation of the
four force components.

3.4 Discussion

Model application

The 3D magnetic field model used as basis for the presented analysis can be used
to model electromagnetic fields due to PMs only. Consequently, the force that
can be calculated by means of the expressions derived in this chapter is limited to
passive attraction and cogging forces. Although the 3D model assumes linear material
properties, validation with a non-linear FE model shows good agreement. However,
if the modeled device has multiple teeth with a high level of saturation, both the
amplitude and the waveform of the cogging force can be affected, and validation
with a non-linear FE model is recommended. The model is based on dividing the
structure in contiguous regions. Complex structures require a high number of regions
to obtain a proper model, resulting in a high number of boundary conditions that have
to be solved. As a result, increasing the structure complexity decreases the numerical
stability and accuracy as discussed in the previous chapter.
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Figure 3.6: Diagram illustrating the analytical and numerical method to calculate the
force from the harmonic model presented in the previous chapter.

Numerical versus analytical evaluation

To calculate the four force components, one can integrate (3.3), (3.4), (3.16) and
(3.17) numerically or implement the analytical expression as presented in the previous
sections and illustrated in Figure 3.6. Two advantages of the analytical implemen-
tation are the reduced calculation time of the force, and the independency of the
spatial discretization of the magnetic field in the θ- and z-direction. By means of a
MATLAB implementation of the structure in the previous section, the calculation time
of the two methods are compared. In the numerical integration, 50 points are used
to describe the field over one period in the axial and circumferential direction, i.e.,
integration over 2500 points. The difference between the calculated force components
is less than 0.5%. However, the mean calculation time of the analytical implementa-
tion is approximately 160 times faster than the numerical calculation. Although this
difference is significant, one should note that the computation time of the numerical
calculation of the force components is less than 0.5% of the calculation time to find
the unknown field coefficients.

Another advantage of the analytical force description is the simple form of Fz and
Fθ. In a cylindrical device, the most common direction of movement will be the axial
and the circumferential direction. Therefore, the force components of interest are
generally Fz and Fθ . The analytical descriptions of these components, (3.8) and (3.14),
consists solely of the field coefficients and have a simpler form than the magnetic field
description. Therefore, the implementation of this analytical formulation is easier
than implementation of the numerical one.

One of the main arguments to use analytical methods to calculate the force in elec-
tromagnetic devices is the reduced computation time compared to a finite element
model. However, determination of the computation time is difficult as it depends on
the required accuracy. The number of harmonics in the semi-analytical model has
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to be gradually reduced and the results have to be compared to find the minimum
required spatial discretization. The same holds for the number of mesh elements in
the finite element model unless an automatic meshing algorithm is used. Solving the
resulting semi-analytical model in this chapter is approximately six times faster than
solving the (linear and periodic) finite element model, which contains 176000 tetra-
hedral volume elements. However, the computational effort of the semi-analytical
model might be reduced by means of a more efficient implementation, whereas the
commercial finite element software takes advantage of years of optimization.

3.5 Summary and conclusions
Force calculation methods using the magnetic field solution of analytical models have
been investigated. The Maxwell stress tensor has been selected and is evaluated to
calculate the cogging and attraction forces. Due to ambiguity of a global radial force,
Fr , on a cylindrical object, the radial force has been split into two components (Fx ,Fy )
in the Cartesian coordinate system representing the magnetic pull. The resulting four
force equations (Fz ,Fθ,Fx ,Fy ) are obtained as a function of the unknown coefficients
of the magnetic field equations. This provides that no numerical integration of the
magnetic fields is needed to obtain the force components. The main advantages of
these analytical force equations are their simple form and the independency of the
spatial discretization of the magnetic field in the θ- and z-direction. Good agreement
is found between the results of the analytical model and the results of a linear as
well as a non-linear finite element model. The presented semi-analytical model is
approximately six times faster than the (linear and periodic) finite element model.
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4

Background

Abstract - In this second part, the developed modeling technique of Part I is applied
to analyze and design a rotary-linear actuator. This chapter introduces the pick and
place application for this 2-DoF actuator and presents its requirements. Prior-art
actuators are presented and supporting and opposing arguments of various actuator
topologies are discussed.
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4.1 Introduction to multi-degrees of freedom sys-
tems

Robotic systems are nowadays commonly used in fully automated industrial pro-
duction lines. An example of such a robotic system is shown in Figure 4.1, where
ABB robots are used in an automotive production line. Another example is shown
in Figure 4.2(a) which illustrates an Assembléon pick and place (P&P) machine
to populate printed circuit boards (PCBs). These systems are generally based on
cascading single degree of freedom (DoF) actuators to enable multi-DoF movement.
For example, in the robot illustrated in Figure 4.1, rotary machines are stacked such
that the end-effector can provide six degrees of freedom.

Figure 4.1: ABB robots in an automotive production line.

In the second example in Figure 4.2(a), the system can provide four degrees of
freedom. Movement in the x y-plane is provided by means of three linear actuators
in a H-configuration, referred to as an H-drive. The placement head, Figure 4.2(b),
is displaced in the x y-plane by the H-drive and enables movement in the vertical
z-direction as well as rotation around this axis. In this placement head, a voice-
coil actuator is used as a linear actuator to move the complete rotary actuator with
auxiliaries in the vertical direction. As such, the moving mass is relatively high, and
the reliability and accuracy of the placement head are impeded by moving cables.

To improve the dynamic performance, reliability and efficiency of stacked systems
with mechanical couplings, multi-DoF direct-drive electromagnetic actuators emerge
as an alternative. For example, planar actuators are investigated to replace x y-stages
in lithographic machines [24, 56, 70]. These actuators provide six degrees of freedom
including magnetic levitation enabling vacuum operation. Furthermore, spherical
actuators with three degrees of freedom can be used to mimic a shoulder joint without
mechanical couplings [133, 137].
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Linear actuator

Rotary actuator

(a) (b)

Figure 4.2: (a) Assembléon pick and place machine for placement of surface mounted
devices. (b) SMAC placement head for a pick and place machine.

Part II of this thesis focuses on the combination of rotation and translation in
a single actuator, specifically for application in a P&P machine. The goal is to
replace stacked manipulators, as for example illustrated in Figure 4.2(b), by a 2-DoF
direct-drive electromagnetic actuator to enhance reliability and throughput. In this
chapter, a complete set of requirements of the actuator is presented in Section 4.2.
In Section 4.3, prior art rotary-linear actuators are discussed and the feasibility of
these actuators for the P&P application is discussed. Chapter 5 starts from the prior-
art actuators and presents a new patented actuator configuration. Furthermore, the
modeling technique presented in part I is applied to create a model of this actuator
to provide an accurate description of the magnetic field distribution. Chapter 6
employs this model to analyze the effect of various design parameters on the actuator
performance. A final design of a 2-DoF actuator is presented to meet the requirements
for the P&P application. In Chapter 7, the realization of the designed actuator is
described and experimental verification is presented.

4.2 2-DoF actuator requirements for a pick-and-
place robot

The requirements of the 2-DoF rotary-linear actuator are based on the specifications
of the P&P machine shown in Figure 4.2. The actuator is intended to be used to place a
wide range of components, from very small passive components, for example resistors
and capacitors of type SMD 01005 with dimensions of 0.2x0.4 mm, to larger integrated
circuits (ICs) with a high number of pins. Furthermore, the actuator will be used to
push connectors firmly on the PCBs. To place the small components in a fast way, a
high acceleration in the vertical direction is essential. Accurate placement of the ICs
demands an accurate rotational positioning system. The components are picked from
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a feeder by means of a vacuum, therefore, the mover should be hollow for the transport
of air. During the last stage of placing a component on a PCB, sensorless force control
is used. The nozzle of the mover contains a mechanical spring and the collision
of the component with the PCB is detected by analyzing the actuator currents. As
the actuator has to replace the current placement head, shown in Figure 4.2(b), the
maximum actuator width is constrained to 34.8 mm. Furthermore, the maximum
actuator housing temperature relative to the ambient is ∆T = 40 ◦C. The specific
requirements per axis are given in the next sections.

4.2.1 Translational requirements

The aforementioned requirements for the translational movement of the actuator are
quantified in Table 4.1. The required placement force has a resolution of 0.1 N. To
obtain this force level accurately from the actuator current, the force-current relation
has to be predictable and non-linear effects as friction have to be minimized. The
maximum payload of 100 g consists of the tool-bit or nozzle and the component,
excluding the moving actuator mass.

As the values given in Table 4.1 are maximum values, a worst case pick and place
motion profile, shown in Figure 4.3, is defined to specify the maximum continuous
actuator load. The profile describes a complete P&P cycle of 275 ms which consists of:

• movement towards pick position in x, y and z (t < 34ms),

• pick a component from the feeder (at t = 34ms),

• move towards place position in x y-plane and z = 0 to identify component
orientation (t > 34ms),

• move component to PCB (at t > 137ms),

• place component on PCB (at t = 171ms),

• return to top position (t > 171ms).

Table 4.1: Translational requirements of rotary-linear actuator.

Description Value Parameter

Maximum stroke [mm] 45 -

Maximum velocity [ms−1] 2.0 vz

Maximum acceleration [ms−2] 150 az

Maximum jerk [ms−3] 8.0×104 jz

Maximum position error (static) [µm] 5 ez

Minimum encoder resolution [µm] 1 -

Maximum placement force [N] 40 Fz

Placement force resolution [N] 0.1 -

Maximum payload [kg] 0.1 mload
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Figure 4.3: Worst case motion profile for the z-axis of the actuator showing the
acceleration, velocity and position. The motion profile shows a complete P&P cycle
of 275 ms where a component is picked at t = 34ms and placed at t = 171ms.

The actuator has to be designed to follow this motion profile continuously. This
worst case motion profile considers the placement of small SMD components, i.e.,
mload ¿ 1.0g. As such, during the motion profile shown in Figure 4.3, the payload is
assumed to be negligible compared to the moving actuator mass.

4.2.2 Rotational requirements

The requirements for the rotational movement of the actuator are specified in Ta-
ble 4.2. A worst case motion profile is defined to specify the maximum continuous
load on the rotational part of the 2-DoF actuator. This profile is illustrated in Figure 4.4
and has the same pick and place times as the motion profile for the translational
movement shown in Figure 4.3. Consequently, the complete P&P cycle of 275 ms can
be subdivided in the following stages for rotation:

• movement towards pick position in x, y and z, no rotation (t < 34ms),

• pick a component from the feeder, no rotation (at t = 34ms),

• move towards place position in x y-plane as well as z, meanwhile rotating the
component to identify and adjust the orientation of the component(t < 171ms),

• place component on PCB, no rotation (at t = 171ms),

• return to pick position and rotate the mover back to the pick orientation
(t > 171ms).
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Table 4.2: Rotational requirements of rotary-linear actuator.

Description Value Parameter

Maximum angular stroke [rad] ∞ -

Maximum angular velocity [rad s−1] 126 ωθ

Maximum angular acceleration [rad s−2] 3500 αθ

Maximum angular jerk [rad s−3] 3.0×105 γθ

Maximum position error (static) [mrad] 0.350 eθ
Minimum encoder resolution [mrad] 0.158 -

Maximum payload [kgm2] 3.0×10−5 Iload

Besides the maximum requirements listed in Table 4.2, the rotational part of
the actuator has to be designed to follow the motion profile, shown in Figure 4.4,
continuously. As mentioned before, this worst case motion profile is employed to
place small SMD components. The moment of inertia of these components is typically
Iload ≈ 3×10−11 kgm2 (estimated for a common component of type SMD 1206), which
is assumed to be negligible compared to the moment of inertia of the moving part of
the actuator.
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Figure 4.4: Worst case motion profile for the θ-axis of the actuator showing the angular
acceleration, speed and position. The motion profile shows a complete P&P cycle of
275 ms where a component is picked at t = 34ms and placed at t = 171ms. To align the
component, it is rotated to identify the orientation and subsequently rotated until the
correct position is reached. After placing the component, the actuator nozzle is rotated
to the original orientation.
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4.3 Overview of 2-DoF manipulators
The combination of rotational and linear motion is widely used in modern tooling
machines and robotics. As a result, it has been a research topic for years and various
actuator topologies are described in literature and patents. Generally, rotary-linear
manipulators can be divided in three topologies as illustrated in Figure 4.5.

(a) Parallel coupled actuators

The first topology comprises parallel coupled conventional rotary and linear actuators
as shown in Figure 4.5(a) and Figure 4.2(b). Because of the two separate actuators,
the stator field is completely used to produce either force or torque. The major
disadvantages of this solution are the relatively high moving mass, since the linear
actuator has to move the complete rotary actuator. Furthermore, the moving cables
for the rotary actuator impede the reliability and introduce disturbance forces.

(b) Series coupled actuators

Series coupled rotary and linear actuators, illustrated in Figure 4.5(b), have a single
mover and two separate stationary parts. As such, two active surfaces can be distin-
guished, one for rotation and another one for translation. Contrary to topology (a),
the force is produced in line with the end-effector of the moving part. Generally, the
distance in the axial direction between the stationary parts for rotation and translation
has to be at least as long as the actuator stroke. Hence, increasing the stroke elongates
both the stator and the mover of this actuator type. The control of these actuators is

z z
θ-z

θ

θ

θ θ θz

z z

(a) (b) (c)

Figure 4.5: Three possible topologies of a 2-DoF manipulator; (a) parallel coupled,
(b) series coupled, (c) integrated topology.
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in general simple since the two actuators are physically decoupled, i.e., the force and
torque are separately produced.

(c) Integrated actuators

An integrated actuator consists of a single mover and a single stationary part, shown in
Figure 4.5(c). The geometry of the mover is the same for rotation and translation, i.e.,
the length of the stationary part is independent of the stroke contrary to the previous
topology. Whereas in topology (b) rotation and translation are fully decoupled, they
are magnetically coupled in this topology, and only one active surface is present for
both rotation and translation.

Topology (b) and (c) can be considered as single actuators and are widely described
in literature and patents as presented by means of an overview in [71]. In the next
sections, a selection of prior-art 2-DoF actuators is described and classified by the
type of electromagnetic conversion being exploited in the actuator.

4.3.1 Switched reluctance actuators

In [21, 48, 115, 116], switched reluctance machines (SRM) are proposed as a possible
candidate to provide the two degrees of freedom. The topology of these actuators
is typically the series coupled actuator. The simplicity of the geometry makes the
switched reluctance machine a viable actuator for various general purpose adjustable
speed applications. The system used in [21, 115], consists of one mover and two
cascaded stators which can be independently excited as shown in Figure 4.6. Simul-
taneous, but unequal, excitation of the same phase windings in each stator section
produces the torque and the force. The torque is the sum of the same directional
reluctance torque on the mover in both stator 1 and stator 2. The force in the axial
direction is produced by the difference in excitation of both stators. In [115] is shown
that the two degrees of freedom can be controlled independently. As the stators are

z θ

Figure 4.6: Rotary-linear actuator based on the stators of two switched reluctance
machines and a single rotor [115].
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Figure 4.7: Rotary-linear actuator using two induction motors on a single mover [28].

stacked in the axial direction the axial length of each individual stator will be small.
This results inherently in large end-windings compared to the active length of the
stator which will decrease the efficiency of the actuator since these end-windings
do not contribute to the force or torque. The primary disadvantage of SRMs is the
high force/torque ripple compared with conventional machines and the non-linear
current-force/torque relation. Due to this non-linearity, sensorless force control is
difficult to realize.

4.3.2 Induction actuators

A second class of actuators used for rotary-linear systems is the induction actuator.
Several publications are found where induction machines are combined to provide
the two degrees of freedom. In [63, 101], an example of stacking multiple rotary
induction machines in the axial direction is presented that can provide the thrust force
and torque. By controlling the phase of the supply voltage for each stator winding, the
mover can produce a rotary, linear and a combined motion. An induction actuator
with conventional windings of a rotary machine and a tubular linear machine is
discussed in [97]. In [3, 109] a linear-helical motion induction motor is presented that
can be used in a stacked arrangement to provide pure rotary, pure linear, or helical
motion. The actuator produces a helical motion due to skewed windings and different
conductor layers in the rotor. In [28] a 2-DoF actuator consisting of one mover and
two stators is proposed for a pick and place module, see Figure 4.7. It consists of an
aluminum mover and two sets of coils to provide rotation and translation. In [32] an
actuator with the same geometry is analyzed and experimentally verified.

The force/torque density and efficiency of the induction actuator are generally
lower than in a SRM or an actuator using permanent magnet materials. Furthermore,
due to the principle of operation of induction actuators, position control of the mover
is more complicated. On the other hand, the induction actuator has an easy and
low cost geometry, e.g. the mover in the induction machine in Figure 4.7 is only an
aluminum tube. Furthermore, due to the absence of hard-magnetic material in the
mover, no (soft-) magnetic dust is attracted to the mover, and no disturbing reluctance
forces are apparent.



98 4. Background

4.3.3 Permanent magnet actuators

Rotary-linear actuators using permanent magnets are the most researched actuators.
Due to the availability of high energy rare earth permanent magnet materials compact
actuators with a high efficiency can be realized. Furthermore, permanent magnet
actuators show often good servo-characteristics which makes this class of actuators
attractive for robotic applications. In the next three sections, an overview of perma-
nent magnet based 2-DoF actuators is provided.

Series coupled actuators

In [12], a similar topology as shown in Figure 4.6 is used where two stators are
stacked in combination with a single mover. The actuator is based on two or more
permanent magnet actuators with a single moving magnet translator. In [76], an
overview of rotary-linear actuators is given and a new design, optimized for high speed
applications, is proposed. The system is based on two actuators having one mover and
two stators with air-bearings in between.

In [91, 122, 124] actuators based on one mover with two different magnetization
patterns are proposed for the two degrees of freedom. These two patterns interact
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Figure 4.8: (a) Rotary-linear system based on a three phase rotary actuator and a three
phase linear actuator by Meessen et al. [91]. (b) Rotary-linear system based on a three
phase PM rotary actuator and a voice coil actuator [103].
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Figure 4.9: Rotary-linear actuator using two concentric quasi-Halbach permanent
magnet arrays on one mover [55].

with two different coil sets. One coil set is wound in the longitudinal direction to create
torque, and the second coil set is wound in the circumferential direction to create force
in the axial direction. Figure 4.8(a) shows a cross-section of the actuator presented in
Meessen et al. [91]. The distance between the stationary part of the coils for rotation
and translation, is used for a position sensor and gravity over-compensation. This
provides a relatively compact solution of a series coupled actuator. The actuator is
designed for the pick and place module illustrated in Figure 4.2. In this application
the passive gravity over compensation is used to prevent machine damage at a power
failure, by retracting the mover upwards if the coils are not powered.

Another type of a series coupled actuator is presented in [103], where a voice coil
actuator and a synchronous machine are combined. An illustration of this actuator is
shown in Figure 4.8(b). The length of the rotational coil is larger than the length of the
rotational PMs due to the moving coil configuration. This decreases the efficiency as
only a small part of the coil is effective. Although moving coil configurations generally
have a low moving mass, the stroke in the circumferential direction is impeded.

In Figure 4.9, a series coupled actuator is shown where two actuators are concen-
trically stacked [55]. The cylindrical mover of this actuator consists of a soft-magnetic
tube with two quasi-Halbach permanent magnet arrays. At the outer surface of the
tube, a PM array is realized to create a magnetic field that varies in the circumferential
direction to enable rotation. At the inner surface of the tube, the PMs are oriented
such that the field varies in the axial direction to enable translation. Due to the self-
shielding properties of the quasi-Halbach magnet arrays, the magnetic field in the
soft-magnetic tube is low and the two magnet arrays do not interact. Compared to
the aforementioned series coupled actuators, the stationary part of this topology has
a shorter axial length which is independent of the linear stroke.

Integrated actuators

In [18, 19, 72, 120], actuators are presented with a single magnetization pattern on the
mover and a set of coils to provide the two directions of motion. The magnetization in
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these actuators has a checkerboard orientation, i.e., magnets with opposing polarity
are alternatingly placed in the axial- and circumferential direction. The variation of
the magnetic field of the PMs in the circumferential direction is used to produce
torque while the magnetic field variation in the axial direction is used to produce force
in the axial direction.

Both actuators in [19] and [120] have a mover with a checkerboard magnetization
pattern shown in Figure 4.10. Two different sets of coils enclose the mover. One set
of windings is oriented in the axial direction to provide rotary motion, the second set
is oriented in the circumferential direction to provide linear motion. The advantage
of these integrated actuators is the reduced axial length. For example, Figure 4.10(a)

shows that the two sets of coils are placed at two sides of the actuator.

It can be seen in Figure 4.10(b) that the magnetization pattern covers only 50% of
the mover surface with magnets. At a fixed z, the magnet polarization is equal at all
circumferential positions and similarly, at a fixed θ, the magnet polarization is equal
at all axial positions. The advantage of this magnet configuration is that two coil sets,
which are oriented orthogonally to the direction of motion, can be used as shown in
Figure 4.10(b). For example, a coil covering multiple magnets in the axial direction will
see a varying flux if the mover is rotated. Conversely, if the same coil configuration
applied to the magnet array shown in Figure 4.11, no net flux is seen by the coil if
an even number of magnets is covered. Hence, a more complex coil structure has
to be used in this actuator, for example multiple coils each covering a single PM as
shown in Figure 4.11. In this actuator the (moving) permanent magnets are glued in
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Figure 4.10: Integrated rotary-linear actuator using one mover with a checkerboard
magnetization pattern [19]; (a) the complete actuator, (b) the magnetization pattern.
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Figure 4.11: Rotary-linear actuator using a checkerboard permanent magnet array on
the mover [72] with coils inside and outside the mover.

a cylindrical shape resulting in a mover with a low mass, and at the inner and outer
side of this cylinder, coils are wound around soft-magnetic teeth.An alternative coil
configuration can be used in a slotless variant of the actuator with the magnet array
shown in Figure 4.11. Elongated coils in a herringbone structure, as used in the planar
actuator presented in [56], will provide torque and force. However, fabrication of these
bended coils is difficult and the force and torque are not physically decoupled which
complicates the control of these actuators.

4.3.4 Comparison of actuator classes

To summarize the aforementioned prior-art 2-DoF actuators, the advantages and
disadvantages of the three actuator classes are listed below.

Switched reluctance actuators

+ high force/torque density

+ no passive attraction between mover and stator

+ simple mover structure

- large force/torque ripple

- non-linear current and position to force/torque relation

Induction actuators

+ simple mover structure

- low force/torque density

- difficult to use for position control

Permanent magnet actuators

+ high force/torque density

+ linear current - force/torque relation
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+ good servo characteristics

- passive attraction between mover and stator

- more expensive due to permanent magnet material

The class of permanent magnet actuators shows the most promising characteristics
to be able to meet the requirements of the 2-DoF actuator to be applied in a P&P
machine. Therefore, this class of actuators is further researched. The examples of
series coupled and integrated actuators presented in this section exhibit required
properties, however, do not meet all requirements given in Section 4.2. As such, a
new actuator concept is presented in the next chapter that combines the requirements
with good manufacturability.

4.4 Summary and conclusions
To enhance the reliability and performance of robotic systems with multiple degrees
of freedom, single body direct-drive actuators emerge to replace the cascaded single-
DoF actuators. One specific example of a robotic system with four degrees of freedom
is a P&P machine to populate printed circuit boards. Two degrees of freedom enable
displacement in the x y-plane and two additional degrees of freedom are necessary to
pick and place the components, i.e. translation and rotation.

The requirements for this single body 2-DoF rotary-linear actuator have been
provided by means of a set of maximum values, and a worst case motion profile has
been specified to define its maximum continuous load. That is, for linear movement a
static force of 40 N and a mover acceleration of 150 ms-2 with a duty cycle of 34%. For
rotational movement the mover acceleration should be 3500 rads-2 with a duty cycle
of 47%. Furthermore, the position sensor resolution should be 1µm and 0.158 mrad
for translation and rotation, respectively.

A brief literature overview has been given describing various rotary-linear actuators.
A classification of the different topologies has been defined and examples of each
topology are provided. Actuators based on three different types of electromagnetic
conversion are presented, i.e., reluctance-, induction- and permanent magnet. Taking
into considerations the demanding requirements, an actuator employing PMs has
been deemed essential for this P&P application.
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Actuator configuration and modeling

Abstract - To obtain an actuator that complies with the requirements given in
Chapter 4, a new actuator topology is presented. Possible realizations of this type
of actuators are discussed and one configuration is selected for further research.
Analytical models for the selected configuration are derived and validated with finite
element analyses.
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5.1 Mover configuration
In Section 4.3.3, integrated and series coupled permanent magnet actuators are
presented, and the supporting and opposing arguments for these actuator classes
have been discussed. To obtain an actuator that provides rotation and translation
according to the specifications given in Section 4.2, the class of integrated actuators
with a checkerboard magnetization is further investigated in this chapter.

The existing coil and magnet configurations for integrated 2-DoF actuators can be
generalized by means of the illustration in Figure 5.1, where two different magnetiza-
tion patterns are distinguished:

1. A checkerboard magnetization consisting of PMs with opposing magnetization
direction along both θ- and z-direction (Figure 5.1(a,b)).

2. A checkerboard magnetization consisting of PMs with equal magnetization
direction in the θ- and z-direction (Figure 5.1(c)).

It can be seen that selection of a specific magnetization pattern constrains the possible
coil configurations. Due to the alternating polarity of the permanent magnets in
the first magnetization configuration, a single coil covering the complete circum-
ference, shown in Figure 5.1(c), cannot be used as the net flux linkage will be zero.
Instead, multiple smaller coils or diagonal coils, shown in Figure 5.1(a,b), have to
be used. These coils are more difficult to manufacture and assemble, particularly in
actuators with a small diameter. Conversely, the magnetization pattern illustrated in
Figure 5.1(c) can be used in combination with two ordinary orthogonal windings due
to the spacing between the adjacent PMs. However, the magnetic loading is lower due
to a reduced amount of hard magnetic material.

In all three magnetization patterns shown in Figure 5.1, the magnetic field variation
in the θ- and z-direction is inherently coupled due to the symmetry of the pattern.
Furthermore, the force components in the axial- and circumferential direction are
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Figure 5.1: Magnetization pattern with (a) concentrated square coils, (b) coils covering
a set of PMs in the diagonal direction, and (c) coils covering a set of PMs in the axial or
circumferential direction.
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Figure 5.2: New magnetization concept based on inserting weaker magnets in between
the poles to (a) increase the axial force, (b) increase the torque.

produced by the radial component of the flux density. Consequently, increasing
the torque by enhancing the radial component of the flux density results in most
situations also in a higher force capability. This can restrain the applicability of
these topologies as in many applications the force and torque requirements differ
significantly. A new magnetization pattern is introduced to avoid this limitation of
checkerboard magnetization patterns presented by Meessen et al. in [93, 126].

Patented magnetization configuration

To avoid the aforementioned drawbacks of the magnetization patterns illustrated in
Figure 5.1, a new magnetization concept is proposed, illustrated in Figure 5.2. It
starts from the pattern shown in Figure 5.1(c) and is based on inserting weaker PMs
in between the existing magnetic poles. In the pattern shown in Figure 5.2(a), the
magnetization direction of the inserted magnets is such that all PMs along the θ-
direction have the same magnetization orientation. As a result, the coil wound in
the circumferential direction experiences an increased flux density compared to the
original configuration. The net flux seen by the coil wound in the axial direction,
however, is reduced but still non-zero because the inserted magnets are weaker than
the original poles. The resulting actuator has an improved force density and a reduced
torque density, where the ratio between the two can be altered by adjusting the
strength of the inserted PMs. Figure 5.2(b) shows the configuration with the opposite
results. That is, the orientation of the inserted PMs is such that they have the same
direction of magnetization in the z-direction.

The weaker PMs, inserted between the poles as illustrated in Figure 5.2, can be
realized by different approaches. For example, the remanent flux density can be
lowered, or PMs with smaller dimensions can be used. Another approach is to
start from an existing one dimensional magnetization for a single DoF actuator, and
alter the geometry such that the concept of Figure 5.2 is obtained. Because of the
requirements for the pick and place application presented in the previous chapter,
this thesis focuses on an actuator with a high axial force and a relatively low torque.
Therefore, the topology illustrated in Figure 5.2(a) is further investigated.
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Magnetization realization

To find a magnetization pattern in accordance with the concept illustrated in Fig-
ure 5.2(a), the research starts from a linear tubular permanent magnet actuator
(TPMA) [90]. This class of linear actuators consists of a cylindrical PM array and
cylindrical coils wound in the circumferential direction. The coils and PMs enclose
the full circumference and do not have end-windings. Consequently, the magnetic
field of the PM is completely used without leakage resulting in a high force density.
Due to the cylindrical shape, rotational movement of the coils or the PMs does not
affect the force, which makes the TPMA an obvious linear actuator for a rotary-linear
actuator [88, 90]. The PMs can be mounted interiorly or exteriorly as described in [39].
The topology with interior magnets has the advantage that the dissipated power in the
coils does not flow through the PMs. The TPMA is most commonly used as a three
phase actuator in long stroke applications where either the coils or the PMs are the
moving part, referred to as translator. The moving coil configuration can be beneficial
if the moving mass has to be low [89], however, the moving cables introduce wear
and disturbance forces. Furthermore, the moving part of the TPMA should allow for
infinite rotation in this application. Therefore, the interior moving magnet topology
is selected and further investigated. Three magnetization patterns are described in
literature for three phase TPMAs which are presented in the next sections.

Radially magnetized TPMA

The first magnetization topology of the TPMA originates from a classical rotary
machine. It consists of a soft-magnetic core enclosed by radially magnetized PMs
with alternating polarity, shown in Figure 5.3(a). The soft-magnetic core is necessary
to create a high permeable flux path in the axial direction between two consecutive
poles. As a result, the translator mass of this magnetization topology is relative
high because the amount of soft-magnetic material has to be sufficient to prevent
saturation. Magnetizing the radially magnetized rings, shown in Figure 5.3(a), is a
difficult and expensive process. Therefore, these rings are often approximated by
several diametrically magnetized segments as described in [92].

Figure 5.3(b) shows ring magnets approximated by only two diametrically mag-
netized segments. As a result, along the circumference of one ring magnet, two
magnetic poles with a normal strength, and two poles with a weaker strength can
be distinguished, denoted by (N) and (N) or (S) and (S). If these ring magnets are
stacked and rotated by 90 degrees with respect to each other, the magnetization
concept illustrated in Figure 5.2(a) is realized. A disadvantage of this configuration
is the inability to vary the ratio between the regular and weaker poles (N and N) as
they are inherently coupled.
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Figure 5.3: PM array of a radially magnetized tubular permanent magnet actuator
consisting of a soft-magnetic core enclosed by (a) radially magnetized rings, (b) rings
consisting of two diametrically magnetized segments to create weaker poles, (N,S), in
between regular poles, (N,S).

Axially magnetized TPMA

The second possible realization of the concept illustrated in Figure 5.2(a) is derived
from a tubular linear actuator with an axially magnetized translator [88, 90]. The
translator of this actuator consists of axially magnetized PMs of alternating polarity
with soft-magnetic rings in between, see Figure 5.4(a). The flux is focused in the
airgap through the soft-magnetic ring uniformly along the circumference. To realize
a magnetization shown in Figure 5.2(a), the circumferential symmetry has to be
eliminated. A possible approach is illustrated in Figure 5.4(b), where the soft-magnetic
rings are replaced by rings with two flattened sides. The rings are rotated by 90 degrees
with respect to each other and a weak south pole appears between two north poles and
vice versa in the axial direction. A similar configuration is shown in Figure 5.4(c) where
both the PMs and the soft-magnetic rings are altered to remove the circumferential
symmetry. Instead of removing material from the soft-magnetic ring, material is
added to force the flux to leave or enter the translator at that position.

Contrary to the topology with the radially magnetized PMs, shown in Figure 5.3(b),
the ratio between the regular and the weaker poles can be varied by altering the shape
of the pole-pieces. The disadvantage of the topology with the flattened pole pieces,
Figure 5.4(b), is the reduced mechanical strength due to the removed material from
the pole pieces. The topology shown in Figure 5.4(c) does not exhibit this issue,
however, due to the complex shape of the PMs and the pole-pieces, this topology is
more difficult to manufacture.
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Figure 5.4: PM array of an axially magnetized tubular permanent magnet actuator
consisting of axially magnetized PMs with (a) regular soft-magnetic pole pieces (dashed
part) (b) soft-magnetic pole pieces with two flattened sides to create weaker poles, (N,S),
in between regular poles, (N,S). (c) soft-magnetic pole pieces widened at two sides to
create weaker poles, (N,S), in between regular poles, (N,S).

Quasi-Halbach magnetized TPMA

The third magnetization topology used in TPMAs consists of a quasi-Halbach perma-
nent magnet array, shown in Figure 5.5(a). In this topology, the soft-magnetic pole
pieces used in Figure 5.4(a) are replaced by radially magnetized rings. Due to this
magnet configuration, the magnetic field is focused on one side of the PM array and no
soft-magnetic core is required as a flux return path [44, 80]. As mentioned before, the
radial ring magnets are difficult to produce and diametrically magnetized segments
are used to approximate an ideal radial ring magnet. The effect of this segmentation
is extensively modeled and described in [86, 92] by Meessen et al.. The segmentation
of the PMs results in a variation of the radial component of the flux density along the
circumference which is reduced if the number of segments is increased. This variation
is exploited to realize the magnetization concept shown in Figure 5.2(a). Two segments
are used to approximate the radially magnetized ring magnet and the resulting rings
are stacked and rotated 90 degrees with respect to each other, see Figure 5.5(b). The
axially magnetized magnets are placed in between these PMs with alternating polarity
[95].

The ratio between the regular and the weaker poles (N and N) of the magnetization
pattern shown in Figure 5.5(b) is inherently coupled. However, the ratio between the
flux seen by a coil in the circumferential direction and a coil in the axial direction can
be altered by adjusting the ratio between the height of the axially magnetized PMs
and the height of the segmented ring magnet. The disadvantages of the previous
configurations are absent here since no soft-magnetic core is required, the mechanical
strength of the structure is not affected due to odd shaped magnets or pole pieces,
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Figure 5.5: (a) Quasi-Halbach permanent magnet array for a TPMA consisting of axially
magnetized rings with radially magnetized rings in between. (b) Altered quasi-Halbach
permanent magnet array where the radially magnetized rings are replaced by rings
consisting of two diametrically magnetized segments. The rings are stacked with an
offset of 90 degrees with respect to each other to create the magnetization concept
shown in Figure 5.2(a), where (N,S) are the weaker poles in between the regular poles,
(N,S).

and all components are relatively easy to manufacture. A cost-disadvantage of this
topology is the larger amount of permanent magnet material used in the assembly.

Magnetization topology comparison

The topologies described in the previous sections are summarized in Table 5.1. From
the table can be concluded that the quasi-Halbach topology exhibits the most promis-
ing characteristics. Therefore, this topology is selected and further investigated.

Table 5.1: Comparison of tubular permanent magnet magnetization patterns to realize
a 2-DoF magnetic field distribution.

Radial Axial a/b Quasi-Halbach

Mass/magnetic loading ratio - + ++

Adjustable force/torque ratio - + +

Manufacturability ++ - +
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5.2 Stator configuration
The stationary part of the actuator, referred to as stator, accommodates two coil sets,
one for rotation and one for translation. The coils for rotation are oriented in the axial
direction and the coils for translation are oriented in the circumferential direction
as illustrated in Figure 5.2(a). Consequently, coil configurations used in TPMAs and
ordinary rotary actuators can be used. In general, the stator of an actuator can be
slotless or slotted, illustrated in Figure 5.6.

Slotted stator

In an actuator with a slotted stator, the winding is placed inside slots in the soft-
magnetic stator back-iron illustrated in Figure 5.6(a). That is, the winding is wound
around soft-magnetic teeth. These teeth provide a high permeable path and in
combination with the small airgap, a high flux linkage of the winding is obtained. Due
to the slot openings, the stator permeance is not constant along the circumference
of the airgap. As a result, cogging torque/force is present in actuators with a slotted
stator, however, this disturbance torque/force can be minimized be selecting an
appropriate pole-slot combination or by optimization of the tooth shape.

Slotless stator

In a slotless stator, the winding is accommodated between the moving part and the
stator back-iron shown in Figure 5.6(b). Due to the absence of the high permeable
teeth through the winding, the magnetic loading is generally lower than in slotted
actuators resulting in a lower torque/force density. An advantage of the slotless
actuator is that due to the absence of the teeth, the stator permeance is constant
along the circumference and no cogging torque/force is apparent. Furthermore, the
geometry of the stator is simpler and easier to manufacture and assemble.

tooth winding back-iron winding back-iron

airgap
airgap

PM
PM

(a) (b)

Figure 5.6: Illustration of two exterior stators of a PM rotary machine. (a) Slotted stator
with winding accommodated inside slots in back-iron. (b) Slotless stator with winding
accommodated inside the airgap.



5.2 Stator configuration 111

teeth

winding
back-iron back-ironwinding

teeth

tooth-tips tooth-tips

z

r
θ z

r
θ

(a) (b)

Figure 5.7: (a) Illustration of a slotted stator with winding for rotary machine. (b)
Illustration of a slotted stator with winding for a linear tubular PM actuator.

5.2.1 2-DoF actuator stator configuration

To create a compact stator, the two orthogonal coil sets, illustrated in Figure 5.2(a), are
concentrically placed in the stator. Both the windings for rotation and translation can
be placed inside the airgap or inside slots, hence, six stator configurations are possible.
Hence, the stator can be both slotted and slotless. Therefore, in the remainder of the
analysis, a winding placed inside slots is referred to as a slotted winding. A winding
placed inside the airgap is referred to as a slotless winding.

An example of a slotted stator for the rotational part of the actuator is shown
in Figure 5.7(a) where the winding and teeth are oriented in the axial direction.
Figure 5.7(b) shows a slotted stator for the translational part of the actuator which
is an example of a typical slotted stator of a TPMA.

Double slotted stator

Integration of the two presented slotted stators concentrically results in a double
slotted stator, illustrated in Figure 5.8. In Figure 5.8(a), the tooth-tips of an ordinary
slotted stator of a rotary actuator, shown in Figure 5.7(a), are enlarged to accommo-
date a slotted winding of a TPMA. Torque is generated by flux crossing the airgap
in the radial direction and flowing in the rθ-plane between consequent poles in the
circumferential direction of the mover. The flux from the mover crosses the airgap,
entering the teeth for translation, flowing through a tooth for rotation and passing
through the back-iron in the circumferential direction to one of the next teeth for
rotation and back to the mover. As a result, the flux is linked by the winding for
rotation. The force in the axial direction is generated by flux crossing the airgap in
the radial direction and flowing in the r z-plane between consequent poles in the axial
direction of the mover. The flux enters a tooth for translation and flows through one
or more teeth for rotation in the axial direction to one of the next teeth for translation
and back through the airgap. Since the flux flows in the r z-plane, the winding for
translation links this flux. The same holds for the topology shown in Figure 5.8(b),
except that the winding for rotation is located inside the elongated tooth-tips of the
teeth for translation.
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Figure 5.8: Double concentric slotted stator for 2-DoF actuator (a) Double slotted stator
with winding for rotation and winding for translation embedded in tooth-tips of teeth
for rotation. (b) Double slotted stator with winding for translation and winding for
rotation embedded in tooth-tips of teeth for translation.

The advantage of the topologies illustrated in Figure 5.8 is the high magnetic and
electrical loading due to the double slotted stator. Furthermore, because of the soft-
magnetic structure, the dissipated heat can easily be transferred to the outside of the
stator. The main drawback is the complexity of the structure. To be able to place the
coils in this double slotted stator, it has to be divided into multiple small soft-magnetic
sections.

Single slotted stator

The topologies illustrated in Figure 5.9 have one slotless and one slotted winding. As
a result, the stator structure is less complex and hence, easier to realize. The stator
illustrated in Figure 5.9(a) is based on the slotted stator shown in Figure 5.7(a) with an
enlarged airgap to accommodate a slotless winding for translation. The flux flowing
between two consequent poles in the axial direction is linked by the circumferential
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Figure 5.9: (a) Slotted stator for rotation with slotless winding for translation
accommodated in the airgap. (b) Slotted stator for translation with slotless winding
for rotation accommodated in the airgap.
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coils and is used to generate force in the axial direction. The teeth and tooth-tips for
rotation provide a high-permeable flux path in the axial direction and can be regarded
as the back-iron of the slotless winding. Figure 5.7(b) shows a similar configuration
where the slotted winding provides translation and the slotless winding rotation. The
stator of these topologies is slotted in one direction and cogging force/torque is only
present in one direction of motion. The distance between the PMs and the stator
is significantly larger in the single slotted topology resulting in a lower permeance
variation and hence, lower cogging force/torque.

Slotless stator

Two more stator configurations are possible where both the winding for translation
and rotation are slotless and concentrically placed in the airgap. The resulting stator
structure is simple as it is just a cylindrical tube and hence, no cogging torque or
force is present. Since the airgap has to accommodate two winding sets, the magnetic
loading and the torque/force density of this configuration will be lower than for the
four previously presented topologies. Furthermore, the dissipated heat in the inner
winding has to cross the outer winding and the back-iron before it can leave the
actuator. The thermal conductivity of a winding is much lower than that of iron,
typically 1.5Wm−1K−1 versus 50Wm−1K−1, hence, the dissipation in the inner winding
has to be lower compared to the single or double slotted stator where the winding is
placed in direct contact with the teeth and/or back-iron.

In all presented stator configurations, the force and torque are fully decoupled if
the material properties of the soft-magnetic part are considered to be linear in the
working range. The validity of this assumption depends on the flux density level in
the inherently non-linear soft-magnetic material. This depends on the final design of
the stator part and can be considered as one of the optimization criteria in a design
optimization.

5.2.2 Stator configuration selection

A comparison of the aforementioned stator configurations is presented in Table 5.2.
Although the specific properties of each topology depend on the final design, for
example, the cogging force/torque can be significantly diminished by selecting a
proper pole/slot combination, the table provides a basis for the stator topology
selection. The single slotted actuator is considered to be the best compromise
between force/torque density and complexity of the structure to be applied in the 2-
DoF actuator. The configuration with the slotted winding for rotation and the slotless
winding for translation, illustrated in Figure 5.9(b), is selected based on the following
arguments:

• A slotless TPMA can provide the required acceleration in this application, based
on the results presented in [88, 90] by Meessen et al.



114 5. Actuator configuration and modeling

Table 5.2: Comparison of stator configurations for a 2-DoF actuator.

Double slotted Single slotted Slotless

Force/torque density ++ + -

Cogging force/torque – - ++

Thermal properties ++ + -

Manufacturability – + ++

• The stator structure is simpler than the topology shown in Figure 5.9(a), where
the stator should consist of multiple segments to be able to place the coils for
translation inside the slots.

• The leads of the coil for translation can be placed inside the slot-openings of
the slots for the winding for rotation, while the topology shown in Figure 5.9(b)

requires an additional slit or hole for the lead wires.

Another argument to place the winding for translation concentrically inside the
winding for rotation is inherently derived from the relation between the force and
the mean radius of the winding. In the following analysis, the effect of the position
of the winding (inside or outside the winding for the other direction of movement) is
estimated. An actuator with a fixed outer radius of the stator is considered and the
copper loss is regarded to be the same for the inner and the outer winding. The force
on a single coil of the winding is considered to be

F ∝ Br i l , (5.1)

where Br is the radial component of the magnetic flux density, i is the current through
that coil and l is the length of the coil.

Translation The total copper loss in the winding for translation is Pz ∝ i 2
z Rz where

Rz is the resistance of a single coil

Rz = ρ
l

A
, (5.2)

where ρ is the resistivity of copper, l is the coil length, and A is the area of the coil
cross-section. The resistance is proportional to the coil radius as the length of the coil
is proportional to the radius and the cross-section is considered constant

Rz ∝ r. (5.3)

Considering a constant copper loss, Pz , this yields to

iz ∝
1p
r

. (5.4)
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Rotation The total copper loss in the coil for rotation is Pθ = i 2
θ

Rθ where Rθ is the
resistance of the coil

Rθ = ρ
l

A
. (5.5)

The resistance is proportional to one over the radius as the cross-section of the coil is
proportional to the radius and the coil length is independent of the radius.

Rθ ∝
1

r
. (5.6)

Considering a constant copper loss, Pθ, this yields to

iθ ∝
p

r . (5.7)

Combining (5.1) with (5.4) and (5.7) yields to

Fz ∝ Br
p

r , (5.8)

Fθ ∝ Br
p

r . (5.9)

However, the torque on the coil is

Tz = r Fθ (5.10)

∝ Br r
p

r , (5.11)

Both force components depend on the radial component of the flux density, hence,
the effect of the relation between the flux density and the radius is the same for the
torque and the force in the axial direction. In conclusion, the effect of a larger winding
radius is more significant on the torque than on the force.

5.3 3D actuator model
In the previous sections, various 2-DoF actuator topologies are presented. The altered
quasi-Halbach topology with the single slotted stator with slotless coils for translation,
shown in Figure 5.5(b) and Figure 5.9(a), respectively, is selected to be the most
promising combination. In this section, a 3D analytical electromagnetic model of this
actuator topology is derived based on the theory presented in Chapter 2. The model
provides the magnetic field distribution due to the presence of the PM-array.

5.3.1 Division in regions

To derive a model for the actuator, the geometry has to be divided into multiple
regions as presented in Section 2.3.3. The selected stator topology, illustrated in
Figure 5.9(a), can be divided into the following regions:
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Rr
Rm

Ri

Rs

region IVa (slot)

2τz

r
z

region I (shaft)

region II (PM-array)

region IVb (slot)

region IVc (slot)

region III (airgap)

∆IVc

θ

∆
IVb

θ

∆IVa

θ

θ

τIV
θ

stator back-iron

Figure 5.10: Model definition of the 2-DoF actuator topology consisting of a PM-array
and a soft-magnetic cylinder with three slots in the axial direction.

I the non-magnetic shaft of the mover,

II the PM-array of the mover,

III the (magnetic) airgap region, this includes the coil area for translation as the
magnetic field of solely the PMs is calculated in the 3D model,

IV the stator slots in the axial direction. The subscripts a,b, ... are used to denote
each individual slot.

The harmonic modeling technique, described in Chapter 2, can consider slots in
either the circumferential or the axial direction. Therefore, the finite axial length of
the actuator is not taken into account in this model since slots in the axial direction
are considered. To calculate the effects of this finite length, a second model has to be
constructed without slots in the axial direction which is explained in Section 6.5.1.

A three phase winding for rotation is selected resulting in a minimum of three
slots. The number of slots can be extended by expanding the number of sub-
regions IVa,b,c . One full period of the model is illustrated in Figure 5.10 with the
geometrical parameters listed in Table 5.3. The origin of the coordinate systems
of regions I, II and III coincide, i.e., ∆I

θ
= ∆II

θ
= ∆III

θ
= 0 and ∆I

z = ∆II
z = ∆III

z = 0.

To enable rotation of the slots with respect to the PM-array, ∆IVa
θ

,∆IVb
θ

and ∆
IVc
θ

are
introduced defining the displacement of the slots in the circumferential direction. As
the stator reveals no variation in the axial direction, displacement in this direction is
not considered, i.e., ∆IVa

z = ∆
IVb
z = ∆

IVc
z = 0. The pole pitch in the axial direction, τz ,

originates from the periodicity of the PM-array shown in Figure 5.11. This dimension
fixes the fundamental period of the Fourier series to describe the magnetic field
in all regions in the axial direction to be 2τz . In the circumferential direction, the



5.3 3D actuator model 117

Table 5.3: List of geometrical parameters of the 3D structure illustrated in Figure 5.10
representing one periodic section of the 2-DoF actuator.

Parameter Description

Rr [mm] Inner radius PM array

Rm [mm] Outer radius PM array

Ri [mm] Inner radius stator back-iron

Rs [mm] Outer radius slot

τIV
θ

[deg] Slot width

τz [mm] Pole pitch in the axial direction

∆
IVa ,IVb ,IVc
θ

[deg] Offset of slot w.r.t. region I in the θ-direction

fundamental period of the Fourier series is τθ = 2π in regions I, II and III. In the slot
regions, IVa, IVb and IVc, the fundamental period is defined by means of the slot width,
τIV
θ

, according to the theory described in Section 2.5.

5.3.2 Magnetization description

To calculate the magnetic field due to the presence of permanent magnets, the PM-
array has to be described by a remanent magnetization vector based on a Fourier
expansion defined in (2.35) in Section 2.4. The remanent magnetization vector of a
standard quasi-Halbach array for a TPMA, shown in Figure 5.5(a), contains a radial and
an axial component. As the radially magnetized rings are replaced by diametrically
magnetized segments, the circumferential, θ-, component of the magnetization
appears in the magnetization vector describing the PM-array of Figure 5.5(b). One
period of the PM-array is shown in Figure 5.11, where τz is the pole pitch and half
a period, and αpz is the ratio between the axial length of an axially magnetized ring
and the pole pitch, τz . The radial magnetization component of one diametrically
magnetized segment is sinusoidal whereas the circumferential component is a cosine
function. The three components of the magnetization vector, Mr , Mθ and Mz are

r
z
θ

αpzτz

τz

diametrically magnetized segments

axially magnetized ring

Figure 5.11: Altered quasi-Halbach magnetization array consisting of axially magne-
tized rings and diametrically magnetized segments.
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(a) (b)

(c)

Figure 5.12: Three components of the remanent magnetization of the altered quasi-
Halbach permanent magnet array illustrated in Figure 5.5(b). (a) Radial component of
the magnetization, Mr , (b) circumferential component of the magnetization, Mθ , and
(c) axial component of the magnetization, Mz .

illustrated in Figure 5.12 as a function of the axial and circumferential position in
the PM array. The components in the radial and circumferential direction, shown
in Figure 5.12(a,b), describe the diametrically magnetized segments, while the axial
component in Figure 5.12(c) describes the axially magnetized ring.

Remanent magnetization vector

Using Fourier expansion, defined by (2.6) to (2.9), the coefficients of the magnetization
shown in Figure 5.12 are found

Mr ss = 0, (5.12)

Mr sc = 0, (5.13)

Mr cs =


− 16

(
(−1)k+sin2( nπ

4

))
(−1)n cos

( nπ
2

)
sin

(
kπ
2

)
sin

(
kπ(αpz−1)

2

)
k(n2−1)π2 , n > 1,

− 4
(
(−1)k−1

)
cos

(
αpz kπ

2

)
kπ2 , n = 0,

0, n = 1,

(5.14)

Mr cc =


−4cos
(

3kπ
2

)(
cos

( nπ
2

)+cos
( 3nπ

2

))
sin

(
kπ(αpz−1)

2

)
+(

1+(−1)k )
(1+(−1)n)2 sin

(
kπαpz

2

)
k(n2−1)π2 , n > 1,

= 0, n = 0,1,

(5.15)
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Mr s = 0 (5.16)

Mr c = 0


(αpz−1)

(
1+(−1)n−cos

( nπ
2

)−cos
( 3nπ

2

))
(n2−1)π

, n > 1,

0, n = 1,

Mr 0 = 0, (5.17)

Mθss =


16
(
(−1)k+sin2( nπ

4

))
n(−1)n cos

( nπ
2

)
sin

(
kπ
2

)
sin

(
kπ(αpz−1)

2

)
k(n2−1)π2 , n > 1,

0, n = 1,
(5.18)

Mθsc =


4n cos
(

3kπ
2

)(
cos

( nπ
2

)+cos
( 3nπ

2

))
sin

(
kπ(αpz−1)

2

)
−n

(
1+(−1)k )

(1+(−1)n)2 sin
(

kπαpz
2

)
k(n2−1)π2 , n > 1,

0, n = 1,

(5.19)

Mθcs = 0, (5.20)

Mθcc = 0, (5.21)

Mθs =


n(αpz−1)
(−1−(−1)n+cos

( nπ
2

)+cos
( 3nπ

2

))
(n2−1)π

, n > 1,

0, n = 1,
(5.22)

Mθc = 0, (5.23)

Mθ0 = 0, (5.24)

Mzss = 0, (5.25)

Mzsc = 0, (5.26)

Mzcs = 0, (5.27)

Mzcc =
− 2

(
(−1)k−1

)
sin

(
αpz kπ

2

)
kπ , n = 0,

0, n > 0,
(5.28)

Mzs = 0, (5.29)

Mzc = 0, (5.30)

Mz0 = 0. (5.31)

The origin of the coordinate system of the model is defined such that Mz can be
described by solely cosine terms.

5.3.3 Boundary conditions

To obtain the values of the unknown coefficients in the magnetic field description,
the boundary conditions at the interfaces of the regions have to be solved. The
boundary conditions that are not inherently solved by selecting proper Fourier terms
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and periods (explained in Section 2.5) are listed below.

1. H I
r = 0

∣∣∣
r=0

, H I
θ = 0

∣∣∣
r=0

∀ z,θ, (5.32)

2. H I
z = H II

z

∣∣∣
r=Rr

, H I
θ = H II

θ

∣∣∣
r=Rr

∀ z,θ, (5.33)

3. B I
r = B II

r

∣∣∣
r=Rr

∀ z,θ, (5.34)

4. H II
z = H III

z

∣∣∣
r=Rm

, H II
θ = H III

θ

∣∣∣
r=Rm

∀ z,θ, (5.35)

5. B II
r = B III

r

∣∣∣
r=Rm

∀ z,θ, (5.36)

6. H III
z = H IVa

z

∣∣∣
r=Ri

, H III
θ = H IVa

θ

∣∣∣
r=Ri

for ∆
IVa
θ

< θ <∆IVa
θ

+τIVa
θ

,∀z, (5.37)

H III
z = H IVb

z

∣∣∣
r=Ri

, H III
θ = H IVb

θ

∣∣∣
r=Ri

for ∆
IVb
θ

< θ <∆IVb
θ

+τIVb
θ

,∀z, (5.38)

H III
z = H IVc

z

∣∣∣
r=Ri

, H III
θ = H IVc

θ

∣∣∣
r=Ri

for ∆
IVc
θ

< θ <∆IVc
θ

+τIVc
θ

,∀z, (5.39)

H III
z = 0

∣∣∣
r=Ri

, H III
θ = 0

∣∣∣
r=Ri

elsewhere, (5.40)

7a. B IVa
r = B III

r

∣∣∣
r=Ri

for 0 < θIVa < τIVa
θ

,∀z, (5.41)

7b. B IVb
r = B III

r

∣∣∣
r=Ri

for 0 < θIVb < τIVb
θ

,∀z, (5.42)

7c. B IVc
r = B III

r

∣∣∣
r=Ri

for 0 < θIVc < τIVc
θ

,∀z, (5.43)

8a. H IVa
z = 0

∣∣∣
r=Rs

, H IVa
θ

= 0
∣∣∣
r=Rs

for 0 < θIVa < τIVa
θ

,∀z, (5.44)

8b. H IVb
z = 0

∣∣∣
r=Rs

, H IVb
θ

= 0
∣∣∣
r=Rs

for 0 < θIVb < τIVb
θ

,∀z, (5.45)

8c. H IVc
z = 0

∣∣∣
r=Rs

, H IVc
θ

= 0
∣∣∣
r=Rs

for 0 < θIVc < τIVc
θ

,∀z. (5.46)

A method to solve this set of boundary conditions, is presented in Chapter 2. Bound-
ary conditions 2 to 5 are continuous boundary conditions between regions with
equal Fourier series described in Section 2.6. Boundary condition 6 imposes the
tangential component of magnetic field to be continuous at r = Ri and can be solved
by means of the analysis of Section 2.7.1. Boundary conditions 7a,b,c, impose the
normal component of the magnetic flux density to be continuous at the interface
r = Ri , described in Section 2.7.2. The last boundary conditions 8a,b,c are continuous
boundary conditions at the soft-magnetic interface at r = Rs , described in Section 2.6.
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Table 5.4: Geometrical dimensions and properties of the 2-DoF actuator used for the
model validation

Parameter Value Description

Rr [mm] 4.0 Inner radius PM array

Rm [mm] 9.0 Outer radius PM array

Ri [mm] 12.0 Inner radius stator

Rs [mm] 16.0 Outer radius slot

τz [mm] 15.0 Pole pitch in the axial direction

τIV
θ

[deg] 20.0 Slot width

αpz [-] 0.5 Pole pitch to magnet pitch ratio

∆
IVa
θ

[deg] 80.0 Offset region IVa w.r.t. region I, θ-direction

∆
IVb
θ

[deg] 200.0 Offset region IVb w.r.t. region I, θ-direction

∆
IVc
θ

[deg] 320.0 Offset region IVc w.r.t. region I, θ-direction

Brem [T] 1.2 Remanent flux density PMs

µr [-] 1.05 Relative permeability PMs

N [-] 21 Number of harmonics in θ-direction, regions I,II,III

K [-] 11 Number of harmonics in z-direction, regions I,II,III,IV

J [-] 5 Number of harmonics in θ-direction, regions IVa,b,c

5.3.4 Model validation

To validate the model, the set of equations is implemented in MATLAB and the results
are compared with a 3D finite element model. The dimensions of the model are listed
in Table 5.4 where the values are selected such that the actuator does not exceed the
maximum envelope given in Section 4.2. To compare the results of both methods,
the flux density is calculated in the middle of the airgap (region III) at r = Rm+Ri

2 .
The resulting waveforms calculated by the analytical model are shown in Figure 5.13.
The position of the first slot is clearly visible in Figure 5.13(a), which shows the radial
component of the magnetic flux density. Figure 5.13(b) shows the circumferential
direction and reveals the position of the two other slots.

To illustrate the differences between the results of the FE and the analytical model,
the magnetic flux density is calculated at various positions (r = Rm+Ri

2 ,θ, z) and
represented two dimensionally in Figure 5.14. The left column shows the Br , Bθ and
Bz versus axial position z at a constant angular position θ = 90deg. The right column
shows the three components of ~B versus angular position θ at constant z = 7.3mm.
Very good agreement between the two models is found, except for small deviations in
Figure 5.14(c) and Figure 5.14(f) where the values calculated by means of FE contain
more noise than the analytical model resulting in discrepancies. Therefore, the
deviation between the two models can be attributed to the finite element model and
is caused by the relatively low values of the magnetic flux density.
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(a) (b)

(c)

Figure 5.13: 3D representation of the magnetic flux density in the middle of region III
of the structure illustrated in Figure 5.10, calculated by the analytical model. (a)
Radial component, Br , (b) circumferential component, Bθ , (c) axial component of the
magnetic flux density, Bz .
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Figure 5.14: 3D finite element validation of magnetic flux density represented in 2D
plots. (a) Radial component, Br , at fixed θ = 90deg, (b) radial component, Br , at fixed
z = 7.3mm, (c) circumferential component, Bθ , at fixed θ = 90deg. (d) circumferential
component, Bθ , at fixed z = 7.3mm, (e) axial component, Bz , at fixed θ = 90deg, (f )
axial component, Bz , at fixed z = 7.3mm.
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5.3.5 Discussion

The goal of the new checkerboard concept is to create weaker poles in between the
regular poles, as presented in Section 5.1. In Figure 5.15(a) this checkerboard concept
is shown and Figure 5.15(b) illustrates the radial component of the magnetic flux
density in the airgap of the altered quasi-Halbach topology presented in Figure 5.5(b).
The positions of the regular poles and weaker poles, defined in Figure 5.15(a), are
illustrated by the dashed lines in Figure 5.15(b). Although the altered quasi-Halbach
magnetization does not contain physical weak and strong PMs, the pattern inherently
results in the required checkerboard pattern if the magnetic field of each pole is
averaged over its surface illustrated by the dashed lines.

The coils for rotation and translation are orthogonally oriented in the circumferen-
tial and axial direction as illustrated in Figure 5.2(a). The coils for translation enclose
the full circumference, see Figure 5.9. Accordingly, the magnetic field variation along
the circumference is averaged by each coil. The same holds for the coils for rotation
if its axial length is equal to an integer multiple of 2τz , i.e., a multiple of the period of
the magnetic field in the axial direction.

Average field seen by circumferentially oriented coil

The average magnetic field seen by the coils for translation, B III
r,z (r, z),B III

θ,z (r, z) and

B III
z,z (r, z), can be calculated by means of

B III
r,z (r, z) = 1

2π

∫ 2π

0
B III

r (r,θ, z)dθ, (5.47)

B III
θ,z (r, z) = 1

2π

∫ 2π

0
B III
θ (r,θ, z)dθ, (5.48)

B III
z,z (r, z) = 1

2π

∫ 2π

0
B III

z (r,θ, z)dθ, (5.49)

where B III
r ,B III

θ
and B III

z are the magnetic flux density components in the region III (the
airgap) defined in (2.19) to (2.21). Evaluating these integrals yield to

B III
r,z (r, z) =µ0

∞∑
k=1

1

2
RIII

3 (r,k,0) sin(mk z)+RIII
4 (r,k,0) cos(mk z), (5.50)

B III
θ,z (r, z) = 0, (5.51)

B III
z,z (r, z) =µ0

∞∑
k=1

RIII
9 (r,k,0) cos(mk z)−Rx

10(r,k,0) sin(mk z), (5.52)

where RIII
3 (r,k,0), RIII

4 (r,k,0), RIII
9 (r,k,0) and RIII

10(r,k,0) are defined in (2.22) to (2.34). Due
to the integration interval of 2π the circumferential component of the magnetic flux
density vanishes. The expression of the radial and axial components of the magnetic
flux density are the same as in the axisymmetric coordinate system presented in
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z

θ

(a) (b)

Figure 5.15: (a) Checkerboard topology with weaker poles inserted between regular
poles. (b) Radial component of flux density of altered quasi-Halbach PM array, and
illustration of the poles defined in (a) by means of the dashed squares.

Section 2.2.2. The resulting waveforms of the radial and axial component of the
magnetic flux density are shown in Figure 5.16(a). The waveforms are calculated by
the analytical model with the dimensions listed in Table 5.4. It can be seen from the
figure that no distortion occurs due to the presence of the slots as they are oriented in
the axial direction.
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Figure 5.16: Magnetic field calculated in the airgap (region III) of the structure shown
in Figure 5.10. (a) Radial and axial component of the flux density seen by the
circumferential coils, i.e., average magnetic field along the circumference. (b) Radial
and circumferential component of the flux density seen by the axially oriented coils,
i.e., average magnetic field along the one period in the axial direction.
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Average field seen by axially oriented coil

In the same manner the average magnetic field seen by the coils for rotation, B III
r,θ(r,θ),

B III
θ,θ(r,θ) and B III

z,θ(r,θ), can be calculated

B III
r,θ(r,θ) = 1

2τz

∫ 2τz

0
B III

r (r,θ, z)dz, (5.53)

B III
θ,θ(r,θ) = 1

2τz

∫ 2τz

0
B III
θ (r,θ, z)dz, (5.54)

B III
z,θ(r,θ) = 1

2τz

∫ 2τz

0
B III

z (r,θ, z)dz. (5.55)

Evaluating these integrals by inserting the magnetic field definitions, (2.19) to (2.21),
yield to

B III
r,θ(r,θ) =−µ0

∞∑
n=1

[
RIII

5 (r,n) sin(wnθ)+RIII
6 (r,n) cos(wnθ)

]
, (5.56)

B III
θ,θ(r,θ) =−µ0

∞∑
n=1

[
RIII

11(r,n) cos(wnθ)−RIII
12(r,n) sin(wnθ)

]
, (5.57)

B III
z,θ(r,θ) = 0, (5.58)

where RIII
5 (r,n), RIII

6 (r,n), RIII
11(r,n) and RIII

12(r,n) are defined in (2.22) to (2.34). These
expressions of the magnetic field components have the same form as presented in
Section 2.2.1. By means of these equations, the magnetic field averaged over 2τz as
a function of the circumferential position is calculated and shown in Figure 5.16(b).
Both components show distortion at the slot positions, i.e., 80-100 degrees, 200-
220 degrees and 320-340 degrees.

The two 2D representations of the magnetic field for translation and rotation,
presented by (5.50), (5.51), (5.56) and (5.57), respectively, can be used to calculate the
force and torque of the actuator. The analytical model assumes linear material prop-
erties, hence superposition is valid and translation and rotation are fully decoupled,
as such, the force and torque can be calculated individually.

One of the drawbacks of the three dimensional analytical model is the inability
to include current carrying regions. Therefore, the magnetic flux density has to be
inserted in the Lorentz force equation to calculate the force. Another approach is
presented in the next section where two 2D models are introduced to approximate
the 3D structure.
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5.4 2D approximation
Due to the orthogonality of the windings for rotation and translation, the magnetic
fields seen by the two windings can be described in the axisymmetric and polar
coordinate system given by (5.50), (5.51), (5.56) and (5.57). The coefficients in these
equations are calculated by the 3D model. However, the formulations of the magnetic
fields have the same form as the formulation in the axisymmetric and polar coordinate
system. Hence, 2D models in these coordinate systems can be used to approximate
the force and torque separately. Therefore, two models are derived in this section
and the results are compared with the results of the 3D model shown in the previous
section.

5.4.1 2D model in axisymmetric coordinate system

A 2D model in the axisymmetric r -z-coordinate system is derived to approximate the
translational performance of the actuator. The model, illustrated in Figure 5.17, is a
simplification of the structure shown in Figure 5.10. Due to the selected coordinate
system, the model is invariant in the circumferential direction. As such, the slots in
the axial direction cannot be taken into account, and the stator back-iron is modeled
as a non-salient soft-magnetic cylinder with infinite permeability. Four cylindrical
concentric regions are defined as shown in Figure 5.17:

I the non-magnetic shaft of the mover,

II the PM-array of the mover,

III the (mechanical) airgap,

IV the slotless winding for translation.

To calculate the magnetic fields due to the PM-array and the coils, the magnetic
vector potential is exploited as defined in Section 1.2.1. The vector potential reduces
to a scalar in a 2D model and the theory described in Chapter 2 can be applied to solve
the boundary conditions. The advantage of exploiting the magnetic vector potential
is that the current carrying winding can be taken into account in the analysis, and

stator back-iron
r

z

Ri

Rr

Rm

Rc

region IV (winding)
region III (airgap)

region II (PM-array)

region I (shaft)

2τz0 τz

Figure 5.17: 2D model definition in the axisymmetric coordinate system to calculate
the translational performance.
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that the force can be calculated by means of applying the Maxwell stress tensor in the
airgap, described in Chapter 3. Note that the formulated model is typically used to
calculate magnetic fields in TPMAs [41, 85, 90].

To create a 2D approximation of the PM-array in the axisymmetric coordinate
system, the mean value of the components of the remanent magnetization vector, ~M ′

0,
along the circumference is calculated

M ′
r (z) = 1

2π

∫ 2π

0
Mr (θ, z)dθ, (5.59)

M ′
θ(z) = 1

2π

∫ 2π

0
Mθ(θ, z)dθ, (5.60)

M ′
z (z) = 1

2π

∫ 2π

0
Mz (θ, z)dθ, (5.61)

where Mr , Mθ and Mz are defined in (2.36) to (2.38). Inserting these definitions and
evaluation of the integrals yield to

M ′
r (z) =

∞∑
k=1

Mr cs (k,0) sin(mk z)+Mr cc (k,0) cos(mk z)+Mr 0, (5.62)

M ′
θ(z) =

∞∑
k=1

Mθcs (k,0) sin(mk z)+Mθcc (k,0) cos(mk z)+Mθ0, (5.63)

M ′
z (z) =

∞∑
k=1

Mzcs (k,0) sin(mk z)+Mzcc (k,0) cos(mk z)+Mz0, (5.64)

where the magnetization coefficients of the altered quasi-Halbach magnetization are
defined by (5.12) to (5.31). Inserting these coefficients simplifies the expressions to

M ′
r (z) =

∞∑
k=1

−4
(
(−1)k −1

)
cos

(
αpz kπ

2

)
kπ2 sin(mk z), (5.65)

M ′
θ(z) = 0, (5.66)

M ′
z (z) =

∞∑
k=1

−2
(
(−1)k −1

)
sin

(
αpz kπ

2

)
kπ

cos(mk z). (5.67)

The resulting equations describe a regular quasi-Halbach magnetization of a TPMA
where the remanent flux density of the radially magnetized magnets is reduced by a
factor 2

π . The resulting waveform is shown in Figure 5.18(a).

To compare the magnetic field approximation of this 2D model with the results
of the 3D model, the magnetic flux density due to the PM-array at r = Rm+Ri

2 is
calculated. The model dimensions listed in Table 5.4 are considered and the resulting
magnetic flux density waveform is shown in Figure 5.19. Due to the slots in the axial
direction, which are modeled in the 3D model and neglected in the 2D model, the
radial component of the flux density is approximately 1% higher in the 2D model.
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Figure 5.18: Two dimensional representation of the altered quasi-Halbach magnetiza-
tion presented in Section 5.3.2. (a) Representation of radial and axial magnetization
component in axisymmetric coordinate system. (b) Representation of radial and
circumferential magnetization component in polar coordinate system.

Conversely, the axial component of the magnetic flux density is approximately 4%
lower in the 2D model. This component can be considered as flux leakage and is
somewhat more significant in the 3D structure due to presence of the slots. If the
width of the slots is increased, the difference between the resulting magnetic field in
the two models will increase and vice versa. In conclusion, the 2D and 3D model show
good agreement for the selected parameters, and only the values are scaled due to the
presence of the slots in the axial direction. As such, the 2D model can be used to
approximate the performance in the translational direction while the 3D model can
be used to calculate the performance reduction due to the presence of the slots.
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Figure 5.19: Magnetic flux density calculated at r = Rm+Ri
2 by means of the 3D

analytical model and the 2D approximation model in the axisymmetric coordinate
system with the dimensions listed in Table 5.4.
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Figure 5.20: 2D model definition in the polar coordinate system to calculate the
magnetic fields for rotation.

5.4.2 2D model in polar coordinate system

To calculate the performance of the rotational part of the actuator, a two dimensional
model in the polar coordinate system is derived. The model, illustrated in Figure 5.20,
represents the 3D structure, shown in Figure 5.10, in the polar coordinate system. The
following regions are defined in the model:

I the non-magnetic shaft of the mover,

II the PM-array of the mover,

III the (magnetic) airgap,

IV (a,b,c) the slot openings,

V (a,b,c) the slots to accommodate the winding for rotation.

Due to the stator back-iron being invariant in the axial direction, the stator structure
is not simplified in this 2D representation. The slot regions, defined in the 3D model
illustrated in Figure 5.10, are split in two parts where the outer part, regions Va,b,c,
accommodates the winding. The width of these slots is generally larger than the width
of the slot-openings, regions IVa,b,c, in a real machine. For comparison with the 3D
model, the width of the slot and the slot opening are equal.

To calculate the 2D approximation of the PM-array in the polar coordinate system,
the mean value of the components of the magnetization vector, ~M ′

0, in the axial
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direction over 2τz is calculated

M ′
r (θ) = 1

2τz

∫ 2τz

0
Mr (θ, z)dz, (5.68)

M ′
θ(θ) = 1

2τz

∫ 2τz

0
Mθ(θ, z)dz, (5.69)

M ′
z (θ) = 1

2τz

∫ 2τz

0
Mz (θ, z)dz, (5.70)

where Mr , Mθ and Mz are defined in (2.36) to (2.38). Inserting the coefficients
provided by (5.12) to (5.31) and evaluating the integrals yield to

M ′
r (θ) =

∞∑
n=1

Mr c (n)cos(wnθ), (5.71)

M ′
θ(θ) =

∞∑
n=1

Mθs (n)sin(wnθ), (5.72)

M ′
z (θ) = 0, (5.73)

where Mr c and Mθs are defined in (5.17) and (5.22), respectively. The resulting
waveforms are shown in Figure 5.18(b). It can be seen that the radial component of

the magnetization, M ′
r , is a triangular waveform with an amplitude of

1−αpz

2 , and the
circumferential component, M ′

θ
, has a more rectangular shape with an amplitude of

1−αpzp
2

. As such, the amplitude of the magnetization components for rotation increases
if the ratio between the axially magnetized ring and the diametrically magnetized
segments, αpz reduces.

To validate the results of this 2D model, the results, by means of the magnetic
flux density in the airgap due to the PM-array, are compared with the results of the
3D model. The magnetic flux density is calculated at r = Rm+Ri

2 for a model with
dimensions listed in Table 5.4. The results of both models are shown in Figure 5.21.
Excellent agreement between the results is found, as expected, because the stator
structure is invariant in the axial direction.
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Figure 5.21: Magnetic flux density calculated at r = Rm+Ri
2 by means of the 3D

analytical model and the 2D approximation model in the polar coordinate system with
the dimensions listed in Table 5.4.

5.4.3 Discussion

In the two latter sections, two 2D models are presented to approximate the actuator
performance in the translational and rotational direction. The motivation for the
introduction of these models is the ability to apply the magnetic vector potential
which enables direct calculation of force and torque due to a current through the coils.
However, due to the three dimensional nature of the actuator, the 2D models provide
only an approximation of the real behavior. Therefore, the validity of these models is
discussed.

The introduction of two separate models for translation and rotation implies
that superposition is valid. However, due to the non-linear material properties of
the soft-magnetic back-iron, the validity of superposition cannot be guaranteed.
Consequently, the dimensions of the stator back-iron geometry have to be validated
by a 3D model that does include non-linear material properties. Another approach is
to use the linear 3D model presented in Section 5.3 to estimate the flux density level
in the soft-magnetic material and alter the structure such that the flux density levels
do not exceed a predefined level. This is further discussed in Section 6.4.4.

2D model for translational performance

The model to calculate the force in the axial direction is derived in the axisymmetric
coordinate system and hence, is inherently invariant in the circumferential direction.
That is, the slots in the axial direction are not taken into account and the validity
of the 2D model depends on the slot width. The coils for rotation enclose the
full circumference, illustrated in Figure 5.9(a), and can be fully described in the
axisymmetric coordinate system. Consequently, the 2D model can be used in an
optimization routine to approximate the force, while the 3D model can be used to
calculate the influence of the slots on the magnetic field distribution.
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Figure 5.22: Example of three phase coil set (A,B,C) for rotation, (a) coils spanning 2τz
in the axial direction, (b) coils spanning 2.5τz in the axial direction.

2D model for rotational performance

To calculate the torque produced by the actuator, a model is derived in the polar
coordinate system which inherently does not consider dependency in the axial direc-
tion. Because the stator geometry, modeled by the 3D model in Section 5.3, exhibits
no variation in the axial direction, the stator back-iron is completely modeled in 2D.
However, the coils for rotation have a finite length that cannot be considered by the 2D
model. The model presented in Section 5.4.2 is based on integration of the 3D model
over one period in the axial direction, i.e., 2τz . As a result, the 2D model provides an
accurate torque prediction if the coil length is an integer multiple of 2τz , shown in
Figure 5.21(a). However, when the axial length of the coil for rotation is not equal to an
integer multiple of 2τz , Figure 5.22(b), the agreement between the 3D and 2D model
is lost, and the flux seen by the coil becomes dependent on the axial position.

In Figure 5.22, two possible coil sets for rotation are illustrated where the coils of
Figure 5.22(a) span 2τz in the axial direction resulting in:

• During rotation and translation, the ratio between the weak and strong poles
covered by a coil is constant.

• The flux linkage and the induced voltage of the three coils, A,B,C, are balanced
during rotation.

• The flux linkage is constant during translation and hence, the induced voltage
is zero.

• The two 2D models provide an accurate approximation of the produced force
and the torque.

Figure 5.22(b) shows a coil set that spans 2.5τz in the axial direction. For a single coil
holds that:

• During rotation the flux linkage waveform has an offset due to the varying ratio
between the covered weak and strong poles.
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• During rotation the induced voltage is balanced without offset.

• During translation the flux linkage varies as the number of weak and strong
poles covered by the coil is not constant.

• During translation a voltage is induced in the coils for rotation.

• During helical motion the induced voltage by the coils for rotation is unbal-
anced.

• Due to this cross-coupling, the 2D models can give erroneous results.

In conclusion, the 2D model for rotation provides a good approximation only when
the axial length of the coils for rotation is equal to an integer multiple of 2τz .

Force and torque scalability

In the previous sections it is shown that the proposed magnetization pattern intro-
duces an additional parameter to vary the ratio between the force and torque, i.e.,αpz .
To illustrate the effect of this parameter, the force and torque capability is estimated
by means of the amplitude of the fundamental frequency of the flux density, i.e., 2τz

and 2τθ, in the airgap. In Figure 5.23, the normalized force and torque are shown as a
function of the ratio,αpz , calculated by means of the two presented analytical models.
The force is normalized to the maximum force that can be obtained if the radially
magnetized ring is not approximated by diametrically magnetized segments, but
consists of an ideal ring magnet. Ifαpz is zero, the maximum torque can be produced,
conversely, for αpz = 1, the magnet array contains solely axially magnetized PMs and
the magnetic field variation in the circumferential direction is absent resulting in no
torque capability.
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Figure 5.23: Normalized force and torque versus αpz estimated by means of the
amplitude of the fundamental frequency of the flux density in the airgap.



5.5 Summary and conclusions 135

The torque scales linearly with αpz , which can be explained by the linear relation
between the magnetization and αpz shown in Figure 5.18(b). The force, however,
shows a non-linear relation with respect to αpz because the Halbach magnetization
ratio, shown in Figure 5.18(a), is altered. This affects both the waveform and the
amplitude of the flux density. As a result, variation ofαpz affects besides the maximum
force the force ripple as well.

5.5 Summary and conclusions
The integrated PM actuator topology presented in the previous chapter has been
further investigated in this chapter. Generally, this type of actuator employs a
checkerboard magnetization on the mover. Its inherent force and torque coupling
is a major disadvantage of this actuator topology, therefore a new magnetization
concept has been proposed and patented. Furthermore, this allows for two simple
orthogonal windings to create torque and force. To achieve the specific high force
and low torque, various possible realizations of the magnetization pattern have been
proposed starting from the tubular PM actuator. Specifically, three permanent magnet
configurations have been presented, where the altered quasi-Halbach magnetization
topology has been selected based on the high magnetic loading, the adjustable
force/torque ratio, and the manufacturability. The normally parasitic field effect of
this tubular actuator is exploited to produce torque. Different stator configurations
have been explored to obtain an actuator with a high force/torque density without
introducing a complex manufacturing process. The single slotted actuator is selected,
which has a slotless winding for translation enclosed by a slotted winding for rotation.

The analytical modeling technique presented in part I is used to create a fast and
accurate three dimensional field description due to the presence of the altered quasi-
Halbach magnetization. Further, two 2D models, i.e. rotational and translational,
have been created to approximate the torque and force, since the 3D model cannot
include current carrying conductors. The resulting 2D field solutions due to the
presence of the PM array have been validated using the analytical 3D model. The
2D model for the rotational movement provides a very accurate approximation if the
axial length of the actuator is an integer multiple of the period of the PM array. The
accuracy of the translational model depends on the slot configuration of the rotational
part, where in the modeled structure this introduces an error of approximately 1%.
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Actuator synthesis

Abstract - The analytical models, presented in Chapter 5, are utilized to analyze the
selected configuration of the two degrees of freedom actuator. Winding configurations
are explored, a thermal analysis is conducted, and the influence of the geometric
parameters on the actuator performance is investigated. Subsequently, cogging and
electromagnetic damping effects are evaluated. Based on these analyses, a final
actuator design is obtained, which meets the requirements set out in Chapter 4.
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6.1 Actuator configuration
In the previous chapter, stator and mover geometries for the 2-DoF actuator are
presented. The combination of an altered quasi-Halbach magnetization and a stator
with a slotted and a slotless winding is selected as the most promising solution.
The aim of this chapter is to synthesize various phenomena of the selected actuator
to obtain a design that meets the requirements. In Section 6.2, various winding
configurations are presented and windings for rotation and translation are selected.
Section 6.3 discusses the thermal aspects in the actuator, which are used in Section 6.4
to obtain the relation between the geometric parameters, dissipation, and actuator
performance. Based on the results, an actuator design is obtained. In Section 6.5,
parasitic effects are described and a final actuator design is defined. This actuator will
be built and experimentally verified, which is presented in the next chapter. In the
first section of this chapter, the actuator configuration is further detailed.

To create a compact actuator, the actuator configuration shown in Figure 6.1 is
proposed. The moving part is a cylindrical shaft with a uniform diameter containing
the PM-array. The stationary part consists of two air-bearings, two stator back-iron
sections and a position sensor in between. The bearings provide two degrees of
freedom and should exhibit no unpredictable friction, specified in the requirements
in Section 4.2. Therefore, porous air bearings are selected. No hardened sleeve is
required to enclose the mover to limit wear because the bearing is contactless. A
disadvantage of this bearing type is its size to provide the necessary stiffness, and the
air consumption. The 2-DoF position sensor is based on two single DoF optical linear
incremental encoders. A 2D sensor grid is put on the mover and two encoder heads are
orthogonally placed on the stationary part to measure both rotation and translation.
To avoid contamination and damage of this sensor grid, the position sensor is placed
between two stator back-iron sections. Consequently, the assumption is made that
the length of the sensor grid, which is at least equal to the stroke of the actuator, is
smaller than the axial length of one stator section and one air bearing. Placement of
the sensor grid on the mover implies that the PM-array of the mover is enclosed by a
sleeve that contains the sensor grid. A more detailed description of the position sensor
is provided in the next chapter.

r

z

air bearings
stator back-iron sections
position sensor
sensor gridmover

Figure 6.1: Basic actuator configuration consisting of two air bearings, two stator back-
iron sections and, in between, a position sensor.
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6.2 Electromagnetic analysis

6.2.1 Permanent magnet array

The magnetic loading of an actuator is determined by the PM-array configuration.
In classical actuators, various PM configurations can be selected to obtain a specific
waveform or level of the flux density in the airgap. In this actuator, however, the PM-
array is defined by the selected actuator topology, i.e., the altered quasi-Halbach mag-
netization presented in the previous chapter. From the 2D magnetization waveforms,
shown in Figure 5.18, the main properties of the PM-array for rotation and translation
are obtained, that is:

• Rotation : A four pole configuration with a triangular shaped magnetization
waveform.

• Translation : A quasi-Halbach magnetization with a reduced radial magnetiza-
tion component.

Based on these magnetization properties, suitable winding configurations are investi-
gated in the next sections.

6.2.2 Winding for rotation

The two stator sections contain a slotless winding for translation and a slotted winding
for rotation. In literature, numerous winding configurations are presented and their
advantages and disadvantages have been discussed [45, 46]. The selection of a suitable
winding configuration depends on the application, e.g., low mmf harmonics to limit
iron losses, a low induced voltage in high speed machines, and a high effectiveness
in high performance actuators. A measure for the effectiveness of the winding in
classical machines is the winding factor which defines the amount of flux that is linked
by all coils of one phase normalized to the theoretical maximum that can physically
be linked. The winding factor is generally applied to slotted windings and consists of
three components

kw = kp kd ks , (6.1)

where kp is the pitch factor, defined by the span of the two conductors of one coil of
the winding, kd is the distribution factor which defines the alignment of multiple coils
of one phase, and ks is the skewing factor representing the skewing angle of the stator
or rotor.

Generally, winding configurations can be subdivided in two classes; distributed and
concentrated ones. In distributed windings, the two conductors of a coil span multiple
teeth resulting in large end-windings. Conversely, in a concentrated winding the coils
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Figure 6.2: Selected winding configuration for rotation; concentrated winding with
three slots.

are wound around a single tooth, hence, the end-windings are shorter and coils of
different phases do not overlap one another. In for example [79], winding factors of
permanent magnet machines with concentrated windings are discussed. The number
of feasible winding configurations for rotation are limited as the number of poles is
inherently defined. Three feasible pole slot combinations for a four pole machine
are provided. The highest winding factor for a concentrated winding configuration is
kw = 0.866 for a stator with three or six slots, while a distributed winding with twelve
slots has a winding factor of one. Due to the small dimensions of the actuator and the
complexity of the stator with two orthogonal windings, the concentrated winding with
three slots, illustrated in Figure 6.2, is selected being the most favorable candidate.

6.2.3 Winding for translation

In most three phase linear actuators, the winding consists of multiple coils with two
anti-parallel conductors having multiple turns. That is, each coil has two conductors
with current flowing in opposite directions. Conversely, the coils in tubular actuators
can be described by a single conductor in the circumferential direction. This results
in coils without end-windings, and hence lower copper losses. Generally, tubular
actuators will have anti-parallel coils within a single phase with current flowing in the
opposite direction. However, since these coils are physically separated components,
one phase of a winding does not necessarily have clockwise and counter-clockwise
wound conductors. To create a general analysis of windings in slotless actuators,
single conductors are considered instead of coils with two anti-parallel conductors.
Consequently, the results can be applied to both tubular and rotating actuators.

Four examples of slotless windings are illustrated in Figure 6.3. The first winding,
shown in Figure 6.3(a), is full pitch distributed with one coil conductor per pole,
Ncpp = 1. Figure 6.3(b,c) show a short pitch and a full pitch concentrated winding with
Ncpp = 1 and Ncpp = 1

2 , respectively. Figure 6.3(d) illustrates a winding that can only
be used in a tubular actuator as it consists of positive conductors only. Although the
two anti-parallel coil conductors are physically separated in tubular actuators, and
the advantage of small end-windings in a concentrated winding is not present, this
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Figure 6.3: Four slotless winding configurations, (a) full pitch distributed winding, τc =
τp , Ncpp = 1, (b) short pitch concentrated winding, Ncpp = 1, (c) full pitch concentrated

winding, Ncpp = 1
2 , (d) distributed winding having only positive coil conductors per

phase, Ncpp = 1
2 (only feasible in TPMA).

winding configuration is described to make the analysis of the slotless winding more
generic. The winding factor, presented in (6.1), is employed to provide a measure
for the effectiveness of the windings presented in Figure 6.3. The components of the
winding factor are discussed in the next sections.

Pitch factor

The pitch factor is the ratio between the coil pitch, τc , and the pole pitch, τp . If the coil
pitch is equal to the coil pitch, the two anti-parallel coil conductors are displaced by
180 electrical degrees resulting in an optimal flux linkage. The winding configurations
in Figure 6.3(a,c) have a coil pitch equal to the pole pitch resulting in a pitch factor of
one, i.e. full pitch windings. The concentrated winding, shown in Figure 6.3(b), has
a coil pitch which is smaller than the pole pitch. This reduces the pitch factor and,
hence, the winding factor. The pitch factor for winding configuration Figure 6.3(d)

is not defined since the coils in this configuration do not consist of two anti-parallel
conductors.

In general, distributed slotless windings are full pitch resulting in a pitch factor
equals one. In concentrated windings the pitch factor can be calculated using the
following equation

kp = sin
( qπ

2

)
, (6.2)

where q is the ratio between the coil pitch and the pole pitch

q = τc

τp
. (6.3)
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Figure 6.4: Illustration of flux leakage through a single coil conductor of one phase in
the u-v coordinate system.

In the definition of the pitch factor presented before, flux leakage through the coil
conductor, is not taken into account. This assumption is valid in slotted machines
where almost all flux flows through the teeth resulting in an almost constant flux
linkage for all turns. However, in slotless machines, the flux leakage through the coil
is significantly higher because no high permeable predefined or concentrated flux
path through the airgap exists. Consequently, the flux linkage of all turns within one
conductor varies. Therefore, an additional component in the winding factor is defined
in this thesis, kl , which yields to the following winding factor for slotless actuators

kw = kp kd ks kl . (6.4)

Flux link factor

The flux link factor is a measure for the mean flux linkage of all turns within one
conductor. In slotless actuators, there is no preferred flux path through the coils
resulting in flux leakage through the conductor as illustrated in Figure 6.4. Due to
this effect, the flux linkage is not equal for all turns resulting in a flux link factor lower
than unity. Both the height of the conductor, hc , and the width of the conductorαcτp ,
affect the flux linkage of the conductor. The dependency of the conductor height is not
considered since it is the same for all four winding configurations shown in Figure 6.3,
hence, the coil height, hc is considered to be constant in the analysis.

To obtain the flux link factor of a winding configuration, the analysis starts from the
flux linkage of a single turn, λt , at position u = u′

λt (u′) =
∫ τp

2

u′
Bv (u)du, (6.5)

where the normal component of the flux density, Bv , is described by a sum of sine
functions with a fundamental period of 2τp defined as

Bv (u) =
∞∑

n=1
B̂v,n sin

(
nπ

τp
u

)
. (6.6)

It can be seen in Figure 6.4 that the conductor and the flux lines are symmetrical
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around u = 0. Therefore, only half of the coil conductor is considered to calculate
the link factor. The average flux linkage, λavg, of the conductor shown in Figure 6.4 is

λavg =
2

αcτp

∫ αc τp
2

0
λt (u′)du′. (6.7)

Using the definition of the flux density, given by (6.6), this yields to the following
equation for the flux linkage as a function of the harmonic number n

λavg(n) = B̂v,nτp

nπ

sin
( nπ

2 αc
)

nπ
2 αc

. (6.8)

To simplify the analysis, in the remainder of the analysis only the fundamental
harmonic is taken into account because this harmonic is generally dominant in the
force production. It can be seen from Figure 6.4 that the maximum flux linkage is
obtained when limαc → 0, consequently, the maximum flux linkage, λ̂avg, is

λ̂avg(1) = τp

π
B̂v,1. (6.9)

The link factor is a measure for the flux linked by the conductor divided by the
maximum flux that can be linked, hence, the link factor for the first harmonic is
defined by

kl ,1 =
sin

(
π
2αc

)
π
2αc

. (6.10)

Distribution factor

The distribution factor accounts for the distribution of the coils over the stator. This
factor is mainly used in slotted actuator, where slots can be filled by more than
one phase. The slotless winding configurations considered in this research have a
distribution factor equals one

kd = 1. (6.11)

Winding factor versus copper loss

In the previous sections is observed that the link factor approaches unity if αc

approaches zero. Consequently, to obtain a high winding factor, the conductor area
should be as small as possible. However, this reduced coil area results in an increased
copper loss which is not taken into account in the definition of the winding factor. The
copper loss in a conductor, PCu, excluding the end-windings and leads, is

PCu = i 2
c Rc , (6.12)
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where ic is the current through a conductor with a resistance Rc . For the conductor
described in Figure 6.4, the resistance, and hence copper loss, is proportional to the
geometry according to the following relation

Rc ∝
lc

αcτp hc kff
, (6.13)

where kff is the coil filling factor. Since the number of conductors of a winding
depends on the winding configuration, as illustrated in Figure 6.3, the total length of
the winding is proportional to the number of conductors per pole

lc ∝ Ncpp. (6.14)

Consequently, if a constant copper loss is considered for all winding configurations,
the current through the conductor, ic , depends on the geometry of the winding

ic ∝

√√√√αcτp

Ncpp
, (6.15)

where hc and kff are considered to be equal for each configuration and, hence, are
neglected. In permanent magnet actuators, the force or torque on one conductor is
linearly related to the flux linkage and the current. Consequently, the total force or
torque on the total winding is proportional to

F ∝ ic kw Ncpp. (6.16)

In conclusion, to compare different slotless winding configurations by means of
copper losses and achievable force, the following definition can be used

F ∝
√
αcτp Ncpp

sin
(
π
2αc

)
π
2αc

sin
( qπ

2

)
. (6.17)

This equation is applied to the four winding configurations illustrated in Figure 6.3
and the results are shown in Figure 6.5. The force is normalized to the value that
would be achieved if the winding has a winding factor of one, and the complete
coil area is filled with copper. It can be seen that the configurations (a) and (b)
are only physically possible when 0 < αc < 1

3 , while (c) and (d) are only valid for
0 < αc < 2

3 . For the distributed windings, (a) and (d), the optimum is found when
the complete coil area is covered by conductors, i.e., αc = 1

3 and αc = 2
3 , respectively.

The concentrated windings, (b) and (c), show an optimum when a small coil opening
is present between the two adjacent coil conductors of one phase, i.e., αc = 0.23 and
αc = 0.53, respectively. The results are summarized in Table 6.1.

The results in Table 6.1 do not take into account the additional copper loss in the
end-windings. However, as mentioned before, the cylindrical coils for translation
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Figure 6.5: Normalized force that can be obtained by using the winding configurations
illustrated in Figure 6.3 versusαc . The copper loss is equal in all winding configurations.

have no end-windings. Therefore, the full pitch distributed winding, illustrated in
Figure 6.3(a), is the most efficient configuration and is therefore selected for the
translational part of the actuator.

Table 6.1: Normalized force optima from Figure 6.5 for slotless winding configurations
illustrated in Figure 6.3.

Configuration Range of αc Optimal αc Maximum normalized force

(a) 0 <αc ≤ 1
3

1
3 0.80

(b) 0 <αc ≤ 1
3 0.23 0.43

(c) 0 <αc ≤ 2
3 0.53 0.63

(d) 0 <αc ≤ 2
3

2
3 0.70

6.3 Thermal analysis
The performance of an electromagnetic actuator is often limited by its temperature.
The actuator temperature rises due to losses, i.e., copper loss, iron losses and mechan-
ical losses. To prevent permanent damage, the temperature should be limited to avoid
degradation of the wire insulation or glue. Furthermore, the temperature affects the
performance of the actuator directly by two means:

1. The conductivity of copper depends on temperature.

2. The remanent flux density and coercivity of the PMs depend on temperature.
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Both effects can be linearized for temperatures around room temperature and can be
described by the following equations

σCu(T ) =σCu,20 (1−αCu∆T ) , (6.18)

Brem(T ) = Brem,20 (1−αrem∆T ) , (6.19)

Hcb(T ) = Hcb,20 (1−αcoer∆T ) , (6.20)

where Brem,20, Hcb,20 and σCu,20 are the remanent flux density and the coercivity
of a PM, and the conductivity of copper, respectively, at T = 20◦C. The tem-
perature coefficient of the conductivity of copper is αCu = 3.9%%K-1, while the two
temperature coefficients of N45H type permanent magnets are αrem = 1.7%%K-1 and
αcoer = 2.7%%K-1, illustrated in Appendix C.1.

The maximum actuator housing temperature relative to the ambient one is speci-
fied at ∆T = 40◦C. In the design analysis, the ambient temperature is set to T = 20◦C
resulting in a maximum actuator temperature of T = 60◦C. To comply with this
constraint during the design procedure, a steady state thermal equivalent circuit of
the actuator is created to estimate the temperature.

Thermal equivalent circuit

The temperature distribution in a structure can be estimated by means of a thermal
equivalent circuit representing the geometry. Three types of heat transfer mechanisms
can be distinguished resulting from a temperature gradient in the geometry

qcond = (T1 −T2)
k A

dl
Conduction through a solid or a stationary fluid, (6.21)

qconv = (T1 −T2)hconv A Convection from a surface to a moving fluid, (6.22)

qrad = (T 4
1 −T 4

2 )εσA Radiation between two surfaces, (6.23)

where qcond, qconv and qrad are the rate of heat transfer due to conduction, convection
and radiation, respectively, as a result of a temperature gradient ∆T = T1 −T2 [52]. In
the aforementioned equations, A represents the area of the interface normal to the
direction of heat flow, and l is the length of the material in the direction of heat flow.
The coefficients k, hconv and ε represent the thermal conductivity, the convection
coefficient, and the emissivity, respectively, whileσ is the Stefan-Boltzmann constant,
σ= 5.67×10−8 Wm−1K−4. Thermal conduction results in heat transfer from the coils
inside the actuator to the outer surface whereas convection and radiation cause heat
transfer from the actuator to the ambient.

The thermal radiation is proportional to the temperature difference to the power
four. This radiation can be rewritten to a more canonical expression similar to the
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expression for convection

qrad =∆T hrad A, (6.24)

where hrad is the equivalent radiation heat transfer coefficient

hrad = (T1 +T2)(T 2
1 +T 2

2 )εσ. (6.25)

The resulting value of hrad in the temperature range considered in this thesis yields to

hrad = 5.7ε at 20 ◦C, (6.26)

hrad = 7.0ε at 60 ◦C. (6.27)

The emissivity, ε, varies between 0.1 for light oxidized aluminum and polished steel
up to 0.8 for anodized aluminum and oxidized steel [52].

To create a thermal equivalent circuit, conduction, convection and radiation are
represented by thermal resistances. The values of these thermal resistances can be
calculated by means of the material properties and the dimensions according to

Rcond = l

k A
, (6.28)

Rconv =
1

hconv A
, (6.29)

Rrad = 1

hrad A
, (6.30)

where Rcond,Rconv and Rrad represent conduction, convection and radiation thermal
resistances, respectively. By means of a network consisting of thermal resistances, a
steady state model can be created. Thermal capacitors can be added to estimate the
transient thermal behavior [114].

In Figure 6.6(a), the actuator structure and the location of the heat sources are
illustrated in two dimensions. To create a complete thermal equivalent circuit, the
coils, the stator back-iron, and the interfaces between coils and the stator back-iron
have to be represented by thermal resistances. Two additional thermal resistances
have to be included to represent the convection and radiation from the stator back-
iron to the ambient. The thermal barriers in the actuator, e.g., electrical isolation
between coils and stator back-iron, are small due to the small actuator dimensions.
Therefore, the temperature gradient in the actuator is small and the dominant thermal
resistances are the ones representing the convection and radiation. Furthermore, the
main heat flow is in the radial direction, and the heat flow in the axial direction is
neglected to create a worst case model. Therefore, the thermal equivalent circuit is
simplified to a 1D model, illustrated in Figure 6.6(b). By means of this simple model,
the actuator and coil temperature are estimated based on the values of R1 and R2

and the total losses in the actuator, Ptot, where R2 = 1
(hconv+hrad)A . From simulations
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Figure 6.6: (a) Illustration of heat sources in actuator, (b) thermal equivalent circuit of
actuator used in design analysis.

and measurements it is found that in this type of structures with these dimensions
and a combined convection and radiation coefficient of hconv+hrad ≈ 20Wm-2K-1, the
ratio between R1 and R2 can be considered as [90]

R1 ≤
R2

10
. (6.31)

Consequently, the relative coil temperature is ≤ 10% higher than the relative actuator
periphery temperature.

6.4 Geometric parameter analysis
To obtain the relation between geometric parameters and the actuator performance,
a parametric analysis is conducted. The actuator has the following properties as
described in the previous sections:

• The translator consists of an altered quasi-Halbach array, described in Sec-
tion 5.1 and illustrated in Figure 5.5.

• The translator shaft is hollow to enable the feed-through of air.

• The stator consists of a slotless winding for translation and a slotted winding for
rotation, discussed in Section 5.2.1 and shown in Figure 5.9.

• The slotted stator part for rotation consists of three slots and a concentrated
winding, presented in Section 6.2.2 and shown in Figure 6.2.
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Figure 6.7: Definition of the geometric parameters of one periodic section of the
actuator.

• The stationary part for translation is a full pitch concentrated slotless winding
defined in Section 6.2.2 and illustrated in Figure 6.3(a).

One periodic section of the actuator and the geometric parameters that are varied
during the analysis are illustrated in Figure 6.7. The final goal of the parametric
analysis is to find optimal values for geometric parameters to create an actuator that
meets the specifications given in Section 4.2. The following constraints are considered

Ro ≤ 14.4mm, (6.32)

Rr ≥ 2.0mm, (6.33)

lg = 0.5mm, (6.34)

where lg is the airgap length defined by Rc − Rm which includes the sleeve of the
mover that contains the sensor grid. Although a maximum outer radius of 17.4 mm
is specified, the maximum outer radius of the stator back-iron is set to Ro = 14.4mm
to allow for an actuator housing with a thickness of maximum 3.0 mm.

The actuator performance is thermally limited by convection and radiation from
the actuator to the ambient. This implies that the allowable dissipation inside the
actuator is limited by the outer actuator periphery. The actuator outer radius is
constrained to R = 17.4mm. Consequently, the parametric analysis is focused on
minimization of the total dissipation instead of minimization of the dissipation per
volume. If the final design of the actuator has a smaller radius than R = 17.4mm, the
convection area can easily be enlarged within the specified maximum outer radius. As
a result, the total dissipation is a more important constraint than the dissipation per
actuator volume.
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6.4.1 Relation between mover radius and mover acceleration

To obtain the relation between the mover radius and the actuator performance, the
rudimentary force relations presented in Section 5.2.2 are used. In that section it is
shown that for a fixed copper loss

Fz ∝ Br
p

r , (6.35)

Tz ∝ Br r
p

r . (6.36)

To obtain the angular and linear mover acceleration from these equations, the mo-
ment of inertia, Imover, and the mover mass, mmover, are calculated

Imover ∝ mmover(R2
m +R2

r ), (6.37)

mmover ∝ R2
m −R2

r . (6.38)

In the analysis it is assumed that the outer radius of the actuator is linearly related
to the mover radius. Consequently, the relation between the accelerations az and
αθ and the force Fz and torque Tz versus the mover radius can be estimated. To
simplify the analysis, the magnetic loading, or Br , is assumed to be constant for all
radii which is valid because other geometric parameters can be varied to satisfy this
criteria. Furthermore a linear relation between the inner and outer radius of the
translator is considered. The results, shown in Figure 6.8, reveal that if the mover
diameter is increased, the force capability rises, however, the acceleration degrades
rapidly. Figure 6.8(b) shows that increasing the mover diameter has an even stronger
effect on the angular acceleration, αθ . The requirements, given in Section 4.2, imply
that for fast component placement, a high acceleration in the axial, z-, direction is
required. Hence, a small diameter is desired. Conversely, a high peak force is required
to mount connectors. Furthermore, the position sensor utilizes the mover surface,
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Figure 6.8: (a) Normalized force, Fz , and acceleration az in the axial direction versus
the mover radius, Rm , estimated by means of rudimentary equations. (b) Normalized
torque, Tz , and angular accelerationαθ around the z-axis versus the mover radius, Rm ,
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and a small diameter affects the attainable rotational resolution. Lastly, reduction of
the mover diameter affects the stiffness of the mover heavily which causes inaccuracy
in the position measurement due to deflection of the mover. Therefore, a mover
diameter of Rm = 6.0mm is selected based on preliminary calculations.

To obtain the relation between the other geometric parameters and the 2-DoF
performance, the two 2D models, presented in the previous chapter, are firstly used to
investigate translation and rotation separately. Secondly, the combined performance
is examined by means of the two 2D models and the 3D model.

6.4.2 Translational performance

In this section the effect of the PM and coil dimensions on the axial force and
acceleration is examined. In the previous section it is shown that a small mover radius
is favorable to achieve a high mover acceleration if the magnetic field is considered
to be constant. Subsequently, a mover radius of Rm = 6.0mm is selected. The results
in this section are presented by means of ratios of geometric parameters with respect
to the mover radius. Because the dependency of these results on the mover radius is
limited, they provide insight for a bounded range of Rm , i.e., 5.0mm ≤ Rm ≤ 8.0mm.

In the first analysis, the relation between acceleration and force, and the magnet-
and coil length is investigated. The inner translator radius, Rr , and the outer coil
radius, Ri , are varied while for each calculation the optimal value for the pole pitch,
τz , is searched. The normalized results, calculated per meter axial length, are shown
in Figure 6.9. If Rr is increased, the magnetic field lowers due to the decreased amount
of PM material and hence, the force degrades significantly. Although the mover mass
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Figure 6.9: Normalized force and acceleration versus the mover outer radius to mover
inner radius ratio and the mover outer radius to back-iron inner radius ratio. The
pole pitch, τz , is optimized in each calculation, and the acceleration and force are
normalized. (a) Normalized acceleration, az , (b) normalized force, Fz .



152 6. Actuator synthesis

R
m

/R
i
 [−]

R
m

/τ
z
 [

−
]

0.99

0.97
0.95

0.90.85

0.80.7

0.55 0.65 0.75 0.85
0.25

0.50

0.75

1.00

1.25
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reduces if the inner radius of the mover is increased, the force degrades faster resulting
in a lower acceleration. Note that the mover mass includes an inner aluminium tube
for the vacuum feed-through. It can be seen that a ratio of Rm

Ri
≈ 0.65 provides the

highest force and acceleration for small values of Rr .

In the second analysis, the relation between the acceleration, and the pole pitch and
coil outer radius is investigated. The inner radius of the mover is set to Rr = 2.0mm.
Consequently, the mover mass is constant for each calculation and the acceleration
and force show the same trend. In Figure 6.10 the results of the analysis are shown.
A clear optimum can be found for Rm

τz
≈ 0.55 and Rm

Ri
≈ 0.66. More generally, one can

observe that if τz is reduced, Ri should be to reduced too.

6.4.3 Rotational performance

To analyze the rotational performance, the relation between the angular acceleration,
and the magnet length and stator back-iron inner radius is investigated. Initially,
the coil dimensions are chosen arbitrarily within the specified space to exclude
this parameter variation in the analysis. In Figure 6.11, the normalized angular
acceleration is shown. As expected, the maximum angular acceleration is achieved
if the value of Ri approaches that of Rm because this reduces the airgap and hence,
increases the magnetic field seen by the coil for rotation. Furthermore, increasing
the inner radius of the mover reduces the maximum achievable angular acceleration.
Although the mover moment of inertia reduces by increasing the inner diameter,
the magnetic field reduces more rapidly similar to the effect on the translational
performance.

To obtain the highest rotational performance, the tooth and coil dimensions have
to be optimized. From Figure 6.7 it can be seen that minimizing ht t , wt and increasing
hs result in a larger coil and hence, in a higher torque for constant copper loss in the
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coil. However, optimization of these parameters requires more insight in the magnetic
field distribution to prevent saturation. This is further discussed in the next section.

6.4.4 Stator back-iron sizing

The soft-magnetic stator back-iron in electromagnetic actuators provides a high
permeable flux path for the electromagnetic field. Due to the non-linear nature of
soft-magnetic materials, the magnetic flux density in the back-iron has to be limited to
maintain its high permeance. The analytical modeling technique used in the analysis
does not provide a solution for the magnetic field inside the soft-magnetic material.
Therefore, magnetic circuits are used to estimate the magnetic field distribution in
the stator back-iron based on the results of the 3D analytical model of the previous
chapter. This estimation is used to set the sizes for the stator back-iron to prevent
saturation.

The magnetic field exhibits a three dimensional distribution, hence, the magnetic
circuit to describe the magnetic field accurately within the structure is very complex.
Therefore, three simple circuits are developed based on the magnetic field distribution
in the back-iron calculated by a finite element model. Three main flux paths are
identified represented by the tubes which cross-sections are denoted by the surfaces
shown in Figure 6.12. The maximum flux through these tubes is estimated by means
of the three magnetic circuits and the results of the 3D analytical model. The cross-
section of each tube is adjusted to comply with a given maximum flux density.

Magnetic circuit 1 The first magnetic circuit is used to estimate the maximum flux
flowing through the tooth tip in the axial direction. It is based on the assumption
that all flux that enters or leaves surface S1 or S2 should flow through surface S3, as
illustrated in Figure 6.12(b). Consequently, the assumption is made that no flux flows
through the tooth in the axial direction. The flux that enters S1, is not necessarily equal
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estimate flux density in outer tube.

to the flux that leaves S2, illustrated in Figure 6.13. Therefore, a worst case model is
considered which yields to∫

S3

~B ·d~s = max

(∣∣∣∣∫
S1

~B ·d~s

∣∣∣∣ ,

∣∣∣∣∫
S2

~B ·d~s

∣∣∣∣) . (6.39)

Magnetic circuit 2 To estimate the flux through the teeth of the stator back-iron, a
second magnetic circuit is created, illustrated in Figure 6.12(c). It is based on the
assumption that the flux that enters surface S1 should leave either surface S2 or S4∫

S4

~B ·d~s =
∫

S1

~B ·d~s −
∫

S2

~B ·d~s. (6.40)

The height of surface S4 is equal to τz
2 which provides a good representation of the flux

flow calculated by means of the finite element model.

Magnetic circuit 3 By means of the third magnetic circuit, the magnetic flux density
is estimated in the outer back-iron tube. By means of the surfaces illustrated in



6.4 Geometric parameter analysis 155

z

θ

S1

S2

2π
3

4π
3 2π

τz

2τz

0
0

Figure 6.13: Magnetic field at the inner radius of the stator, r = Ri , calculated by means
of the 3D analytical model. The surfaces S1 and S2 correspond to the surfaces in
Figure 6.12, and are used to estimate the flux through the tooth-tips.

Figure 6.12(d), the following magnetic circuit is created∫
S5

~B ·d~s +
∫

S6

~B ·d~s =
∫

S4

~B ·d~s. (6.41)

The finite element model shows that the maximum flux through S5 or S6 is approxi-
mately 60% of the maximum flux through S4.

To solve the three magnetic circuits, one has to start by calculating the maximum
flux through S1 or S2 by means of the 3D analytical model to find the maximum flux
through S3. Subsequently, the maximum flux through S4 can be calculated and the
maximum flux in S5 or S6 can be obtained from that value. To calculate the total flux
entering surfaces S1 and S2, the results of the 3D model and the 2D models can be
superimposed. That is, the magnetic field distribution due to the PMs is calculated
by means of the 3D model while the 2D models are used to calculate the armature
reaction field. This requires an iterative calculation because the armature reaction
field of the rotational part depends on the back-iron dimensions. A simpler model
can be created by considering the armature reaction field significantly smaller than
the magnetic field due to the PMs which requires solely the magnetic field of the 3D
analytical model to determine appropriate dimensions of the stator back-iron.

Combined rotational and translational performance

The geometric parameter that affects the performance in the translational and ro-
tational direction most contradictorily is the inner stator back-iron radius, Ri . Fig-
ures 6.10 and 6.11 show the effect of this parameter on translation and rotation,
respectively, and different optimum values are found. A model is created that
combines the aforementioned aspects to obtain the influence of this parameter on
the total dissipation in the actuator.

First, the acceleration requirements, presented in Section 4.2, are translated to
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Figure 6.14: (a) Normalized copper losses in rotational and translational part of the

actuator versus Rm
Ri

forαp = 0.5. (b) Normalized total copper loss in the actuator versus
Rm
Ri

and αp where PCu = 1 is the minimum copper loss.

a constant actuator load. That is for translation an acceleration of az = 150ms-2

with a duty-cycle of 34%, and for rotation an acceleration of αθ = 3500rads-2 with
a duty-cycle of 47%. Subsequently, a model is created that calculates the dissipated
copper losses in the two parts of the actuator to meet these requirements. The
calculation is performed for an actuator with arbitrary length, whereas the copper
losses are normalized to the minimum total copper loss. The model includes the
magnetic models, presented in the previous section, to set the required stator back-
iron dimensions. To guarantee that the actuator can be manufactured, the following
minimum sizes for the stator back-iron are set

ht t > 1.0mm, (6.42)

wt > 12deg, (6.43)

ht > 2.0mm. (6.44)

The inner mover radius is fixed to Rr = 2.0mm in the analysis, while the optimal value
of the pole pitch is obtained during each calculation step. The geometric ratio Rm

Ri
and

the magnet ratioαpz are varied. Figure 6.14(a) illustrates the effect of Rm
Ri

on the copper
losses for a fixed value of αp = 0.5. It can be seen that the dissipation in the winding
for translation is significantly higher than the dissipation in the winding for rotation.
Consequently, the optimal Rm

Ri
is mainly defined by minimization of dissipation in the

winding for translation. Figure 6.14 shows the total copper loss normalized to the
minimum dissipation in the actuator as a function of αpz and Rm

Ri
. A clear optimum is

found where the inner circle comprises the area where the total copper loss is within
1% of the minimum copper loss. Note that due to the specified maximum acceleration
levels and duty cycles the optimum is found at this position. If, for example, a higher
angular acceleration is required, the optimum shifts to a smaller αp and a larger Rm

Ri
.
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Table 6.2: Geometrical dimensions of the preliminary design of the 2-DoF actuator.

Parameter Value Description

Rr [mm] 2.0 Inner radius PM array

Rm [mm] 6.0 Outer radius PM array

Rc [mm] 6.5 Inner radius translational winding

Ri [mm] 8.3 Inner radius stator

Ro [mm] 14.2 Outer radius stator back-iron

τz [mm] 8.0 Pole pitch in the axial direction

αpz [-] 0.65 Magnet pitch to pole pitch ratio

ht t [mm] 1.3 Tooth tip height

hs [mm] 2.0 Slot height

ht [mm] 2.5 Back-iron tube thickness

wt [deg] 24.0 Tooth width

kff,z [-] 0.65 Coil filling factor translation

kff,θ [-] 0.5 Coil filling factor rotation

lstat,act [mm] 96.0 Active stator length

lmov,act [mm] 176.0 Active mover length

lmov,tot [mm] 236.0 Total mover length

6.4.5 Actuator design based on parametric analysis

In the preceding sections, the effects of geometric parameters on the actuator perfor-
mance are presented by means of the force, torque and accelerations as a function
of the copper loss. Based on the results of these analyses, a preliminary actuator
design is obtained. The values of the geometric parameters are given in Table 6.2.
For manufacturing reasons, the values of some geometric parameters deviate slightly
from the optimal values. As a result, the design provides approximately 2.5% less force
than the theoretical optimal of the preceding sections.

An active stator length of 96.0 mm is selected to provide sufficient force and torque
to accelerate the mover with az = 150ms-2 and αθ = 3500rads-2, respectively, and to
be able to provide a static force of 40 N. The coil filling factors, kffz ,kffθ, are based on
preliminary design studies [88]. The stator consists of two active sections with the
position sensor in between, illustrated in Figure 6.1. The length of a single section is
48 mm and the distance between the sections is considered to be equal to the encoder
head width of 14 mm. The active mover length, lmov,act, that is the part containing the
PM array, is equal to 160 mm to enable a stroke of 45 mm. The total mover is enlarged
to lmov,tot = 220mm because of the two bearings with a length of 30 mm at the stator
ends, illustrated in Figure 6.1.
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To follow the specified trajectory for translation and rotation depicted in Fig-
ures 4.3 and 4.4, the continuous dissipation in the winding for translation is 5.8 W
and 0.5 W in the winding for rotation. According to the thermal model of Section 6.3,
a combined convection and radiation coefficient of h = 15Wm-2K-1 is required to
maintain the actuator housing temperature relative to the ambient of ∆T = 40◦C, if
the area of the stator housing is considered as convection surface. To obtain a final
actuator design, parasitic effects in the actuator are considered and presented in the
next section.

6.5 Parasitic effects
In the previous section, a preliminary design is presented based on the analyses of
the preceding sections where the effects of geometric parameters on the force and
torque capabilities are analyzed. Besides the treated active actuator force and torque,
parasitic aspects are present which have to be taken into account. In this section two
parasitic effects are discussed, viz, disturbance force and torque due to cogging and
electromagnetic damping. Based on these analyses, the final design of the actuator is
obtained.

6.5.1 Cogging force and torque

Cogging torque and force are caused by permeance variations due to relative move-
ment of two parts of a magnetic circuit with respect to each other. A cogging
torque is present in the actuator due to the slotted stator structure as mentioned in
Section 6.2.2. The opening between adjacent slots causes the permeance variation
resulting in a disturbance torque referred to as cogging torque. Although the stator
does not exhibit slotting in the axial direction, an axial cogging force is present in the
actuator due to the finite stator length.

Cogging torque minimization

The cogging torque is caused due to interaction between the magnetic poles and the
stator slots, consequently, its profile exhibits periodicity. The fundamental spatial
frequency is equal to the least common multiple of the number of poles and slots. The
fundamental spatial frequency of the cogging torque in this actuator is equal to twelve
per rotation due to the selected pole slot combination of four poles and three slots.
One of the key geometric parameters to minimize the cogging torque is the width of
the pole-shoe, wps . The relation between the pole-shoe width and the peak value of
the cogging torque is shown in Figure 6.15(a) for a tooth width of wt = wps

2 calculated
by the 3D model presented in the previous chapter. Three minima are obtained at
wps = 47deg, wps = 80deg and wps = 120deg, where the latter one is clearly caused
due to the absence of an opening between adjacent slots.
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Figure 6.15: (a) Peak value of the cogging torque, Tcog, versus the pole shoe width, wps .
(b) Cogging torque as percentage of the active torque versus Rm /Ri .

A second evident geometric parameter that affects the cogging torque is the airgap
length, i.e., the distance between the mover and the stator back-iron. Increasing
the airgap length reduces the magnetic field at the inner stator back-iron surface
resulting in lower cogging torque. Secondly, due to the larger airgap, the permeance
variation due to the slot-opening is lower. However, the larger airgap affects the active
torque that can be produced as well. Figure 6.15(b) illustrates the cogging torque as a
percentage of the active torque versus the ratio between Rm and Ri for wps = 90deg.

The pole shoe of the tooth is the back-iron of the translational part of the actuator.
Reducing its width affects the force that can be produced as explained in Section 5.4.1.
Therefore, a pole shoe width of wps = 110deg is selected instead of a value where the
cogging torque is at its minimum.

Cogging force due to end effects

In rotary actuators the PMs are generally enclosed by the stator back-iron. Conversely,
in long stroke linear actuators, the PMs are often not fully covered by the stator back-
iron. As a result, the permanent magnet array experiences a local permeance variation
during movement of the PM-array with respect to the stator back-iron which causes
the end-effect cogging force. To reduce this disturbance force, the axial length of the
stator can be adjusted such that the effects at the two stator ends cancel each other. To
reduce the force even further, skewing can be applied to the stator-end [131]. However,
in a 2-DoF actuator, this skewing results in an additional cogging torque component.
Therefore, only the axial length variation is analyzed.

The analytical modeling technique presented in this thesis describes periodic
structures. Therefore, a periodic model is created that approximates the effect of
the finite stator length. It is based on repetition of the complete actuator in the
axial direction where one period of the model describes the complete actuator, see
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Figure 6.16. A high number of harmonics has to be considered in the airgap because
the period of the PM-array is N

2 times smaller than the period of the complete
model. As a result, the implementation method described in this thesis of the 3D
representation of this model is not suitable because it results in numerical instability.
Therefore, the structure is approximated by a 2D axisymmetric model where the PM
array is represented by the rms value of the magnetization along the circumference.
One period of this model is illustrated in Figure 6.16. The model contains five regions
where regions I, II, III and V are periodic and regions IVa and IVb have iron boundaries
at the sides. The period of the model is Nτz while the PM array contains Np poles. The
finite translator length can be considered by selecting Np < N . The parameters lstat,1

and lstat,2 represent the length of the two stator parts, and lenc is the spacing between
the two stator parts for the position sensor. By means of variation of ∆z , the cogging
force as a function of the axial displacement can be calculated.

To determine the back-iron dimensions having minimum end-effect cogging force,
the geometric parameters lstat,1, lstat,2 and lenc are varied, and the rms value of the
force is calculated over the complete stroke of 45 mm. In Figure 6.17(a), the results
are shown for lstat,1 = lstat,2. The minimum value of Fee can be found if lstat ≈ 52mm.
Furthermore, increasing lenc reduces the rms value of the cogging force even further.
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Figure 6.17: (a) The rms value of the end-effect cogging force, Fee, versus the stator
section length lstat,1 = lstat,2 = lstat and the spacing between the stator section lenc.
(a) End-effect force versus displacement ∆z for the preliminary design, lstat = 48.0mm,
and the final design, lstat = 52.1mm.
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However, the mover length has to be increased as well, therefore, lenc = 14mm is
selected for the final design. In Figure 6.17(b), the end effect cogging force profile
is shown for the preliminary design and for the final design. It can be seen that the
amplitude of the end-effect force is reduced by a factor ten.

Flux linkage variation due to end effects

The two dimensional approximation for the rotational part of the actuator is only valid
if each stator section comprises an integer multiple of two times the pole pitch 2τz , as
explained in Section 5.4.3. If the stator length is not equal to an integer multiple of
2τz , the flux linkage of each coil for rotation becomes a function of both the linear and
rotational position. Consequently, two undesired effects arise.

1) Due to the flux linkage variation as a function of translational displacement,
current through a coil for rotation results in a force component in the axial direction.
In Figure 5.22 in Section 5.4.3 it is shown that a single coil of the three phase
winding for rotation experiences a varying magnetic field due to movement in the
axial direction. Consequently, a current through a coil results in a force in the axial
direction. However, the winding for rotation is a three phase one, and the sum of the
currents through the three coils is zero if it is star-connected. Consequently, the force
in the axial direction on the three coils cancels, and the correlation between force and
torque is negligible.

2) The torque constant, i.e., Newton meter per Ampère, becomes a function of the
axial mover position. For this effect, the same conclusion can be drawn as for effect
1. That is, the torque constant variation of a single coil is almost completely canceled
by the other two coils of the three phase windings. Simulations show that the torque
ripple due to the end-effects is approximately 3% for the dimensions obtained in the
previous section.

6.5.2 Electromagnetic damping

The analytical modeling technique presented in part I of this thesis provides the static
magnetic field distribution in 3D cylindrical structures. The dynamic effects are not
taken into account in the analysis of the preceding sections, hence, the validity of the
results depends partly on the assumption that the dynamic effects are negligible. Due
to variation of the magnetic fields in the soft-magnetic parts of the actuator, iron losses
appear resulting in electromagnetic damping. These iron losses, PFe, are generally
subdivided in three components

PFe = Physt +Pexcess +Peddy, (6.45)

where Physt is the loss component due to hysteresis, Pexcess is the excess loss com-
ponent, and Peddy is the eddy current loss component [8]. The value of each loss
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Figure 6.18: Illustration of a magnetic hysteresis curve, showing a major and a minor
loop.

component depends on the material properties and the shape of the soft-magnetic
parts.

Hysteresis exists in all magnetic materials due to the presence of magnetic domains
having a magnetization in a specific direction. If an external field, H , is applied
to the material, these domains tend to align with the applied field. After removing
the external field, not all domains return to their original state. As a result, a
remanent magnetization component, M0, will be present which is illustrated in
Figure 6.18. Applying a reversed external field reduces this component to zero. In
case of the moving magnet actuator discussed in this thesis, the external field applied
to the soft-magnetic stator back-iron varies during displacement of the mover. The
state of the domains in the stator back-iron will depend on history and follows the
major and minor loops illustrated in Figure 6.18. Changing the orientation of the
domains requires an amount of energy which is equal to the area of the loop. Hence,
displacement of the mover results in a power loss proportional to the frequency, f , of
the magnetic field variation

Physt ∝ f . (6.46)

The excess loss component, Pexcess, occurs due to the alignment of the aforemen-
tioned magnetic domains. If a domain aligns with the external applied field, the
probability that a neighboring domains aligns as well is affected. The hysteresis
loss component does not consider this effect. This additional loss component is
empirically determined to be proportional to

Pexcess ∝ f 3/2. (6.47)

The third iron loss component is the eddy current loss which appears in electrically
conducting materials due to time varying magnetic fields. These fields induce an
electric field inside the material resulting in an electric current. Consequently, the
eddy current loss is proportional to

Peddy ∝ f 2. (6.48)
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According to Lenz’s law, the current flows in a direction such that the magnetic field
produced by this current, opposes the magnetic field that has caused the current [53].
In electromagnetic actuators, the eddy currents are generally reduced by laminating
the back-iron. The lamination direction is selected such that the effect on the
magnetic flux path is negligible while the electric current path is interrupted due to
the isolated lamination sheets. However, the flux paths for rotation and translation
are orthogonal and lamination for rotation affects the flux path for translation and
vice versa. Therefore, lamination cannot be used.

The frequency in (6.46), (6.47) and (6.48) is proportional to the speed of the mover in
the rotational or translational direction. Consequently, the electromagnetic damping
force, Fd , and torque, Td , are defined as

Fd = dhyst,z +dexcess,z
p

vz +deddy,z vz , (6.49)

Td = dhyst,θ+dexcess,θ
p
ωθ+deddy,θωθ , (6.50)

where d represents the damping coefficient caused by a specific loss component. The
eddy current component in the damping force and torque is considered to be the
dominant term, since lamination of the stator back-iron is not possible. Therefore,
3D finite element models are created to estimate the damping if solid steel is used for
the stator back-iron.

Eddy currents due to translation

The eddy current damping is obtained from a no-load simulation by calculating the
damping at a constant speed. As a result, the reduction of armature reaction field is
not taken into account in the analysis. The selected back-iron material is steel S235
with an electrical resistivity of ρ = 1.4×10-7Ωm.

The magnetic flux path in a tubular permanent magnet actuator is oriented in
the radial and axial direction. Consequently, the eddy currents flow mainly in the
circumferential direction through the stator back-iron. In the 2-DoF actuator, the
main flux paths for translation are the pole shoes and the eddy current path in the
circumferential direction is split into three due to the slot openings. Therefore, eddy
currents for translation are inherently reduced due to the slotted stator.

To estimate the eddy currents, a transient finite element model is created where
the mover has an imposed speed of vz = 1.5ms-1. The obtained damping constant is
linearly approximated by deddy,z = 0.88Nsm-1. By means of a dynamic simulation with
the motion profile specified in Figure 4.3 the effect on the performance is calculated.
The additional copper loss due to the damping is only 0.5% because the period of
constant speed is small, and the damping reduces the amount of active force required
during deceleration. Furthermore, the eddy currents result in an additional heat
source of 0.5 W, which is approximately 6% of the copper loss.



164 6. Actuator synthesis

Eddy currents due to rotation

The magnetic flux path in a classical rotational actuator is oriented in the radial and
circumferential direction. Consequently, the eddy currents flow in the axial direction
and the circumferential direction to close the electric path. However, the magnetic
field in the actuator presented in this thesis does not have a uniform distribution along
the axial direction. As a result, the eddy current loops are smaller resulting in lower
losses. To estimate the eddy currents, the same transient 3D finite element model
is used with an imposed rotational speed of ωθ = 125rads-1. The damping constant
for rotation is linearly approximated by deddy,θ = 3.4×10-5 Nmsrad-1 which has a
significantly higher impact on the performance than the damping for the translational
direction. The performance reduction results in 10% increased copper losses and an
additional heat source of 0.16 W, which is approximately 20% of the copper loss.

An alternative to reduce the eddy currents is to use a soft magnetic composite as
stator back-iron material. The electric resistivity of this material can be up to four
orders of magnitude higher than regular steel. However, machining of soft magnetic
composites is difficult and expensive which makes it less suitable for application in
this actuator.

6.6 Final actuator design
This section concludes the various analyses presented in this chapter. Based on the
results, a final design of a 2-DoF actuator is obtained. The differences between the
final design and the preliminary design are the length of the stator back-iron and
mover, and the pole shoe width, which are selected based on the analysis of the
cogging force and torque. The adapted values of the geometric parameters listed in
Table 6.2 are given in Table 6.3.

Table 6.3: Geometrical dimensions of the final design of the 2-DoF actuator in addition
to the parameters given in Table 6.2.

Parameter Value Description

wps [deg] 110.0 Pole shoe width

lstat,act,z [mm] 96.0 Active stator length translation

lstat,act,θ [mm] 84.2 Active stator length rotation

lstat [mm] 52.1 Stator section length

lenc [mm] 14.0 Spacing between stator sections for encoder

lmov,act [mm] 189.2 Active mover length

lmov,tot [mm] 253.2 Total mover length

mmov [kg] 0.176 Mover mass

Imov [kgm2] 3.9×10−6 Mover moment of inertia
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Figure 6.19: Final actuator configuration consisting of two air bearings, two stator back-
iron sections and a position sensor in between.

In Section 6.5.1, the length of the stator sections and the spacing between the two
sections are determined. However, the end-windings for rotation are not considered
in that analysis, consequently, the actuator length has to be adjusted. The spacing
between the stator sections is set to lenc = 14.0mm, which is equal to the width of the
encoder, consequently, the end-windings have to be embedded in the stator back-
iron as illustrated in Figure 6.19. The resulting active stator length for rotation is
reduced to two times 42.1 mm instead of two times 52.1 mm since the length of the
end-winding is considered to be 10 mm. The active mover length is lmov,act = 189.2mm
which is equal to 23τz +αpzτz as can be seen in Figure 6.19. The total mover length is
lmov,tot = 253.2mm to enable the stroke of 45 mm.

The analytical models used in the analysis assume linear material properties.
However, the soft-magnetic materials used in electromagnetic devices have a non-
linear B H-curve which cause model discrepancies as presented in Section 2.8.2 and
Section 3.3.2. To evaluate the effect of the non-linear material properties on the
actuator performance, a periodic non-linear 3D finite element model is created. First,
the actuator performance degradation is calculated if non-linear iron is used with a
saturation magnetization of 1.6 T, and the peak current is supplied to the winding for
rotation and translation. Compared to the analytical model, the torque is reduced
by 3 %, while the effect on the axial force in negligible. The stronger effect on the
rotational performance is caused by the slotted winding for rotation. As a result,
a larger part of the magnetic path is soft-magnetic compared to the magnetic path
of the flux for translation. If the soft-magnetic part of the actuator is replaced by
a material with a constant permeability of µr = 500, the rotational and translational
performance are decreased by 8.5 % and 0.5 %, respectively. The selected material
for the stator back-iron has a saturation magnetization of 1.6 T, hence, the analytical
models provide a good approximation of the force and torque.

The total dissipation to follow the specified trajectory including the eddy current
loss is equal to Pz = 8.3W and Pθ = 0.8W for a coil and magnet temperature of 65 ◦C.
To maintain an actuator housing temperature relative to the ambient of ∆T = 40◦C, a
convection and radiation coefficient of h = 21Wm-2K-1 is required.
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6.7 Summary and conclusions
Synthesis of various phenomena of the selected actuator topology has been con-
ducted to obtain a design that meets the requirements. To fulfil this objective, firstly
the actuator configuration is presented including auxiliaries, i.e., position sensor and
bearings. Successively, an electromagnetic analysis has been performed to select
suitable winding configurations for rotation and translation. To compare various
slotless windings for translation, the winding factor is extended with the link factor
to take into account the flux leakage through the winding. The effectiveness is
subsequently quantified by means of the force versus copper loss. To estimate the
maximum electrical loading, a thermal analysis has been performed and a simple
thermal equivalent circuit is presented to approximate the winding and housing
temperature.

The selected winding configuration and the thermal model are combined with
the electromagnetic model presented in the previous chapter. An analysis has
been performed to obtain the relation between the geometrical parameters and
the mover acceleration while minimizing the copper losses. The stator dimensions
have been determined using the 3D analytical model presented in the previous
chapter. Based on the results, a preliminary design is presented which can meet
the specifications described in Section 4.2. The copper losses during the required
trajectory are 8.3 W and 0.8 W for translation and rotation, respectively. Parasitic
effects have been analyzed to complete the synthesis, i.e., cogging force/torque and
electromagnetic damping. By means of a 2D and a 3D analytical model the end-
effect and rotational slot cogging force are analyzed and stator back-iron dimensions
are selected to minimize this disturbance force resulting in 0.5 N end-effect force,
and 0.1 mNm cogging torque. The effect of the tooth shape of the stator back-iron
on the cogging torque is presented and final dimensions are selected. Lastly, the
performance degradation due to electromagnetic damping is analyzed by means of
transient 3D finite element analyses. The resulting iron losses are 0.5 W and 0.16 W for
translation and rotation, respectively. Although damping effects are present if solid
steel is used for the stator back-iron, this type of material is selected to enhance the
manufacturability and maintain the better magnetic properties.
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Realization and experimental verification

Abstract - The final design of the 2-DoF actuator, given in Chapter 6, is realized
for experimental verification. The realization of the stator and mover assembly are
presented and manufacturing issues are mentioned. The prototype is tested in a lab
environment and measurement results are discussed.
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7.1 2-DoF actuator realization
Part I of this thesis presented a modeling framework to model electromagnetic fields
in three dimensional cylindrical structures. In part II, the modeling technique is
applied to analyze electromagnetic fields in 2-DoF rotary-linear actuators. Chapter 4
discusses prior art rotary-linear actuators and presents the requirements of a 2-DoF
actuator applied in a pick and place machine. In Chapter 5, a novel magnetization
array is presented and 3D and 2D electromagnetic models of this new actuator
topology are proposed. Subsequently, these models are used in Chapter 6 to obtain a
design of the proposed actuator. To validate the models and to show the feasibility of
the actuator design, a prototype has been realized and measurements are conducted
as presented in this chapter.

In the first section of this chapter, the complete actuator construction is presented
and the mover and stator assembly are discussed. Realization issues are considered
and pictures of the realized prototype are shown. Section 7.2.1 presents the no-
load validation of the realized actuator by means of measurement results of the
emf. A system identification is presented in Section 7.2.2. Validation of the electro-
magnetic damping and cogging force and torque are presented in Section 7.2.3 and
Section 7.2.4, respectively. Furthermore, the actuator performance is validated by
means of the specified 2-DoF trajectory in Section 7.3.1. The last section presents
the results of thermal measurements.

(a)

(b)

(c)

(d)

Figure 7.1: Exploded view of prototype of the 2-DoF actuator. (a) Aluminum housing
consisting of central part to accommodate stator sections and encoder head, and two
bearing housings at the sides.(b) Two stator sections with encoder heads in the middle
and two air-bearings at each end. (c) Aluminum mover sleeve with sensor grid. (d) PM
mover consisting of 12 pole pairs and two aluminum plugs at the ends.
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Figure 7.2: Picture of the realized actuator.

7.1.1 Actuator construction

Figure 7.1 shows an exploded view of the different parts of the complete actuator
prototype. Figure 7.1(a) shows the aluminum actuator housing consisting of three
parts. The central part accommodates the stator sections and two encoder heads,
where the stator sections are aligned by means of setscrews. Two aluminum parts at
the ends of the housing are used to mount the air-bearings. Figure 7.1(b) illustrates the
two air-bearings, the two stator sections and the encoder heads. One end-winding of
the winding for rotation is embedded at one side of each stator section which will be
further discussed in Section 7.1.3. Figure 7.1(c) and Figure 7.1(d) show the aluminum
sleeve with the sensor grid in the middle and the PM-array. The mover is discussed in
more detail in Section 7.1.2. In Figure 7.2, a picture of the complete realized actuator
is shown.

7.1.2 Mover assembly

The PM mover of the 2-DoF actuator consists of the altered quasi-Halbach magneti-
zation pattern discussed in Section 5.1. The array consists of three different PMs as
shown in Figure 7.3. Two half rings with opposing magnetization are glued together
to create a ring magnet which is illustrated in Figure 7.3(a). The shape of the half rings
is such that the realized ring has a square opening in the center with sides of 3.0 mm.
The opening is used to fix the orientation of the rings during assembly of the complete
mover, see Figure 7.3(b). Together with the axially magnetized rings, the complete PM
array is constructed as illustrated in Figure 7.3(c). A picture of one third of the realized
PM array is shown in Figure 7.4(a).
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(a) (b) (c)

Figure 7.3: Illustration of the permanent magnet array assembly. (a) Ring magnet
consisting of two half rings with opposing magnetization direction with square opening
in the center for assembling. (b) Stack of four ring magnets along a bar to ensure correct
orientation of the rings. (c) Assembled and glued pole pair.

After assembly of the PM array, the complete stack is glued in an aluminum tube
with two aluminum plugs at the ends illustrated in Figure 7.1(d). Subsequently, the
aluminum tube is machined to a diameter of 12.7 mm, resulting in a sleeve thickness
of 0.35 mm. The sensor grid is put on the middle of the tube by means of a lathe over
the complete circumference, as shown in Figure 7.4(b).

From measurements on the realized mover was found that the bending stiffness is
approximately 2.5 times lower than the required stiffness. As a results, the deflection
of the mover will be larger than expected due to unbalanced magnetic pull caused

(a) (b)

160 µm / div

Figure 7.4: (a) Picture of one third of realized permanent magnet array. (b) Microscopic
picture of the sensor grid on the mover.
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(a) (b)

coil translation

tooth tip

coil rotation

end winding coil rotation

Figure 7.5: Stator section consisting of stator-back-iron and windings for rotation and
translation. (a) Illustration to clarify the assembly of the stator section. (b) Picture of
realized stator section.

by eccentricity. To avoid contact between the mover and the stationary part, the
inner radius of the coil for translation, Rc is increased to Rc = 6.60mm to enlarge the
mechanical airgap from lg = 0.15mm to lg = 0.25mm. Consequently, the filling factor
of the coil for translation is reduced to kff,z = 0.55 and the dissipation in the winding
for translation is increased by 40%.

7.1.3 Stator assembly

The stator back-iron consists of two sections to be able to place the two encoder
heads in between. The encoder head is a Renishaw RGH34 which provides an
analogue sine-cosine quadrature signal based on reflection of light from the sensor
grid on the mover. The two encoder heads are mounted orthogonally at two mover
sides to measure rotation and translation separately. Each stator section contains
two windings, a slotless winding for translation enclosed by a slotted winding for
translation (discussed in Section 5.2.1). To reduce the axial length of the stator back
iron, one of the two end-windings of the coils for rotation is embedded in the back-
iron as illustrated in Figure 7.5(a). The tooth tip has the same length as the stator
back-iron because it is the back-iron for the winding for translation.

The cylindrical coils of one phase of the winding for translation are wound as a
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single strand. Hence, the coils are already wound in series and no interconnections
have to be made afterwards. The slot-openings in the back-iron are used to place the
coil interconnections and the winding leads as illustrated in Figure 7.5(a). The stator
back-iron consists of three separate teeth and a tube to simplify the assembly of a
stator section. The coils for rotation can be placed around each tooth which can be
slid into the tube subsequently. To join the parts into one solid structure, the stator
section is potted in a mold with epoxy resin. A picture of a potted stator section is
shown in Figure 7.5(b).

7.2 2-DoF actuator identification

7.2.1 Electromotive force

To validate the realized actuator, first, the electromotive force (emf) is measured by
moving the mover by means of an external force. The actuator consists of two stator
sections each containing a three phase winding for rotation and a three phase winding
for translation. The two stator sections are aligned to be able to connect the two stator
sections in series. The voltage is measured at the phase terminals of the two stator
sections separately to verify the alignment.

Translational electromotive force

The emf of the winding for translation is measured while moving the mover with
approximately vz = 0.25ms-1 in the axial direction. The measured terminal voltage
is successively divided by the instantaneous velocity to obtain the emf constant.
In Figure 7.6, the emf of one phase of the two stator sections is shown versus

0 2 4 6 8 10 12 14 16
−6

−4

−2

0

2

4

6

em
f 

[V
sm

−
1
]

∆
z
 [mm]

 

 

Stator 1

Stator 2

Figure 7.6: Electromotive force induced in one phase of the two sections of the winding
for translation.
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Figure 7.7: Measured and modeled three phase electromotive force of the winding
for translation versus displacement, ∆z . The winding in the two stator sections are
connected in series.

displacement, ∆z . The amplitude of the two waveforms is in agreement, however,
the two waveforms have a phase difference of approximately 0.9 mm, or 20 deg
electrically. As a result, the first harmonic of the total emf is reduced by 1.6% and
the third harmonic is reduced by 14% to 2.9% of the first harmonic.

Figure 7.7 shows the emf of the three phases if the two windings in the stator
sections are connected in series. The measurements are in good agreement with the
results from the analytical model, although the emf is slightly reduced due to the
misalignment of the stator sections. Note that the model does not reflect the final
design, but the realized design with Ri = 6.60mm.

Rotational electromotive force

The emf of the winding for rotation is measured by means of the same approach. The
mover is rotated with an angular velocity of approximately ωθ = 30rads-1. The emf,
normalized toωθ = 1rads-1, of one phase measured in the two stator sections is shown
in Figure 7.8. The rotational misalignment of the two stator sections is less than 2 deg
mechanically, as can be seen from the waveform. Furthermore, the amplitude of the
waveform deviates slightly along one rotation. This is caused by eccentricity of the
PM-array inside the mover or due to misalignment of the PMs with respect to each
other.

Figure 7.9 shows the three phase emf for the rotational winding after connecting
the two stator sections in series. The measured phase emf is approximately 6% higher
than the emf obtained from the analytical model due to the non-modeled overhang of
the stator underneath the end windings illustrated in Figure 7.5(a). This results in an
increased area to focus the flux through the coil. In the analytical model, the length of
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Figure 7.8: Electromotive force induced in one phase of the two sections of the winding
for rotation.

the coil opening is considered to be the effective length of the coil, resulting in a lower
flux linkage and emf.
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Figure 7.9: Measured and modeled three phase electromotive force of the winding
for rotation versus displacement, ∆θ . The windings in the two stator sections are
connected in series.
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Figure 7.10: Controller structure.

7.2.2 System identification and controller design

In Chapter 5 and Chapter 6 the decoupling of the two degrees of freedom of the
actuator is discussed. By selecting the magnetization pattern and the two orthogonal
winding sets, the actuator is considered to be physically decoupled. To verify this
assumption, the actuator is analyzed by means of a full multi-input multi-output
(MIMO) identification. The identification is performed under closed loop using the
controller structure illustrated in Figure 7.10. Based on the models, two single-input
single output (SISO) 15 Hz PD controllers are created and used for translation and
rotation, Cfb,z and Cfb,θ, while the feed-forward controllers, Cff,z and Cff,θ, are set to
zero. A sinusoidal position reference with a frequency of 0.2 Hz is used to measure an
average transfer function over the complete stroke of rotation and translation. Two
separate experiments have been carried out. In the first experiment noise is injected
in the top loop, just before the input iz , and in the second experiment noise is injected
in the lower loop, just before the input iθ. During the experiment, the error signals, ez

and eθ, the input signals, iz and iθ, and the injected noise are measured. As such, the
input sensitivity

Si = (I+CG)−1, (7.1)

can be measured column-wise, where I is the identity matrix, G is the MIMO plant,
and C is the MIMO controller which in this case consists of the two SISO controllers
Cfb,z and Cfb,θ. The process sensitivity

PS = (I+GC)−1G (7.2)

= G(I+CG)−1 (7.3)

= GSi , (7.4)

can be measured column-wise as well. Successively, the full MIMO frequency re-
sponse can be constructed by combining the measurements of the two experiments,
where the MIMO plant, G, can be extracted using

G = PS S−1
i . (7.5)
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Figure 7.11: Bode magnitude plot obtained by MIMO identification.

The resulting measured plant is given in Figure 7.11. It can be seen that the diagonal
terms show a line with a slope of -40 dB/decade without resonances up to 1500 Hz,
which is as expected since the actuator consist of a single moving mass/moment
of inertia. The noise below -120 dB and -76 dB for z and θ, respectively, is caused
by quantization noise due to the finite position sensor resolution. The off-diagonal
terms are significantly smaller, which indicates that the plant is well-decoupled. To
analyze the decoupling in more detail, a relative gain array (RGA) is constructed which
provides a measure of interaction for MIMO systems independent of input and output
scaling [118].

From the RGA, shown in Figure 7.12, it can be seen that the diagonal terms are close
to unity for frequencies up to 1 kHz, while the off-diagonal terms are close to zero. This
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Figure 7.12: Relative gain array obtained by MIMO identification.



7.2 2-DoF actuator identification 177

10
1

10
2

10
3

−120

−60

0

60

A
m

p
li

tu
d
e 

[d
B

]

10
1

10
2

10
3

−180

−90

0

90

180

Frequency [Hz]

A
n
g
le

 [
d
eg

]

Figure 7.13: Bode plot of Gzz (gray) and open-loop response with 200 Hz lead-lag
controller (black).

indicates that the plant can be considered fully decoupled, hence two SISO controllers
can be used to control the two degrees of freedom.

Two SISO lead-lag controllers with a low pass filter and a bandwidth of fBW,z = 200Hz
and fBW,θ = 180Hz for translation and rotation, respectively, are designed by means of

loop shaping. That is, a zero at fBW
3 , a pole at 3 fBW, and a first order low-pass filter at

5 fBW. The bandwidth is selected based on the results of the next section to be able to
follow the trajectory within the specified positioning errors. The open-loop response
is shown by the black line in Figure 7.13 and Figure 7.14.
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Figure 7.14: Bode plot of Gθθ (gray) and open-loop response with 180 Hz lead-lag
controller (black).
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The two feedback controllers are implemented by means of the control structure
shown in Figure 7.10 and used to quantify the parasitic non-linear effects, i.e., cogging
torque and force, and electromagnetic damping. The obtained information, comple-
mented with gravity and the acceleration, is subsequently used to create the feed-
forward controllers Cff,z and Cff,θ . The complete control structure is implemented to
validate the actuator performance by means of the trajectory specified in Section 4.2.
The results of this validation are presented in Section 7.3.1.

7.2.3 Electromagnetic damping

To estimate the actuator damping in the θ- and z-direction, the mover is displaced
with a constant velocity and the output of the feedback controllers is considered to
be the current required to maintain constant speed. To eliminate position dependent
distortion, the end-effect force is compensated by the feed forward controller, and
the controller output is averaged over one revolution and two times the pole pitch for
rotation and translation, respectively. The results of these measurements at different
speeds are shown in Figure 7.15.

The mechanical friction component in this measurement is considered to be
negligible due to the selection of porous air bearings. A function is fitted through the
measured values, based on the iron loss components described by (6.49) and (6.50) in
Section 6.5.2. The fitted function is shown in Figure 7.15 and the obtained values are
listed in Table 7.1.

From the table it can be seen that the measured eddy current damping in the
translational direction, deddy,z , is approximately 30% higher than the modeled one.
Conversely, the measured eddy current damping for rotation is 35% lower than the
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Figure 7.15: (a) Measured damping force versus velocity, vz . (b) Measured damping
torque versus angular velocity, ωθ . The solid line shows a fit through the measured
data.
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Table 7.1: Comparison of modeled and measured electromagnetic damping.

Damping coefficient Modeled Measured

dhyst,z [N] - 0.52

dexcess,z [N
p

sm−1] - 0.53

deddy,z [Nsm−1] 0.88 1.15

dhyst,θ [Nm] - 9.7×10-4

dexcess,θ [Nm
p

srad−1] - 1.2×10-4

deddy,θ [Nmsrad−1] 3.4×10-5 2.2×10-5

modeled one. This significant deviation can be caused by the anisotropic conductivity
of the back-iron material which is not considered in the finite element analysis.
The additional damping in the translational direction does not affect the actuator
performance significantly as discussed in Section 6.5.2.

In Section 6.5.2, the three iron loss components are discussed and the eddy current
damping is assumed to be the dominant term. The hysteresis and excess loss compo-
nent are not quantified and considered negligible. However, the measurements show
that the hysteresis component is clearly present in the electromagnetic damping.
Measurements on a sample of the back-iron material are conducted to confirm the
presence of a significant hysteresis component in the electromagnetic damping. The
results are given in Figure C.2 in Appendix C.2. The measured value of Hc of the major
loop is approximately 600 Am−1. This value is two to ten times higher than often
used magnetic materials as low carbon mild steels and silicon steels (IEC 60404-1).
The electromagnetic damping is measured over a stroke of two times the pole pitch
and a full rotation, hence, the state of the material moves along the same hysteresis
loop each time (see Figure 6.18). Consequently, the damping force for this movement
can be accurately predicted and compensated by means of a feed-forward controller.
However, for small displacements, the value of dhyst,z and dhyst,θ given in Table 7.1 are
not valid. Further research is required to investigate the effect of hysteresis while using
force control, mentioned as one of the requirements in Section 4.2.

7.2.4 Cogging torque and force

The cogging torque and force are measured by moving the mover slowly over the
complete stroke in the θ- and z-direction, respectively. The output of the feedback
controller is used as a measure for the cogging torque/force. A low speed is selected to
minimize distortion due to dynamic effects. First the cogging torque is investigated.
However, due to the low level of cogging, only 0.1 mNm according to the models, it
could not be identified from the measurements.
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Figure 7.16: Measured and modeled end-effect force versus axial displacement.

The end-effect cogging force is measured while making a reciprocating movement
along the axial direction with a velocity of vz = 5mms-1. The force obtained from
the filtered control signal is shown in Figure 7.16 by the dashed line. The solid line
and the markers show the results from the 2D analytical and the 2D finite element
model, respectively. The 2D finite element model is an axisymmetric representation
of the actuator including the space between the pole-shoe overhang and the stator
back-iron. It can be seen that the finite element model and the analytical model are
in good agreement. However, the measured end-effect force is at various positions
two times higher than the modeled force. This model mismatch is highly likely
caused by manufacturing and assembly tolerances and hysteresis as discussed in
the previous section. From in Figure 6.17 can be seen that variation of the axial
stator length heavily affects the end-effect force. Due to hysteresis, the stator exhibits
locally a remanent magnetization whereas in the model used to predict the end-
effects, the soft-magnetic material is modeled with an infinite permeability without
any remanence. This remanence can cause additional attraction and repulsion forces
at the stator ends. Both the hysteresis and the effects of manufacturing tolerances are
very difficult to model either analytically or numerically in 3D. Therefore, extensive
additional research is required to quantify these effects.

7.3 2-DoF actuator performance validation

7.3.1 Trajectory validation

During the design procedure of the actuator, the pick and place trajectories presented
in Section 4.2 are considered as the main requirement for the actuator. That is, the
actuator should be able to follow the trajectory within certain thermal limits. To
validate this, two series of measurements are conducted. In this section, the feasibility
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Figure 7.17: Rotational and translational position reference for pick and place
trajectory.

to follow the trajectory is considered and the dissipated power is calculated. The next
section focuses on the thermal aspects.

The third order trajectories for translation and rotation, illustrated in Fig-
ures 4.3, 4.4 and 7.17, are used as setpoints for the mover. Figure 7.18 shows the
position error during one cycle of the trajectory. The position errors at the pick and
place time are ez = 4µm and eθ = 0.32mrad for translation and rotation, respectively.
Hence, the requirement for the static position error are met.
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Figure 7.18: Position error in translational and rotational direction, ez and eθ ,
respectively, during trajectory specified in Figure 7.17.
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Figure 7.19: Instantaneous phase currents, iph,z , copper loss, pCu,z and iron loss, pFe,z
for translational displacement during the trajectory specified in Figure 7.17.
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Figure 7.20: Instantaneous phase currents, iph,θ , copper loss, pCu,θ and iron loss, pFe,θ
for rotational displacement during the trajectory specified in Figure 7.17.
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To obtain the total copper loss in the two windings, the aforementioned trajectory
is repeated several times and the dissipation is calculated from the phase current
setpoints. The instantaneous phase current and copper loss during one pick and place
cycle are illustrated in Figures 7.19 and 7.20 for translation and rotation, respectively.
The acceleration and deceleration phase of the trajectory are clearly visible in the
copper loss. Furthermore, by means of the measured electromagnetic damping
constants, listed in Table 7.1, the iron loss in the actuator is estimated. The average
copper loss during one pick and place cycle in the two windings is PCu,θ = 0.52W and
PCu,z = 9.45W at 23 ◦C. The additional average heat generated in the actuator due to
the iron losses is PFe,θ = 0.19W and PFe,z = 1.15W at 23 ◦C for rotation and translation,
respectively.

7.3.2 Thermal validation

The main constraint considered in the design of the actuator is the maximum tem-
perature inside and at the surface of the actuator. Therefore, the thermal model as
presented in the previous chapter is validated in this section. The goal of the validation
is to:

1. Verify that the difference between the coil temperature and the housing temper-
ature is less than 10% of the housing temperature relative to the ambient.

2. Verify that the thermal limits are not violated if the actuator dissipates 9.1 W,
which reflects the dissipation in the final design of the actuator during the
trajectory specified in Section 4.2.

The thermal measurement is conducted in a lab environment with an ambient
temperature of approximately 23 ◦C. The actuator is mounted on a PVC base with
negligible thermal conductivity compared to the convection of the actuator to the
ambient. Consequently, the base does not act as a heat sink. A constant power is
applied to the winding for translation and rotation to maintain a constant dissipation.
The temperature is measured by means of one PT100 temperature sensor inside the
stator assembly, two PT100 temperature sensors at the housing of the actuator, and
by measuring the resistance of the two windings. From the winding resistance the
temperature of the coils is reconstructed. The data from the PT100 and the coil
resistances is averaged to represent the coil temperature. The mean value of the two
temperature sensors at the housing is considered to be the housing temperature.

Two measurements are performed, one with a constant dissipation of 4.5 W, and a
second one with a constant dissipation of 9.1 W. Figure 7.21 shows the resulting rela-
tive temperature of the actuator versus time. If 4.5 W is dissipated inside the actuator,
the coil temperature relative to the ambient rises to approximately ∆T = 10.8◦C and
the housing temperature to ∆T = 10.0◦C. For a dissipation of 9.1 W, the temperature
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Figure 7.21: Measured coil and housing temperature relative to the ambient versus time
for a constant dissipation in the coils of P = 4.5W and P = 9.1W.

of the coil and the housing rises to ∆T = 20◦C and ∆T = 18.7◦C, respectively. Conse-
quently, the difference between the coil and the housing temperature is approximately
8%.

In conclusion, the designed actuator (with a constant dissipation of 9.1 W) does not
violate the thermal limit of ∆T = 40◦C. This is mainly caused by the larger convection
area of the housing and an additional heat-flow due to the air-bearings. Furthermore,
the temperature difference between the coils and the housing does not exceed 10% of
the relative housing temperature, which is assumed in the design analysis.

The total dissipation in the built prototype is 10.0 W due to copper loss and 1.3 W
because of iron losses at 23 ◦C, see Figures 7.19 and 7.20. Consequently, the relative
coil temperature will increase to approximately ∆T = 30◦C with a dissipation of
approximately 13.5 W.

The thermal behavior of the actuator is only verified statically up to ∆T = 20◦C.
A full dynamic thermal verification is not conducted to prevent the mover from
irreversible damage. The stiffness reduction might be caused during the gluing
process and can be further affected by higher temperatures during operation.
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7.4 Summary and conclusions
In this chapter, the realization and measurements of the 2-DoF actuator prototype
have been presented. The stator and mover construction and the assembly of the
various parts have been discussed. A summary of the comparison of the final
design and the realized prototype is given in Table 7.2. To validate the no-load
properties of the actuator, the emf is measured for rotation and translation. The
modeled and measured emf for translation differ approximately 1% in amplitude.
For rotation, the measured value is approximately 7% higher than the modeled
value due to the non-modeled overhang of the stator teeth underneath the end
windings. A MIMO identification is performed to obtain the frequency response
of the total system. That includes the data-acquisition and control system, the
power amplifiers, the actuator and the position sensors. The results of the system
identification show that rotation and translation are physically decoupled. Two
lead-lag controllers have been designed with a bandwidth of 200 Hz and 180 Hz
for translation and rotation, respectively. The damping at 1 ms-1 and 1000 rpm are
2.2 N and 4.5 mNm in the translational and rotational direction, respectively. In the
translational direction the eddy current damping is approximately 30% higher while
in the rotational direction this component is 35% lower than modeled, i.e., 1.15 Nms-1

and 2.2 × 10−2 mNmsrad-1, respectively. Furthermore, hysteresis and excess loss
components have been identified. These damping components can be predicted
accurately, however, for small displacements the compensation of this damping is

Table 7.2: Comparison of the actuator design and the realized prototype.

Parameter Design Proto Description

kff,z [-] 0.65 0.55 Coil filling factor z

kff,θ [-] 0.5 0.67 Coil filling factor θ

Nz [-] 38 30 Number of turns per coil z

Nθ [-] 126 125 Number of turns per coil θ

Lz [µH] 260 160 Inductance total winding z

Lθ [mH] 8.6 9.1 Inductance total winding θ

Rz [Ω] 4.6? 4.5? Resistance total winding z

Rθ [Ω] 7.7? 6.8? Resistance total winding θ

k f ,z [NA-1] 15.4? 12.2? Force constant

k f ,θ [mNmA-1] 31.8? 34.1? Torque constant

deddy,z [Nsm-1] 0.88 1.15 Damping constant z

deddy,θ [Nmsrad-1] 3.4×10-5 2.2×10-5 Damping constant θ

PCu,z [W] 6.5? 9.45? Copper loss during trajectory z

PCu,θ [W] 0.6? 0.52? Copper loss during trajectory θ
?Modeled/measured at 23 ◦C
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not correct and further research is required to obtain a more accurate model. The
end-effect cogging force is found to be up to two times higher than modeled, i.e.
0.5 N and 1.0 N respectively. This model mismatch is highly likely the result of
manufacturing and assembly tolerances and hysteresis, which are very difficult to
model either analytically or numerically in 3D. The cogging torque due to slotting has
not been identified due to its low level, i.e., 0.1mNm in the analytical model. The
electromagnetic damping in two directions has been measured at different velocities.

To validate the actuator performance, the trajectory given by the requirements is
implemented. The non-linear effects are compensated by means of a feed-forward
controller and the two feedback controllers are used to comply with the required
maximum static position error. The dissipated power during the trajectory has been
calculated and is 1.3 W and 12.2 W due to iron losses and copper losses, respectively.
Static thermal measurements have been conducted to validate the thermal model
used in the design procedure. Two aspects are verified; the relative housing temper-
ature does not exceed the 45 ◦C, and the difference between the coil and the housing
temperature is within 10% of the relative housing temperature. Furthermore, due
to the increased convection area of the aluminum housing and additional cooling
caused by the airflow of the air-bearings, the actuator temperature is 30% lower than
modeled.

The actuator complies with the requirements, that is, a mover acceleration in
the axial direction of az = 150ms−2 over a stroke of 30 mm for a duty-cycle of 34%
has been shown and the static positioning error in this direction is 4µm, where a
maximum error of 5µm is specified. A mover acceleration in the rotational direction
of αθ = 3500rads−2 for a duty-cycle of 47% has been shown and the static positioning
error is less than 0.35 mrad. Furthermore, the combined rotation-translation motion
profile results in a continuous dissipation of 13.5 W, resulting in a temperature rise of
the actuator of approximately ∆T = 30◦C.
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8

Conclusions and Recommendations

Abstract - In this chapter the main conclusions from the thesis are summarized.
Furthermore, recommendations for future research are given.
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8.1 Conclusions

8.1.1 Part I: Modeling

Accurate and fast electromagnetic field prediction is required to analyze new electro-
magnetic devices. Various modeling methods have been discussed, e.g., the harmonic
modeling technique, which is an accurate and fast method to describe these fields
in devices containing linearized soft-magnetic materials. This technique is widely
implemented to describe magnetic fields in two dimensional coordinate systems.
However, very few implementations of this modeling technique for 3D models have
been found in literature, which are all limited to regular shaped geometries. This
thesis has presented the derivation of a general applicable 3D analytical harmonic
model to determine the 3D electromagnetic field distribution in cylindrical devices.
Furthermore, this technique has been extended to include both regular and irregular
cylindrical shapes.

The employed harmonic modeling technique is based on 2D Fourier series to
describe sources and magnetic fields. It is limited to current-free cylindrical problems
exhibiting periodicity or a soft-magnetic boundary in the axial direction, and it
assumes linear material properties. However, either circumferential slots, axial slots or
rectangular cavities have been accounted for. The computational requirements of this
model depend on the complexity of the geometry, or more specifically, the number of
regions. As a result, the model-accuracy and -stability degrades for more complex
devices. The model is especially suitable for parametric searches since, contrary to
a finite element model, no re-meshing is required after a geometric parameter is
updated, which reduces the computation time significantly.

The assignment and method to solve the various boundary conditions have been
discussed in a generic manner to enable model application to a large class of cylin-
drical devices. The magnetic field solutions have been provided, and the model
implementation has been presented in matrix form. An example has illustrated the
accuracy of the magnetic field distribution compared with finite element models
employing either linear or non-linear soft-magnetic material properties. Compared to
the model with the non-linear material properties, the harmonic model still provides a
good approximation of the magnetic flux density, even when the structure is saturated
at various positions.

To predict the electromagnetic force components in cylindrical structures based
on the harmonic field model, the Maxwell stress tensor is evaluated to calculate
the cogging and attraction forces. Four force components (Fz ,Fθ ,Fx ,Fy ) have been
obtained without numerical integration of the magnetic fields. The main advantages
of these analytical force equations are their simple form and the independency
of the spatial discretization of the magnetic field in the θ- and z-direction. The
presented semi-analytical model is approximately six times faster than a (linear and
periodic) finite element model containing 176000 tetrahedral volume elements, and
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an excellent agreement is found for all force components. Further, although the
analytical model assumes linear material properties of the soft-magnetic parts of the
structure, it provides a good estimation of the force components compared to the
results of a finite element model with non-linear material properties.

8.1.2 Part II: Application

To evaluate this generic 3D modeling technique, part II of this thesis has focused on
the analysis and realization of a novel two degrees of freedom rotary-linear actuator
for an industrial robotic application. This single body direct-drive actuator should
replace the cascaded single-DoF actuators for a demanding pick-and-place (P&P)
application. In the linear direction a static force of 40 N, and a mover acceleration
of 150 ms-2 with a duty cycle of 34% are required. For rotational movement the
mover acceleration should be 3500 rads-2 with a duty cycle of 47%. Furthermore,
the required position sensor resolution is 1µm and 0.158 mrad for translation and
rotation, respectively.

A classification of the different topologies has been defined and examples of each
topology are provided. Electromagnetic actuators based on three different types of
electromagnetic energy conversion are presented, i.e., reluctance-, induction- and
permanent magnet actuators. Taking into consideration the demanding require-
ments, an integrated permanent magnet actuator has been deemed essential for this
demanding P&P application.

A new patented magnetization concept has been presented that allows for two
simple orthogonal windings to create torque and force. To achieve the specific high
force and low torque, various possible realizations of the magnetization pattern have
been proposed starting from the linear tubular PM actuator. The altered quasi-
Halbach magnetization topology is selected based on the force/torque density, the
ratio between the force and torque that can be adjusted by means of a geometric
parameter, and the manufacturability. In this configuration, a normally parasitic field
effect is exploited to produce torque without introducing a complex manufacturing
process.

The single slotted actuator is selected, which has a slotless winding for translation
enclosed by a slotted winding for rotation. The developed 3D analytical modeling
technique has been used to describe the three dimensional field of this altered quasi-
Halbach magnetization. Further, two 2D models, i.e. rotational and translational,
have been created to approximate the torque and force. The 2D model for the
rotational movement provides a very accurate approximation if the axial length of
the actuator is an integer multiple of the period of the PM array. The accuracy of the
translational model depends on the slot configuration of the rotational part, where in
the modeled structure this introduces an error of approximately 1%.
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An electromagnetic analysis has been performed to select the most suitable wind-
ing configuration for both rotation and translation. The definition of the winding
factor has been extended with the link factor to account for the flux leakage in
slotless stator configurations. The winding effectiveness is subsequently quantified
by means of the force versus copper loss. A magnetostatic and thermal analysis
have been performed to obtain the relation between geometrical parameters and
mover acceleration while minimizing the copper loss. An actuator design has been
obtained from the results of these analyses. The copper losses of the actuator during
the required trajectory are 8.3 W and 0.8 W for translation and rotation, respectively.
Successively, parasitic effects have been analyzed, i.e., cogging force/torque and
electromagnetic damping. By means of two analytical models, the end-effect force
and rotational slot cogging torque have been analyzed to select appropriate stator
back-iron dimensions. Further, by means of transient 3D finite element analyses the
performance degradation due to electromagnetic damping is estimated, i.e., 0.5 W
and 0.16 W additional dissipation during the specified motion profile for translation
and rotation, respectively.

The realization and measurements of the novel integrated 2-DoF actuator proto-
type and the assembly of the various parts have been discussed. The modeled and
measured emf for translation differ approximately 1% in amplitude. For rotation,
the measured value is approximately 7% higher than the modeled value due to the
non-modeled overhang of the stator teeth underneath the end windings. A MIMO
identification is performed to obtain the frequency response of the total positioning
system. That includes the data-acquisition system, the power amplifiers, the actuator
and the position sensors. The results of the system identification show that rotation
and translation are physically decoupled. Two (SISO) lead-lag controllers have
been designed with a bandwidth of 200 Hz and 180 Hz for translation and rotation,
respectively.

The electromagnetic damping in two directions has been measured at different
velocities, the linearized results are: 2.2 N at 1 ms-1 and 4.5 mNm at 1000 rpm, respec-
tively. In the translational direction the eddy current damping is approximately 30%
higher while in the rotational direction this component is 35% lower than modeled.
Furthermore, hysteresis and excess loss components have been identified, being
significantly larger than expected. These damping components can be predicted
accurately, however, for small displacements the compensation of this damping is
not correct, and further research is required to obtain a more accurate model. The
translational end-effect cogging force is found to be up to two times higher than
modeled, i.e., 1.0 N instead of 0.5 N. This deviation is caused by manufacturing
tolerances and the magnetic hysteresis in the stator back-iron. The rotational cogging
torque due to slotting has not been identified due to its low level, i.e., approximately
0.1mNm.

To validate the actuator performance, the specified P&P trajectory has been im-
plemented. The dissipated power during the trajectory has been measured and is
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1.3 W and 12.2 W due to iron losses and copper loss, respectively. Static thermal
measurements have been conducted to validate the thermal model used in the design
procedure. Two aspects are verified; the relative housing temperature should not
exceed the 45 ◦C, and the difference between the coil and the housing temperature is
within 10% of the relative housing temperature. Furthermore, due to the increased
convection area of the aluminum housing and additional cooling caused by the
airflow of the air-bearings, the actuator temperature is 30% lower than modeled.

From the measurements is found that the actuator complies with the positioning
requirements, that is:

• a mover acceleration in the axial direction of az = 150ms−2 over a stroke of
30 mm for a duty-cycle of 34%,

• a 4µm static translational positioning error,

• a mover acceleration in the rotational direction of αθ = 3500rads−2 for a duty-
cycle of 47%,

• a 0.35 mrad static rotational positioning error.

Furthermore, the combined rotation-translation motion profile results in a continu-
ous dissipation of 13.5 W, causing a temperature rise of the actuator of approximately
∆T = 30◦C.

Overall, it can be concluded that the generic 3D modeling technique provides
a viable model to analyze and dimension the patented integrated 2-DoF actuator.
Further, the presented fast and position-accurate integrated actuator will enable
future P&P machines to achieve a significant increase in throughput and component
handling capabilities.
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8.2 Recommendations

8.2.1 Harmonic modeling

• The 3D harmonic modeling technique utilizes the magnetic scalar potential to
solve the Maxwell equations. Employment of this scalar potential limits the
application of the method to current free problems. Using the vector potential
or the reduced scalar potential, the range of electromagnetic devices that can be
modeled is significantly extended.

• Chapter 2 discusses the modeling of three types of irregular soft-magnetic
structures, i.e., rectangular cavities, slots in the axial direction or slots in the
circumferential direction. Most structures however, posses a combination of the
slots in two directions. For example, the 2-DoF actuator presented in this thesis
has slots in the axial direction to accommodate the winding, whereas the finite
length of the stator can be considered as a slot in the circumferential direction.
An evident extension of the method would be to model the combination of these
slots. A similar problem in the Cartesian coordinate system is presented in [117].

• The modeling method described in this thesis can model soft-magnetic parts of
a structure by considering an infinite permeability, or by assuming a linear finite
permeability. However, adjacent regions in the tangential direction need to have
the same permeability. As a result, the teeth in a slotted structure are modeled
with infinite permeability due to the adjacent air regions. The ability to include
the finite permeability of this region would be a significant improvement, since
the field distribution in the teeth can be used to estimate and model saturation.

• The magnetostatic harmonic model assumes that all regions are current free
and non-conducting. Modeling the electrical conduction of the material would
improve the model to be able to estimate dynamic effects due to eddy currents.

8.2.2 Two degrees of freedom actuator

• The 2-DoF actuator topology is specifically selected for the P&P application
and the synthesis of Chapter 6 has led to an actuator design that meets the
corresponding specifications. To apply the actuator in more applications, an
investigation of the scalability of the actuator is a useful addition of the research.

• The built actuator complies with the requirements, however, a comparison with
current placement head in the P&P machine is required to evaluate the profit by
means of machine output and costs.

• In the P&P application, passive gravity overcompensation is a desirable feature
to prevent damage during a power failure. The actuator illustrated in Fig-
ure 4.8(a) and presented in [91] by Meessen et al. exhibits this characteristic.
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Further research is necessary to investigate possibilities to integrate the passive
gravity overcompensation in the actuator presented in this thesis.

• Air-bearings are applied in the actuator to support the mover and allow for the
two degrees of freedom. As mentioned in the thesis, a drawback of this type of
bearing is the air consumption and the requirements on the mover tolerances.
Integration of a magnetic bearing in the actuator can be a suitable alternative.
A preliminary investigation of such a magnetic bearing is presented in [140].

• In the P&P application a high rotational position resolution is required. In this
research, an optical encoder is selected with a grid located on the mover. As a
result, the mover has become a fragile and expensive part being sensitive to con-
tamination and damage. Other measuring techniques or sensor grid locations
can be further investigated to avoid the aforementioned mover properties.

• The selected stator back-iron material results in eddy current damping and
significant hysteresis effects. The application of other materials has to be
investigated to reduce these effects to increase the actuator efficiency and force
response.

• The stiffness of the realized mover is lower than the modeled one resulting in
deflection. As a result, the airgap clearance between the mover and the stator
is increased to avoid contact between the two parts. Although the actuator is
still able to comply with the requirements, additional research is required to
understand the effect and investigate it at higher temperatures.

• Due to deflection of the mover, the accuracy of the position sensor in the rota-
tional direction is affected. Additional measurements are required to investigate
this effect.

• The specified force resolution has not been verified. Additional measurements
are necessary to validate this requirement. Furthermore, a control structure has
to be created to be able to detect the impact with the printed circuit board and
verify the sensorless force control.

• The electromagnetic hysteresis results in an additional velocity independent
damping as measured in Chapter 7. However, for small displacement, the
damping characteristic is different. Further research is required to obtain a
correct model of this phenomenon and investigate the effect on the sensorless
force control.

• Static thermal experiments are conducted to validate the thermal behavior of
the actuator. In these experiments, the total dissipation is estimated from
measurements during movement according to the required motion profile. A
full dynamic thermal experiment would provide a more accurate means of the
total dissipation, since, for example, the effect of temperature on the iron losses
is not taken into account in the conducted experiments.
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Appendix A

Vector calculus

This appendix provides the vector identities and calculus in the cylindrical coordinate
system used in the analysis of Chapter 1 and Chapter 2.
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∇× (∇×~A) =∇(∇·~A)−∇2~A, (A.7)
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Modeling functions

B.1 Correlation functions
To solve boundary conditions between two regions with a magnetic field description
based on different Fourier series, correlation functions are introduced in Section 2.7.
The solutions of these functions are provided in this appendix.
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{

1 if region p has periodic boundaries in the tangential direction,
2 if region p has soft-magnetic boundaries in the tangential direction.
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B.2 Source functions
The non-homogeneous solution for the differential equation containing the magneti-
zation is defined by
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Within these functions, F , is an integral without an analytical solution defined as
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where r0 is the inner radius of the region.
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B.3 Implementation
To implement the equations obtained by applying the boundary conditions, the set of
equations is rewritten in matrix form which results in a single linear matrix equation
to be solved, given by

EX = Y, (B.51)

where E contains all known coefficients within the equation, X contains all unknown
coefficients in the equation and Y contains the functions describing sources within
the equations.

All equations contain infinite summations of Fourier series, hence, the problem
consists of an infinite set of equations and an infinite number of unknown coefficients.
To be able to implement the problem and solve the equations numerically, the
infinite summation is replaced by a summation over N , K , J or L, dependent on the
considered harmonic number n, k, j or l . Furthermore, the equations are rewritten
such that each equation consists solely of summations for harmonic numbers starting
at one, i.e.,

H x
r (r,θ, z) =

∞∑
k=1

∞∑
n=1

Rx
1 (r,k,n) sin(wnθ)sin(mk z)+Rx

2 (r,k,n) sin(wnθ)cos(mk z)

+
∞∑

k=1

∞∑
n=0

Rx
3 (r,k,n) cos(wnθ)sin(mk z)+Rx

4 (r,k,n) cos(wnθ)cos(mk z)

−
∞∑

n=1
Rx

5 (r,n) sin(wnθ)−Rx
6 (r,n) cos(wnθ), (B.52)

is for the implementation rewritten to

H x
r (r,θ, z) =

K∑
k=1

N∑
n=1

Rx
1 (r,k,n) sin(wnθ)sin(mk z)+Rx

2 (r,k,n) sin(wnθ)cos(mk z)

+
K∑

k=1

N∑
n=1

Rx
3 (r,k,n) cos(wnθ)sin(mk z)+Rx

4 (r,k,n) cos(wnθ)cos(mk z)

+
K∑

k=1
Rx

3 (r,k,0) sin(mk z)+Rx
4 (r,k,0) cos(mk z)

−
N∑

n=1
Rx

5 (r,n) sin(wnθ)−Rx
6 (r,n) cos(wnθ). (B.53)

The same holds for the other components of the magnetic field strength and the
magnetization. Consequently, all coefficients of the magnetic field within one region,
consist of {N ×K }, {N ×L}, {J ×K }, {J ×L}, N , J ,K or L unknowns. To write the imple-
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mentation in a compact manner, the following definition for the harmonics is used

n = 0,1,2,3 . . . N harmonics in θ-direction in region p (B.54)

j = 1,2,3 . . . J harmonics in θ-direction in region q (B.55)

k = 0,1,2,3 . . .K harmonics in z-direction in region p (B.56)

l = 1,2,3 . . .L harmonics in z-direction in region q (B.57)

The solution of the magnetic scalar potential for the r -dependency, e.g. Rx (r,k,n),
consists of three parts

Rx (r,k,n) =


c6 for n = 0, k = 0
c5r wn + c6r−wn for n > 0, k = 0
c5Iwn (mk r )+ c6Kwn (mk r ) for n ≥ 0, k > 0,

(B.58)

where c5 and c6 are the unknown coefficients and r wn ,r−wn ,Iwn (mk r ) andKwn (mk r )
represent numerical values dependent on the radius. The unknown coefficients are
included in X in (B.51) and are written as a vector. Consider a region with unknown
coefficients cx (k,n), consequently, the resulting vector is defined by

cx =


[cx (1,1), · · · ,cx (1, N x ), , · · · ,cx (K x ,1), · · · ,cx (K x , N x )] , for k ≥ 1,n ≥ 1,

[cx (0,1), · · · ,cx (0, N x )] , for k = 0,n ≥ 1,

[cx (1,0), · · · ,cx (K x ,0)] , for k ≥ 1,n = 0.

(B.59)

The vector X is the transposed vector of a concatenation of all unknown coefficients
in all regions

X =[
cx

1,cx
2 · · ·

]T . (B.60)

The known coefficients, C(k,n)(r ) representing the numerical values dependent on the
radius are included in E in (B.51) and are written in a diagonal matrix
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C =



C(1,1)· · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · ·C(1, N )· · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · ·C(K ,1)· · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · ·C(K , N )


, for k ≥ 1,n ≥ 1, (B.61)

C =


C(0,1)· · · 0

...
. . .

...
0 · · ·C(0, N )

 , for k = 0,n ≥ 1, (B.62)

C =


C(1,0)· · · 0

...
. . .

...
0 · · ·C(K ,0)

 , for k ≥ 1,n = 0, (B.63)
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Correlation functions for ν is θ

Consider the following equation

cp (k,n) =
L∑

l=1

J∑
j=1

ςc (θ, j ,n)ςs (z, l ,k)cq (l , j ) for k ≥ 0,n ≥ 0. (B.64)

As mentioned before, the equations are implemented as summations over harmonics
starting at one. Therefore, equation (B.64) has to be split in three equations

cp (k,n) =
L∑

l=1

J∑
j=1

ςc (θ, j ,n)ςs (z, l ,k)cq (l , j ) for k ≥ 1,n ≥ 1, (B.65)

cp (0,n) =
L∑

l=1

J∑
j=1

ςc (θ, j ,n)ςs (z, l ,0)cq (l , j ) for k = 0,n ≥ 1, (B.66)

cp (k,0) =
L∑

l=1

J∑
j=1

ςc (θ, j ,0)ςs (z, l ,k)cq (l , j ) for k ≥ 1,n = 0, (B.67)

To write this equation as a matrix multiplication, ςc (θ, j ,n) is written as a matrix ςςςc,θ

defined by

ςςςc,θ =




ςc (1,1), · · · ,ςc (J ,1)

ςc (1,2), · · · ,ςc (J ,2)

...
ςc (1, N ), · · · ,ςc (J , N )

· · · 0

...
. . .

...

0 · · ·


ςc (1,1), · · · ,ςc (J ,1)

ςc (1,2), · · · ,ςc (J ,2)

...
ςc (1, N ), · · · ,ςc (J , N )





. (B.68)

The matrix ςςςc,θ has dimensions {K N × K J } to implement (B.65) hence the matrix
contains K times the matrix at the top left-hand-side on the diagonal. In equation
(B.65), k = 0 which can be interpreted as K = 1, therefore the matrix ςςςc,θ should have
size {N × J } and contains solely the top left-hand-side matrix as given in (B.68). To
implement (B.67), (B.68) can be used, except that n = 0, and consequently N = 1.
Hence, the resulting matrix has dimensions {K × K J }. The matrices ςςςs,θ, κκκc,θ and
κκκs,θ have to be created in the same manner.

Consider the following equation

cq (l , j ) =
K∑

k=0

N∑
n=0

εs (z,k, l )εc (θ,n, j )cp (k,n) for k ≥ 1, l ≥ 1, (B.69)
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which has to be rewritten according to the implementation of solely summations
starting at one

cq (l , j ) =
K∑

k=1

N∑
n=1

εs (z,k, l )εa
c (θ,n, j )cp (k,n)+

K∑
k=1

εs (z,k, l )εb
c (θ,0, j )cp (k,0)

+
N∑

n=1
εs (z,0, l )εc

c (θ,n, j )cp (0,n). (B.70)

To write this equation as a matrix multiplication, εc (θ, j ,n) is written as a matrix εεεc,θ

defined by

εεεc,θ =




εc (1,1), · · · ,εc (N ,1)

εc (1,2), · · · ,εc (N ,2)

...
εc (1, J ), · · · ,εc (N , J )

· · · 0

...
. . .

...

0 · · ·


εc (1,1), · · · ,εc (N ,1)

εc (1,2), · · · ,εc (N ,2)

...
εc (1, J ), · · · ,εc (N , J )





. (B.71)

The matrix εεεc,θ has dimensions {K J × K N } to implement εa
c (θ, j ,n) in (B.70). To

implement εb
c (θ, j ,n), n = 0 and hence N = 1 which results in a matrix εεεc,θ having

size {K J ×K }. The last term in (B.70) contains only a summation over n, hence k = 0
and K = 1. Therefore, to implement εc

c (θ, j ,n), the dimensions of εεεc,θ has to be {J ×N }
The matrix εεεs,θ has to be created in the same manner.
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Correlation functions for ν is z

Consider the equation as given in (B.65)-(B.67). To write this equation as a matrix
multiplication, ςs (z, l ,k) is written as a matrix ςςςs,z defined as

ςςςs,z =


[
ςs (1,1)IJJ

] [
ςs (2,1)IJJ

] · · · [ςs (L,1)IJJ
][

ςs (1,2)IJJ
] [
ςs (2,2)IJJ

] · · · [ςs (L,2)IJJ
]

...
...

. . .
...[

ςs (1,K )IJJ
][
ςs (2,K )IJJ

]· · ·[ςs (L,K )IJJ
]

 . (B.72)

The resulting matrix ςςςs,z has dimension {K J × LJ } to implement (B.65). For the
implementation of (B.66), ςςςs,z has dimension {J × LJ }. Equation (B.67) has to be
implemented with ςςςs,z having dimensions {K × L}. The matrices ςςςc,z , κκκc,z and κκκs,z

have to be created in the same manner.

Consider the equation (B.69). To solve this equation, εs (z,k, l ) has to be written as
a matrix εεεs,z , using the same transformation except that the indices are switched.

εεεs,z =


[
εs (1,1)IJJ

][
εs (2,1)IJJ

] · · ·[εs (K ,1)IJJ
][

εs (1,2)IJJ
][
εs (2,2)IJJ

] · · ·[εs (K ,2)IJJ
]

...
...

. . .
...[

εs (1,L)IJJ
][
εs (2,L)IJJ

]· · ·[εs (K ,L)IJJ
]

 . (B.73)

The matrix εεεs,z has dimensions {LJ ×K J } to implement εa
c (θ, j ,n) and εb

c (θ, j ,n). To
implement εc

c (θ, j ,n), εεεs,z has dimensions {LJ × J }.

Note that when τ
p
θ
= τ

q
θ

, (B.64) does not contain a correlation function for θ. To
simplify the analysis, the same harmonics in region p and region q can be selected in
the θ-direction, i.e. j = n. Consequently, the identity matrix IJJ in (B.72) and (B.73) is
replaced by INN with dimensions N ×N .
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Material properties

C.1 Permanent magnet

−1500 −1000 −500 0
−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

H [kA/m]

B
 [

T
]

 

 

T = 25°C

T = 35°C

T = 55°C

T = 75°C

T = 95°C

Figure C.1: Measured demagnetization curve of permanent magnet material N45H at
different temperatures (measured using Brockhaus Hystograph).

Table C.1: Permanent magnet N45H material properties.

Parameter Value Description

Brem @ T = 20◦C [T] 1.34 Remanent flux density

µr @ T = 20◦C [-] 1.05 Relative permeability

αrem [%%K−1] 1.7 Temperature dependency of Brem

αcoer [%%K−1] 2.7 Temperature dependency of Hcb
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C.2 Soft-magnetic back-iron
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Figure C.2: BH hysteresis curves of steel S235, measured on a ring sample by means of
DC-excitation (measured using Brockhaus Hystograph).

Table C.2: Properties of the steel S235 sample.

Parameter Value Description

Ri [mm] 20.0 Ring inner radius

Ri [mm] 22.5 Ring outer radius

h [mm] 5.0 Ring height

ρ [kgm−3] 7736 Mass density of steel S235



Appendix D

Experimental setup auxiliaries

To conduct measurements on the realized prototype, additional equipment is being
used presented in this appendix.

D.1 Position sensor
The diameter of mover at the position of the grid is 12.681 mm, and it contains 996
lines per revolution. As such, the pitch of the grid is 12.681·π

996 = 39.998µm. The analogue
quadrature signal is interpolated by a factor 40 resulting in a sensor resolution of 1µm
and 0.158 mrad for translation and rotation, respectively.

D.2 Power amplifier
Each phase of the actuator is excited by means of a single axis PWM driven converter
with a filtered output. Two power amplifiers each containing three individual axes are
used. The specifications of the power amplifier are listed in Table D.1.

D.3 Data acquisition and control system
An xPC target data acquisition and control system is used for the measurements and
control of the prototype. The power amplifiers are connected by means of a serial
RS485 5.5 Mbits-1 connection. The analogue encoder signals are interpolated with a
Renishaw interface and digitally processed by the xPC system.
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Table D.1: Power amplifier specification (PADC 3ax).

Parameter Value Description

Îrms [A] 2.0 Maximum continuous current

Îpeak [A] 6.0 Maximum peak current

Û [V] 52.0 Maximum output voltage

fBW,z [kHz] 10.6 Bandwidth of amplifier for translation

fBW,θ [kHz] 4.8 Bandwidth of amplifier for rotation
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Symbols

Symbol Unit Description Chapter
~A [Wb/m] Magnetic vector potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A [m2] Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,6
a [?] Fourier coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,3
az [ms−2] Acceleration in z-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,6,7
~B [T] Magnetic flux density vector . . . . . . . . . . . . . . . . . . . . . . . . 1-3,5,6
Brem [T] Remanent flux density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3,5
b [?] Fourier coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,3
C [m] Closed contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cfb [?] Feed-back controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Cff [?] Feed-forward controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
c [?] Fourier coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,3
~D [Cm−2] Electric flux density vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
d [?] Damping constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,7
~E [Vm−1] Electric field strength vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
~e [−] Unit vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
e [?] Position error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,7
~F [N] Force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3-7
f [Nm−3] Force density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3
f [−] Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
f [Hz] Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
G [−] Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
G [?] Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
G [?] Non-homogeneous solution of the Laplace equation . . . 2,3
~H [Am−1] Magnetic field strength vector. . . . . . . . . . . . . . . . . . . . . . . . .1-3,5
Hcb [Am−1] Coercivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
h [m] Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,5,6
hconv [Wm−2K−1] Convection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
hrad [Wm−2K−1] Equivalent radiation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
I [kgm2] Moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,6
I [−] Identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Symbol Unit Description Chapter
i [−] Index or vector component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1,2
i [A] Instantaneous current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,6,7
Io [−] Modified Bessel function of the first kind of order o . . . . 2,3
J [−] Number of harmonics of a Fourier series. . . . . . . . . . . . . . . .2,5
~J [Am−2] Current density vector (volume) . . . . . . . . . . . . . . . . . . . . . . . . . . 1
~J f [Am−2] Free current density vector (volume) . . . . . . . . . . . . . . . . . . . . . . 1
~Jm [Am−2] Magnetization current density vector (volume) . . . . . . . . . . . 1
j [−] Index or vector component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
j [−] Harmonic number of a Fourier series . . . . . . . . . . . . . . . . . . . . . 2
jz [ms−3] Jerk in z-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
~j [Am−1] Current density vector (surface) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
~j f [Am−1] Free current density vector (surface) . . . . . . . . . . . . . . . . . . . . . . 1
~jm [Am−1] Magnetization current density vector (surface) . . . . . . . . . . . 1
K [−] Number of harmonics of a Fourier series. . . . . . . . . . . . . . . .2,5
k [−] Harmonic number of a Fourier series . . . . . . . . . . . . . . . . . 2,3,5
k [Wm−1K−1] Thermal conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
kff [−] Coil filling factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,7
kd [−] Distribution factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
k f [?] Force/torque constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
kl [−] Flux link factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
ks [−] Skewing factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
kw [−] Winding factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
kp [−] Pitch factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ko [−] Modified Bessel function of the second kind of order o . 2,3
L [−] Number of harmonics of a Fourier series . . . . . . . . . . . . . . . . . 2
L [H] Self inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
l [m] Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,5-7
l [−] Harmonic number of a Fourier series . . . . . . . . . . . . . . . . . . . . . 2
M [−] Remanent magnetization component . . . . . . . . . . . . . . . . . . 2,5
~M [Am−1] Magnetization vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
~M0 [Am−1] Remanent magnetization vector . . . . . . . . . . . . . . . . . . . . . . . . 1,2
m [m−1] Spatial frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,3,5
m [kg] Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,6
N [−] Number of harmonics of a Fourier series. . . . . . . . . . . . . . . .2,5
N [−] Number of turns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Ncpp [−] Number of coil conductors per pole. . . . . . . . . . . . . . . . . . . . . . .6
~n [−] Unit vector normal to a surface. . . . . . . . . . . . . . . . . . . . . . . . . .1,3
n [−] Harmonic number of a Fourier series . . . . . . . . . . . . . . . 2,3,5,6
O [−] Origin of coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
PCu [W] Copper loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
~P [Cm−2] Polarization vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
p [−] Region index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
p [W] Instantaneous power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Symbol Unit Description Chapter
q [C] Electric charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
q [−] Region index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
q [−] Ratio between coil pitch and pole pitch . . . . . . . . . . . . . . . . . . . 6
q [W] Rate of heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
R [m] Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,5-7
R [Ω] Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
r [m] Radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3,5,6
r [m] Polar or cylindrical coordinate. . . . . . . . . . . . . . . . . . . . . . .2,3,5,6
R [?] Homogeneous solution of the Laplace equation . . . . . . 2,3,5
R [KW−1] Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
S [m2] Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,2,3
S [?] Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
s [?] Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
T [?] Fundamental period of a Fourier series . . . . . . . . . . . . . . . . . . . 2
T [?] Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,6,7
Tz [Nm] Torque around z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,4,5,7
t [s] Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,4
T [T2] Maxwell stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3
u [?] General coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6
V [m3] Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
v [?] General coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6
~v [ms−1] Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,4,7
w [rad−1] Spatial frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,3,5
w [m] Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6
w [?] General coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
~x [m] Position vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
x [m] Cartesian coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
x [−] Region index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
y [m] Cartesian coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
z [m] Cartesian or cylindrical coordinate . . . . . . . . . . . . . . . . . . . . . 2-7

α [−] Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,5,6
α [K−1] Temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
αθ [rads−2] Angular acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,6,7
γ [−] Number of regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
γθ [rads−3] Angular jerk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
∆ [?] Relative displacement or offset . . . . . . . . . . . . . . . . . . . . . . 2,3,5-7
δi j [−] Kronecker delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,2
ε [−] Correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ε [−] Emissivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
θ [rad] Polar or cylindrical coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
κ [−] Correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
λ [?] Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,3
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Symbol Unit Description Chapter
λ [Wb] Flux linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
µ [Hm−1] Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
µr [−] Relative permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,2,5
ν [?] Tangential coordinate, z or θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ρ [Cm−3] Free electrical charge density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
ρ [Ωm] Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ρm [Cm−3] Magnetic volume charge density . . . . . . . . . . . . . . . . . . . . . . . . . . 1
σm [Cm−2] Magnetic surface charge density . . . . . . . . . . . . . . . . . . . . . . . . . . 1
σ [Sm−1] Electrical conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
ς [−] Correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
τ [?] Pitch or tangential width. . . . . . . . . . . . . . . . . . . . . . . . . . . . .2,3,5,6
ϕ [A] Magnetic scalar potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1,2
χm [−] Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
ωθ [rads−1] Angular velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,7

Acronyms

Acronym Description
2D Two dimensional
3D Three dimensional
ANA Analytical
BEM Boundary element method
DoF Degrees of freedom
emf Electromotive force
FEM Finite element method
FDM Finite difference method
MEC Magnetic equivalent circuit
MIMO Multi input multi output
PCB Printed circuit board
P&P Pick and place
TPMA Tubular permanent magnet actuator
rms Root mean square
SISO Single input single output
SMD Surface mounted device

Physical constants

Symbol Value Unit Description
ε0 8.85×10−12 [AsV−1m−1] Permittivity of vacuum
µ0 4π×10−7 [Hm−1] Permeability of vacuum
σ 5.67×10−8 [Wm−1K−4] Stefan-Boltzmann constant

?Unit depends on context
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Samenvatting

Electromagnetic Fields and Interactions in 3D Cylindrical Structures:
Modeling and Application

De toenemende vraag naar efficiënte en compacte actuatiesystemen resulteert in
een zoektocht naar nieuwe elektromagnetische actuatorconfiguraties. Nauwkeurige
modellering van de elektromagnetische velden in deze actuatoren is in veel gevallen
een vereiste om tot een ontwerp te komen dat aan de vaak uitdagende eisen voldoet.
Bestaande analytische modelleringstechnieken zijn vaak toegespitst op het berekenen
van deze velden in conventionele roterende en lineair bewegende motoren, gerepre-
senteerd in 2D coördinatensystemen. Dit proefschrift beschrijft een uitbreiding van
een analytische harmonische modelleringstechniek om de 3D elektromagnetische
veldverdeling snel en nauwkeurig te kunnen voorspellen in cilindrische actuatoren.

De harmonische modelleringstechniek is gebaseerd op Fourierreeksen om de
magnetische velden te beschrijven. De in dit proefschrift beschreven uitbreiding van
deze techniek biedt de mogelijkheid om de veldverdeling ten gevolge van permanente
magneten in zowel uniforme als getande cilindrische structuren te beschrijven. Deze
cilinders dienen in de lengterichting periodiciteit ofwel een ijzeren afsluiting te
hebben. Verder kan vertanding in de lengterichting of de omwentelingsrichting mee
worden genomen alsmede vierkante holtes of gaten. De methode om het model
op te stellen en op te lossen is op een generieke manier beschreven zodat deze
toepasbaar is voor vele cilindrische structuren. De magnetische veldvergelijkingen en
de implementatie van het model in een matrixformulering zijn gegeven. Een model
is opgesteld van een voorbeeldstructuur die bestaat uit een alternerend magneet
patroon omsloten door een cilinder met daarin een vierkant gat. De resultaten hiervan
zijn gevalideerd met een eindige-elementenmodel.

Om de elektromagnetische interacties in de structuur, in de vorm van passieve
aantrekkingskrachten, te kunnen bepalen, is de Maxwell-stress-tensor analytisch
uitgewerkt. De harmonische veldvergelijkingen uit het afgeleide model zijn
hiervoor gebruikt, resulterend in compacte vergelijkingen die de verschillende
krachtcomponenten beschrijven.
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De beschreven 3D harmonische modelleringstechniek is toegepast in de analyse en
het ontwerp van een twee vrijheidsgraden, rotatie-translatie actuator. Deze actuator
vervangt gestapelde actuatorconfiguraties en is specifiek ontworpen als plaatsingskop
voor een componentplaatsingsmachine voor het positioneren van componenten op
printplaten. Een nieuw magnetisatiepatroon voor een elektromagnetische actuator is
voorgesteld. Dit magnetisatiepatroon is geschikt om de hoge kracht en het relatief lage
koppel te kunnen leveren. Dit patroon kan gerealiseerd worden door gebruik te maken
van parasitaire veldeffecten in het magneetpatroon van een cilindrische lineaire
actuator. Verschillende stator- en spoelconfiguraties zijn onderzocht om een actuator
te kunnen realiseren met een hoge krachtdichtheid. Bij de selectie van de configuratie
is rekening gehouden met onder andere de maakbaarheid van het uiteindelijke
ontwerp. Elektromagnetische en thermische analyses zijn uitgevoerd om inzicht te
krijgen in de relatie tussen de afmetingen van de verschillende actuatoronderdelen en
de prestaties om vervolgens tot een optimaal actuatorontwerp te kunnen komen.

De ontworpen actuator is gerealiseerd ter validatie van de gebruikte modellen
en methodes. Zowel de realisatie als de experimentele verificatie is beschreven.
De metingen laten zien dat de ontworpen en gerealiseerde actuator de uitdagende
specificaties van de componentplaatsingsmachine kan volbrengen. Dit houdt in:
Een versnelling in de verticale richting van az = 150ms−2 bij een slag van 30 mm,
een taakcyclus van 34%, en een statische positioneringfout van minder dan 5µm.
De vereiste versnelling in de rotatierichting is αθ = 3500rads−2 bij een taakcyclus
van 47% en een statische positioneringfout van maximaal 0.35 mrad. Verder volgt
uit de metingen dat de gespecificeerde gecombineerde rotatie-translatie beweging
resulteert in een constante dissipatie van 13.5 W hetgeen resulteert in een opwarming
van de actuator van 30◦C ten opzichte van de omgeving. De meetresultaten van de
gerealiseerde actuator komen goed overeen met de resultaten van de ontwikkelde
harmonische modellen. Hiermee is aangetoond dat deze modelleringstechniek
geschikt is voor de analyse van cilindrische structuren met permanente magneten.
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