7 research outputs found

    Information Theory and Machine Learning

    Get PDF
    The recent successes of machine learning, especially regarding systems based on deep neural networks, have encouraged further research activities and raised a new set of challenges in understanding and designing complex machine learning algorithms. New applications require learning algorithms to be distributed, have transferable learning results, use computation resources efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of developments in statistical learning theory and information theory has set out to address these challenges. This Special Issue, "Machine Learning and Information Theory", aims to collect recent results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional theories and develop analysis tools for these complex machine learning systems

    Finding Neurons in a Haystack: Case Studies with Sparse Probing

    Full text link
    Despite rapid adoption and deployment of large language models (LLMs), the internal computations of these models remain opaque and poorly understood. In this work, we seek to understand how high-level human-interpretable features are represented within the internal neuron activations of LLMs. We train kk-sparse linear classifiers (probes) on these internal activations to predict the presence of features in the input; by varying the value of kk we study the sparsity of learned representations and how this varies with model scale. With k=1k=1, we localize individual neurons which are highly relevant for a particular feature, and perform a number of case studies to illustrate general properties of LLMs. In particular, we show that early layers make use of sparse combinations of neurons to represent many features in superposition, that middle layers have seemingly dedicated neurons to represent higher-level contextual features, and that increasing scale causes representational sparsity to increase on average, but there are multiple types of scaling dynamics. In all, we probe for over 100 unique features comprising 10 different categories in 7 different models spanning 70 million to 6.9 billion parameters

    Towards autonomous diagnostic systems with medical imaging

    Get PDF
    Democratizing access to high quality healthcare has highlighted the need for autonomous diagnostic systems that a non-expert can use. Remote communities, first responders and even deep space explorers will come to rely on medical imaging systems that will provide them with Point of Care diagnostic capabilities. This thesis introduces the building blocks that would enable the creation of such a system. Firstly, we present a case study in order to further motivate the need and requirements of autonomous diagnostic systems. This case study primarily concerns deep space exploration where astronauts cannot rely on communication with earth-bound doctors to help them through diagnosis, nor can they make the trip back to earth for treatment. Requirements and possible solutions about the major challenges faced with such an application are discussed. Moreover, this work describes how a system can explore its perceived environment by developing a Multi Agent Reinforcement Learning method that allows for implicit communication between the agents. Under this regime agents can share the knowledge that benefits them all in achieving their individual tasks. Furthermore, we explore how systems can understand the 3D properties of 2D depicted objects in a probabilistic way. In Part II, this work explores how to reason about the extracted information in a causally enabled manner. A critical view on the applications of causality in medical imaging, and its potential uses is provided. It is then narrowed down to estimating possible future outcomes and reasoning about counterfactual outcomes by embedding data on a pseudo-Riemannian manifold and constraining the latent space by using the relativistic concept of light cones. By formalizing an approach to estimating counterfactuals, a computationally lighter alternative to the abduction-action-prediction paradigm is presented through the introduction of Deep Twin Networks. Appropriate partial identifiability constraints for categorical variables are derived and the method is applied in a series of medical tasks involving structured data, images and videos. All methods are evaluated in a wide array of synthetic and real life tasks that showcase their abilities, often achieving state-of-the-art performance or matching the existing best performance while requiring a fraction of the computational cost.Open Acces

    Graph Priors, Optimal Transport, and Deep Learning in Biomedical Discovery

    Get PDF
    Recent advances in biomedical data collection allows the collection of massive datasets measuring thousands of features in thousands to millions of individual cells. This data has the potential to advance our understanding of biological mechanisms at a previously impossible resolution. However, there are few methods to understand data of this scale and type. While neural networks have made tremendous progress on supervised learning problems, there is still much work to be done in making them useful for discovery in data with more difficult to represent supervision. The flexibility and expressiveness of neural networks is sometimes a hindrance in these less supervised domains, as is the case when extracting knowledge from biomedical data. One type of prior knowledge that is more common in biological data comes in the form of geometric constraints. In this thesis, we aim to leverage this geometric knowledge to create scalable and interpretable models to understand this data. Encoding geometric priors into neural network and graph models allows us to characterize the models’ solutions as they relate to the fields of graph signal processing and optimal transport. These links allow us to understand and interpret this datatype. We divide this work into three sections. The first borrows concepts from graph signal processing to construct more interpretable and performant neural networks by constraining and structuring the architecture. The second borrows from the theory of optimal transport to perform anomaly detection and trajectory inference efficiently and with theoretical guarantees. The third examines how to compare distributions over an underlying manifold, which can be used to understand how different perturbations or conditions relate. For this we design an efficient approximation of optimal transport based on diffusion over a joint cell graph. Together, these works utilize our prior understanding of the data geometry to create more useful models of the data. We apply these methods to molecular graphs, images, single-cell sequencing, and health record data

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model

    Get PDF
    © 2020, The Author(s). The evaluation of machine learning (ML) pipelines is essential during automatic ML pipeline composition and optimisation. The previous methods such as Bayesian-based and genetic-based optimisation, which are implemented in Auto-Weka, Auto-sklearn and TPOT, evaluate pipelines by executing them. Therefore, the pipeline composition and optimisation of these methods requires a tremendous amount of time that prevents them from exploring complex pipelines to find better predictive models. To further explore this research challenge, we have conducted experiments showing that many of the generated pipelines are invalid, and it is unnecessary to execute them to find out whether they are good pipelines. To address this issue, we propose a novel method to evaluate the validity of ML pipelines using a surrogate model (AVATAR). The AVATAR enables to accelerate automatic ML pipeline composition and optimisation by quickly ignoring invalid pipelines. Our experiments show that the AVATAR is more efficient in evaluating complex pipelines in comparison with the traditional evaluation approaches requiring their execution
    corecore