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Abstract

Democratizing access to high quality healthcare has highlighted the need for autonomous di-
agnostic systems that a non-expert can use. Remote communities, first responders and even
deep space explorers will come to rely on medical imaging systems that will provide them with

Point of Care diagnostic capabilities.

This thesis introduces the building blocks that would enable the creation of such a system.
Firstly, we present a case study in order to further motivate the need and requirements of
autonomous diagnostic systems. This case study primarily concerns deep space exploration
where astronauts cannot rely on communication with earth-bound doctors to help them through
diagnosis, nor can they make the trip back to earth for treatment. Requirements and possible

solutions about the major challenges faced with such an application are discussed.

Moreover, this work describes how a system can explore its perceived environment by developing
a Multi Agent Reinforcement Learning method that allows for implicit communication between
the agents. Under this regime agents can share the knowledge that benefits them all in achieving
their individual tasks. Furthermore, we explore how systems can understand the 3D properties

of 2D depicted objects in a probabilistic way.

In Part II, this work explores how to reason about the extracted information in a causally
enabled manner. A critical view on the applications of causality in medical imaging, and its
potential uses is provided. It is then narrowed down to estimating possible future outcomes and
reasoning about counterfactual outcomes by embedding data on a pseudo-Riemannian manifold

and constraining the latent space by using the relativistic concept of light cones.

By formalizing an approach to estimating counterfactuals, a computationally lighter alternative
to the abduction-action-prediction paradigm is presented through the introduction of Deep Twin
Networks. Appropriate partial identifiability constraints for categorical variables are derived
and the method is applied in a series of medical tasks involving structured data, images and

videos.

All methods are evaluated in a wide array of synthetic and real life tasks that showcase their
abilities, often achieving state-of-the-art performance or matching the existing best performance

while requiring a fraction of the computational cost.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Throughout human history, people have gazed up to the stars above and imagined, how they
would look like, how would they travel between them exploring new worlds and coming into
contact with new civilizations. We currently live at the start of the space age of humanity.
Approximately 50 years ago the first man set foot on the moon while currently there are dis-
cussions and proposed timelines for manned expeditions to Mars. As the human species travels
further away from the safety of our home planet new challenges have to be overcome, these
are not only concerning spaceships and propulsion drives but most importantly the continual

well-being of humans.

We are fragile beings. We cannot withstand major fluctuations in radiation, temperature,
pressure or consistency of the atmosphere. We cannot survive without food and water. Our
evolution and development has been dictated by the constant presence of 1g gravity. As we
travel away from the protective enclave of our atmosphere we will be faced with changes in our

anatomy and the development of new pathologies that we cannot observe on Earth.

Greater distances also mean greater solitude. Limited by fundamental laws of physics we are

unable to have instantaneous travel and communications. Tele-medicine and evacuation to the
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safety of Earth become infeasible as the distances grow. As such the first explorers of the outer
solar system (beyond the asteroid belt, between Mars and Jupiter) will have to be self-reliant

for most if not all their well-being needs.

In this Thesis we will be looking into the basic building blocks required to build such advanced

systems that are able to take care of humans in their explorations of the Cosmos.

Space exploration is a principle example of “Big Science”. A large scale project that strives for
an extremely ambitious but crucial target outcome. These projects usually funded by military
and governmental budgets have a major, sometimes overlooked, advantage. They tend to have
significant scientific discoveries and technologies as by-products of their main development
path. In the case above, where humans try to develop an autonomous diagnostic system able
to perform its duties in the vastness of interplanetary space, we stand to gain great technological

advances for the people that will remain on our planet.

Even before achieving the status of “space capable” an autonomous diagnostic system can
aid remote communities by performing triage and initial diagnosis, saving crucial time in the
treatment of the residents. It can assist first responders in the scene of a natural disaster by
giving them the tools to assist more people in a shorter period of time. Finally it can even
help medical personnel in large hospitals by automating monitoring and diagnostic procedures

so doctors and nurses can focus on the time-sensitive cases.

We are interested in the building blocks that would enable the creation and deployment of such
an autonomous intelligent system. We recognize the complexity and difficulty of the overall
task hence we will focus on key points that it is the belief of the author that they are crucial

for any realization of an [ADS|

In Figure [1.1] we identify some of the concepts and building blocks required in the efforts to
build an [ADS] We will be referring back to this graphic in order to help the reader relate the

concepts introduced throughout the thesis.

Straight away we can identify three main input types we could be using in an [ADS]| Vision

refers to any form of visual input, images or videos that can serve as an information source
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Figure 1.1: Block diagram of key components of an Autonomous Diagnostic System. This
figure serves as guidance for the elements that make up this thesis. Green background blocks
have been addressed and exist in this thesis; Orange background blocks are considered future
work. The left hand side — Fxploration — serves as an information extractor while the right
hand side — Reasoning — serves as the reasoning required for any diagnosis.
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for our diagnostic system. Examples that have been used in the subsequent chapters include

|Ultrasound (US)| [Magnetic Resonance Imaging| (MRI) and [Computed Tomography (CT)|l Vi-

sual inputs can aid our system with information about real time conditions and state of the
patient’s anatomy. However these can be augmented with a variety of measured biosignals like
Electroencephalographs (EEG), Electrocardiograph (ECG), Oxymeters, blood tests and many
others. These inputs allow us to gain a deeper understanding of the real time and past states
of the patient and can inform greatly both diagnosis and treatment planning. Finally linguistic
inputs like Electronic Health Records (EHR) or self reporting of symptoms can guide diagnostic
systems to prune down possible diagnosis and arrive, hence, in a more accurate estimation of

the pathology.

In Figure there is a distinction between two main concepts - FExploration and Reasoning.
In the FEzxploration side we group all methods and components that are primarily concerned
with information extraction from the input sources. That can include identifying and localizing
medically relevant points like anatomical landmarks - detailed in Chapter [ It also includes
creating accurate models of the scenes the system observes, imagining, hence, how the object
in its field of vision appears in the real world - detailed in Chapter [f} Moreover it is believed
that crucial parts of an are the understanding of Electronic Health Records (EHR); de-
tecting anomalies from all the given inputs and performing extra measurements of biomarkers,
commonly used in medical practice. The latter three components are not the concern of this

thesis and are left as some very interesting and challenging future work.

Moreover, in an effort to increase our diagnostic capabilities we need to think of the potential
outcomes of our actions, treatments and disease progression. In Chapter [6] and Chapter [§] we
are investigating the production of future views of our instruments from a causal perspective.
Establishing causal limitations allows us to have faith in our system that the output will be
consistent with the laws of medicine as we understand them and that it will not generate

nonsensical images and videos.

Finally any diagnostic system must be able to reason about potentially different outcomes in

terms of cause and effect in order to compare them with the observed measurements and draw
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accurate conclusions. For example, a doctor might encounter the following situation: given the
patient’s blood tests if the patient had leukemia the blood tests should be showing a increase
of white blood cells, but this is not observed in reality, hence the symptoms experienced by the
patient cannot be attributed to the diagnosis of leukemia. Reasoning in a fashion that includes
cause and effect allows a system to transcend from the probabilistic guessing paradigm and
enter the formal causality one, thus increasing the trust we can have in autonomous diagnostic

systems.

In Chapter [7] we develop novel methods for partially identifiable computationally lightweight
counterfactual inference that admit questions like “Given that we gave the patient drug A and
the symptoms did not get better, had we given them drug B would they have had a better
outcome?”. We focus on some of the most crucial questions in diagnosis: the probabilities of
Necessity, Sufficiency and Necessity and Sufficiency for an outcome given a treatment. These are
the most important questions a doctor asks implicitly or explicitly in the course of a diagnosis.

Counterfactual trajectories of patients and recollection of data are left for future work.

1.2 Contributions

The main contributions of the thesis are in greater detail:

e Chapter [2| establishes the required theoretical background

e Chapter |3| presents a case study. In a deep space exploration setting we argue about the
necessity of autonomous point of care diagnostic systems and highlight the desiderata of
such a system both in terms of hardware and software. We furthermore, look into possible

ways of tackling the main challenges present in this use case.

e Chapter [4 introduces the concepts of multiple agents exploring an environment as defined
by a medical volume. In this section we develop a novel method of implicit communi-

cations among the agents that attempt to locate medical landmarks like the

|Commissure (AC)|and the [Posterior Commissure (PC)l We evaluate our method in [MRI
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and [US] volumes of the brain and the heart respectively achieving state-of-the-art per-
formance. We hence establish a method of exploration for the agent in order to identify

medically significant points in the scanned volumes.

e Chapter |5| provides a novel [Deep Learning (DL)| methodology that tackles the ill-defined

problem of 2D to 3D reconstruction and segmentation. Given a 2D scan we build a
neural network capable of reconstructing possible 3D volumes and segments to extract
characteristics of the anatomy. With this contribution we seek to establish a method to
imagine how objects look like in the 3D world by only observing 2D projections. We build
a fully probabilistic approach to overcome the loss of information that characterized the

original creation of the 2D projection of the object from 3D.

e Part [[T represents the bulk of the work done towards intelligent autonomous diagnostic
agents. In Chapters [6] and [7] we introduce two novel [DI] methods. First we present a
novel approach that combines special relativity [Ein15] with hyperbolic geometry

ILearning (ML) in order to create an algorithm able to generate plausible causally related

future outcomes from videos. Secondly, we create the [DI] equivalent of Balke and Pearl’s
[BP94] Twin Network by proposing the Deep Twin Networks, able to perform accurate
and computationally lighter counterfactual inference. We then showcase the abilities of

our Deep Twin Networks by generating realistic counterfactual [US] videos in Chapter

e The penultimate topic in Chapter [9 explores an auxiliary concept of how we can leverage

causality to efficiently train a [Machine Learning| (ML|) method under significant data

constraints.

1.3 Publications

The chapters of this thesis follow a series of nine published papers and papers under review (as
of the time of writing). All are first authored papers with the exception of one which is co-first
authored. This is followed by a list of further first, co-first and co authored papers that are

auxiliary to the concepts mentioned in this thesis.
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Published:

Vlontzos A, Alansary A, Kamnitsas K, Rueckert D, Kainz B. Multiple landmark de-
tection using multi-agent reinforcement learning. In International conference on medical
image computing and computer-assisted intervention (MICCAI) 2019 Oct 13 (pp. 262-
270). Springer, Cham. Contributions: A.V. conceived of the study, developed the
appropriate tools and methods, ran the experiments and led the writing of the paper.
A.A. supported the development of methods and tools and contributed to the manuscript.
K.K. conceived of part of the ablation study. D.R. and B.K. supervised the findings of

this work and contributed to the final manuscript.

Vlontzos A, Budd S, Hou B, Rueckert D, Kainz B. 3D probabilistic segmentation and
volumetry from 2D projection images. In International Workshop on Thoracic Image
Analysis 2020 Oct 8 (pp. 48-57). Springer, Cham. Contributions: A.V. and B.H
conceived and planned the experiments. A.V. and S.B. ran the experiments. D.R. and

B.K. supervised the project. All authors contributed to finalizing the manuscript.

Vlontzos A, Sutherland G, Ganju S, Soboczenski F. Next-Gen Machine Learning Sup-
ported Diagnostic Systems for Spacecraft. Al for Spacecraft Longevity, I[JCAI workshop.
2021 Jun 10. Contributions: A.V. G. Suth. and F.S. conceived the case study and set

out the key elements. All authors contributed to finalizing the manuscript.

H. Reynaud, A. Vlontzos, M. Dombrowski, C. M. Gilligan-Lee, A. Beqiri, P. Leeson,
and B. Kainz, “D’artagnan: Counterfactual image and video generation”, In International
conference on medical image computing and computer-assisted intervention (MICCAI)
, 2022. Contributions: A.V. designed and directed the project; H.R., A.V., M.D.
performed the experiments; A.V., C.M.G.L. developed the theoretical framework, A.B,
P.L and B.K supervised the project; A.V., H.R., M.D, C.M.G.L. and B.K contributed to

the manuscript

Vlontzos A, Kainz B, Gilligan-Lee CM. Estimating categorical counterfactuals via deep

twin networks. arXiv preprint arXiv:2109.01904. 2021 Sep 4. In International Confer-
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ence in Machine Learning (ICML) Workshop on Beyond Bayes: Paths Towards Universal
Reasoning Systems; In Uncertainty in Artificial Intellifence (UAT) Causal Inference Work-
shop; Under review in Nature Machine Intelligence. Contributions: A.V and C.M.G.L.
conceived the methods and planned the experiments. A.V. developed the tools and exper-
iments. B.K. and C.M.G.L. supervised the project. All authors contributed to finalizing

the manuscript.

e A. Vlontzos, D. Rueckert, and B. Kainz, “A Review of Causality for Learning Algo-
rithms in Medical Image Analysis”, Journal of Machine Learning for Biomedical Imaging
(MELBA) , 2022, 2022:028. Contributions: A.V. led the literature review and cate-
gorization of works; D.R. and B.K. supervised the project. All authors contributed to

finalizing the manuscript.

Under Review & Preprints:

e Vlontzos A, Rocha HB, Rueckert D, Kainz B. Causal future prediction in a Minkowski
space-time. arXiv preprint arXiv:2008.09154. 2020 Aug 20. Under review in Journal of
Machine Learning Research (JMLR) Contributions: A.V. conceived, developed and run
the experiments for the proposed methods and tools. H.B.R. supported the theoretical
formulation; D.R. and B.K. supervised the project. All authors contributed to finalizing

the manuscript.

e Vlontzos A, Cao Y, Schmidtke L., Kainz B, Monod A. Topological Information Retrieval
with Dilation-Invariant Bottleneck Comparative Measures. arXiv preprint arXiv:2104.01672.
2021 Apr 4.; Contributions: A.V. devised the project, the main conceptual ideas and
proof outline. A.V., Y.C and A.M developed the mathematical tools and proofs, A.V
and Y.C. planned and ran the experiments. B.K. and A.M. supervised the project. All

authors contributed to finalizing the manuscript.

e A. Vlontzos, H. Reynaud, D. Rueckert, and B. Kainz, “Is more data all you need

? a causal exploration”, Under Review, 2022. Contributions: A.V. led the design
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and implementation of the research; A.V. and H.R. ran the experiments; D.R. and B.K.

supervised the project. All authors contributed to finalizing the manuscript.

Co-authored Papers; miscellaneous and relevant to the topics of this thesis papers:

e Schmidtke L, Vlontzos A, Ellershaw S, Lukens A, Arichi T, Kainz B. Unsupervised
human pose estimation through transforming shape templates. InProceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021 (pp. 2484-

2494).

e Lamb K, Malhotra G,Vlontzos A, Wagstaff E, Baydin AG, Bhiwandiwalla A, Gal Y,
Kalaitzis A, Reina A, Bhatt A. Prediction of GNSS phase scintillations: A machine
learning approach. Machine Learning for the Physical Sciences, NeurIPS Workshop. 2019
Oct 3.

e Lamb K, Malhotra G, Vlontzos A, Wagstaff E, Baydin AG, Bhiwandiwalla A, Gal Y,
Kalaitzis A, Reina A, Bhatt A. Correlation of auroral dynamics and GNSS scintillation
with an autoencoder. Machine Learning for the Physical Sciences, NeurlPS Workshop.

2019 Oct 4.

e Reynaud H, Vlontzos A, Hou B, Beqiri A, Leeson P, Kainz B. Ultrasound Video Trans-
formers for Cardiac Ejection Fraction Estimation. InInternational Conference on Med-
ical Image Computing and Computer-Assisted Intervention 2021 Sep 27 (pp. 495-505).

Springer, Cham.

e G Sutherland, F Soboczenski, A Vlontzos, A Deep Reinforcement Learning Approach
to Train Autonomous Space Debris Remediation Spacecraft, 43rd COSPAR Scientific

Assembly. Held 28 January-4 February 2021

e Hou B, Vlontzos A, Alansary A, Rueckert D, Kainz B. Flexible Conditional Image Gener-
ation of Missing Data with Learned Mental Maps. Inlnternational Workshop on Machine

Learning for Medical Image Reconstruction 2019 Oct 17 (pp. 139-150). Springer, Cham.
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e Budd S, Sinclair M, Day T, Vlontzos A, Tan J, Liu T, Matthew J, Skelton E, Simpson J,
Razavi R, Glocker B. Detecting Hypo-plastic Left Heart Syndrome in Fetal Ultrasound via
Disease-Specific Atlas Maps. InInternational Conference on Medical Image Computing

and Computer-Assisted Intervention 2021 Sep 27 (pp. 207-217). Springer, Cham.

e Liu T, Meng Q, Vlontzos A, Tan J, Rueckert D, Kainz B. Ultrasound video summa-
rization using deep reinforcement learning. InInternational Conference on Medical Image

Computing and Computer-Assisted Intervention 2020 Oct 4 (pp. 483-492). Springer,
Cham.

e Alansary A, Oktay O, Li Y, Le Folgoc L, Hou B, Vaillant G, Kamnitsas K, Vlontzos A,

Glocker B, Kainz B, Rueckert D. Evaluating reinforcement learning agents for anatomical

landmark detection. Medical image analysis. 2019 Apr 1;53:156-64.



Chapter 2

Background

2.1 Introduction

We start off by laying out the basic concepts required to understand the subsequent chapters.
We will offer a brief mention on the concepts of medical image analysis, machine learning and
then we will dive deeper into the topics of relativistic physics and causality. Each section will

be self sufficient such the reader can focus on themes they are unfamiliar with.

2.2 Medical Image Analysis

As humanity’s interest in anatomy peaked in the Victorian Era with physicians systematizing
the categorizations and descriptions of anatomical parts, we gained an immense volume of
knowledge about internal medicine and diseases. The chance discovery of X-Rays by Wilhem
Rontgen, Figure — for which he received the first Nobel Prize in Physics — created a new
field of medicine that allowed doctors to leverage the aforementioned knowledge gained by
anatomical dissections and non invasive observations the human body to diagnose and treat

patients. Since then the field has erupted to include multiple different modalities of imaging

like [Magnetic Resonance Imaging| (MRI)), [Positron Emission Tomography| (PET]), [Ultrasound|

11
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(US), [Computed Tomography| (CT]), X-Rays and others. The main goals of medical imaging

can thus be summarized to the non invasive observation and depiction of the human body in

order to diagnose and treat the patients.

; . .-..'Tu{%hr SIS T
ey G

FFnyur®
(a) Modern X-Ray by Ptrumpl6 (b) By Wilhelm Rontgen, Public Domain,
- Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.
https://commons.wikimedia.org/w/ php?curid=5059748

index.php?curid=115012214

Figure 2.1: X-Rays (a)Modern X-Ray of a hand produced by Ptrumpl6 - a wikipedia editor
(b). First X-Ray by Wilhelm Rontgen of his wife’s hand.

Medical imaging however does have its limitations. Modalities like [CT] X-Rays and

I[Emission Tomography (PET)| require the patient to be exposed to ionizing radiation or even

dosed with radioactive substances in order to acquire the image. Even though the doses for a
typical exam are small enough not to cause any harm to the patient there are limitations on
who and when can be examined under these circumstance, with pregnant women for example
told to avoid [PET] scans. Moreover, medical personnel present in these examinations are also
exposed to ionizing radiation that has cumulative effect on their well-being. As such, personnel
are often being told to reduce the hours that they operate in such environments to reduce the

risk and harm to themselves. On the other hand, modalities like [US] and [MRI] do not use any
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Modality Common Use Pros Cons
Inexpensive . .

B d Not all t be depicted
X-Rays ones and Abundant everywhere ot all tissues can be depicte

Some soft tissues Fast Radiation exposure

Radiation exposure

B 8 F: .

CT Scans oo and ast May require contrast agents

Some soft tissues Better visual accuracy Expensive

No Radiation

. . Hard to depict i atients structures
MRI All soft tissues Doesn’t require contrast agents ard to depict moving patients or structures

Very good depiction of structures Expensive
Real Time
. Inexpensive Operator-dependent
Us All soft tissues Portable Image quality usually suffers

No Radiation

Table 2.1: Table of Advantages and Disadvantages of some of the most popular medical imaging
modalities

form of ionizing radiation making them safe to use for both patients and doctors alike.

From an image quality perspective, once again there is no clear preferable modality with dif-
ferent methods presenting strengths in depicting different structures. For example for a quick,
inexpensive view into bones one might be referred for an X-Ray scan; while for real time ex-
aminations of the fetus is the most popular technology. Moreover, modalities like suffer
from high noise components, while X-Rays essentially depict the shadow of the body making
detailed soft tissue imaging hard. [MRIk tend to have the best image quality being able to
depict all possible structures, however acquiring a high fidelity MRI scan is both expensive and
time consuming. As such we observe that there is no single best modality, in Table 2.1}, below,
we have codified some of the major advantages and disadvantages of the most popular imaging

techniques.

2.3 Machine Learning & Deep Learning

Artificial intelligence has fascinated humans for centuries, however, only during the past century
were we able to make actual progress by developing techniques to process large quantities of data

and teach algorithms to generalize. Inspired by the way neurons function in the human brain

the term [Artificial Neural Network (NN)| was coined to describe the novel machine learning
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(a) Hlustration of biological neuron (b) Artificial neuron, used in artificial neural
networks

Figure 2.2: Illustrations of biological and artificial neurons. We note the similarities between
the two. Image source[Kar16]

methods.

2.3.1 Artificial Neural Networks

Introduced by F. Rossenblatt in 1958 [Ros58] the Perceptron directly mimicked the method
a human neuron “accumulates” and “fires” electrical discharges. In Figure [2.2] we show an
illustration that showcases the parallels between a biological neuron and a “neuron” that serves
as the building block of a Perceptron. Despite the promise of the Perceptron it was quickly
discovered that it was limited in terms of expressivity and set of problems in could solve, as such
a few modifications where made to the original model in order to increase its abilities. First
a non linearity was introduced to enable the network to model complex non linear relations.
Secondly a cascade of multiple, varied sized, layers of neurons were introduced in order to model

hierarchical relations. Formally the output of the Perceptron can be described as

m

y= o> (wiwi +1)) (2.1)

=1

where x is the input to the neuron — be that the input to the network or the output of a
previous neuron — w, b is the set of weights and biases we aim to learn through our learning
procedure; m signifies the number of inputs to the neuron and ¢ is the non-linearity. Common

non-linearities are the sigmoid function, the hyperbolic tangent (tanh) and the rectified linear
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unit (ReLu) family of functions. Non-linearites have to be differentiable and depending on their

characteristic responses we aim to extract different advantages.

input layer

hidden layer 1  hidden layer 2

Figure 2.3: A 3-layer multi-layered Perceptron with 2 hidden layers. Image source[Karl6]

2.3.2 Convolutional Neural Networks

A [Convolutional neural network (ConvNet)| presents an alternative to the fully structured MLP

discussed in the section above. In an effort to decrease the computational burden of relating
each part of the input to all other inputs, create sparse models and share parameters between
inputs, convolutions replace the linear functions of Equation (2.1). Formally defined as in
Equation (2.2) convolutions allow the models to reuse the same kernels g across different part
of the inputs — usually images — and extract the appropriate information. An array of 2D or
sometimes 3D convolutional layers make up the backbone of [ConvNetk. The aforementioned
kernels can then extract useful features across multiple levels and form cascades of information
allowing them to build intricate and complex representations of the inputs to the model. Other
common layers used in ConvNets include pooling where the input to the layer is pooled to
a lower dimensionality commonly either by choosing the max or the average of the window;
normalization layers which normalize the input based on its extracted statics. ConvNets also
exhibit useful properties like translation equivariance i.e. the response of the kernel is the same
regardless if the translation operation is performed before or after the convolution. ConvNets
are the de facto standard method of extracting information from images and make up the

baseline for many successful ML methods.

+o0

(f *9)(t) = f()g(t —7)dr (2.2)

—00
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2.3.3 Loss Functions & Optimization

In order to construct a machine learning method a training signal has to be defined such that
the network “learns” from its mistakes. There is virtually infinite pool of possible loss functions
one might construct or use to train a machine learning model. We characteristically mention

two elementary ones that allow classification and regression respectively.

Cross-Entropy When attempting to perform a classification task a common loss function is
the cross-entropy loss - binary or categorical. Measuring the difference between two probability
distributions the cross entropy loss pushes the predicted from the model to match the probability
distribution of the true class. Inspired by concepts of information theory and information
entropy - not to be confused with thermodynamical entropy - Cross-Entropy is defined in
Equation (2.3) where y, is the true class of sample o, and p; , is the predicted probability that

sample o belongs to class 7.

c
CE = — Z Yo log(pio) (2.3)

To aid our classification in multi-class scenarios, ground truth classes are often encoded in one-
hot vectors and the output logits of the network are passed through a softmax function that
normalizes them to be in the range [0, 1] and add up to 1 casting them to a pseudo-probability.

In the binary classification case we defined the Binary cross entropy as

BCE = —[ylog(p) + (1 —y)log(1 — p)] (2.4)

where p is once again the output of the model passed through a sigmoid function that casts

the logit to {0,1}.

Mean Squared Error The most abundant and simple loss function for regression is the mean
squared error. Under this loss function we seek to minimize the euclidean distance between the

point we predict and its ground truth label.

MSE =3 (i~ i) (2.

%
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where 7 is the prediction for sample 7. Despite the popularity and useful properties of the MSE
loss we see in works like [LMV™19| that it is not always the appropriate loss function as it fails
to capture rare events and over-smooths the output. As such other regression losses like L1,

Hinge have been used depending on the task at hand.

At each chapter in this thesis we will be defining the loss function we are using. Each loss
function is subsequently minimized to reduce the error rate. We normally use euclidean opti-
mization techniques such like Stochastic Gradient Descent (SGD) seen in Equation (2.6]) where
VJ is the gradient of the loss function, # is the set of parameter of our model at time ¢ and n

the learning rate.

et—‘rl = Qt - UVJ(Ht) (26)

SGD is one of the oldest and most common optimization methods, others include Adam [KB14].
In Chapter [6] we will also discuss the Riemannian manifold alternative to gradient descent

optimization.

2.4 Image Segmentation

With the progress of technology came the need and will to automate some aspects of medical
image analysis. One of the most common ones, that will also be the topic of Chapter [5] is
semantic segmentation. In semantic segmentation tasks we attempt to analyze an image on
the pixel level attributing each pixel to a semantic category — like part of a dog or a cat. We

illustrate examples of a semantic segmentation tasks in Figure [2.4]

Early methods of semantic segmentation operated directly in the pixel space where pixels were
clustered according to their intensity values. Algorithms included superpizels where pixels
were grouped with regards to their position and intensity levels. The resulting segmentation
did not always coincide with human defined object classes but were a powerful initial tool for
image processing. A different approach utilized active contours - colloquially referred to as

“snakes”. Under this paradigm, an energy function FEj,qk. is minimized such that it creates
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y -

Input Image Segmented Image

Objects

(a) Semantic Segmentation reproduced from [EVGWT| (b) Medical example of semantic segmentation
edited from [NLM™18|

Figure 2.4: Examples of Semantic Segmentation (a) Natural images from Pascal-VOC challenge;
(b) Medical image example of lung segmentation

a connected graph representing the contour of the object depicted in the image [GGCV95).
Snakes, however can be computationally expensive and suffer greatly when not initialized ide-
ally. GraphCut [GPS89] was another popular method that served as the base concept of
numerous segmentation methods. Similarly to Active Contours, GraphCut tries to minimize

an energy function depending on the color and coherence of the segmented structure.

Recent advances in machine learning allowed a paradigm shift in the ways we approach the task
of semantic segmentation. Two methods are especially noteworthy, the Mask R-CNN [HGDG17]
and the U-Net [REB15] The Mask R-CNN belongs to the Region Proposal Network family.
Initially a convolutional neural network is used to extract features from the input images. A
region proposal network is then tasked to predict the anchor boxes location of the objects in

the images. Mask R-CNN is characterized by a three-headed output: the first head outputs

the predicted class of the object in the [Region of Interest (ROI); the second offsets and adjusts

the size of the bounding box to better match the object; while the the third produces a binary
pixel level mask of where in the bounding box the object lies. The main contribution of the
Mask R-CNN lies with the inclusion of the third output head that translates the [RO]] to an

object mask.

In a quite different approach Ronneberger et al in their seminal U-Net paper [REB15|] assume
a multi-level end-to-end convolutional architecture seen in Figure 2.5 Each image is passed
through a multi level encoder-decoder network with skip connections between same level layers
in the encoder and the decoder. The network is then tasked to predict a pixel-level segmentation

mask and is trained with a categorical cross-entropy loss. The U-Net has been the de facto
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default segmentation method for medical imaging tasks.
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Figure 2.5: The U-Net Architecture. Image source[RFB15)]

2.5 Hyperbolic Geometry & Manifolds

For an in-depth review of manifolds we invite the reader to refer to the textbook [Car97]. In this

section we will briefly provide some key concepts of the used differential geometry appearing

in Chapter [6]

Manifold: A manifold M of n dimensions is a generalization of the concept of the surface in
a non-Fuclidean space and possesses a curvature c at every point in spacetime. For our present
purposes, we will consider only manifolds with constant curvature, that is, with the same value
of ¢ everywhere. The Lorentzian manifold group that this thesis considers is constantly flat
(¢ = 0). We will also consider the Poincaré manifold, which is characterized by a negative

curvature ¢ < 0. Henceforth, we will be referring to the absolute value of ¢ for ease of notation.

Tangent Space: The tangent space T, M is a vector space that approximates the manifold M

at a first order. All our models will lie on this Euclidean tangent space for ease of optimization.
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Riemannian Metric: A Riemannian metric g is a collection of inner products T, M x T, M —
R. It can be used to define a global distance function as the greatest local bound of the length

[ of all the smooth curves 7 connecting points x,y € M. Note that the length is defined as

1) = [ fmob@. ol (27)

Geodesic: Geodesics are the generalizations of straight lines in Euclidean space and define
the shortest path between two points of the manifold. They can also be defined as curves of

constant speed.

Exponential map: The exponential map exp, : T, M — M around x defines the mapping of
a small perturbation v € T, M to a point in M s.t. t € [0,1] — exp,(tv), which is the geodesic

of z to exp,(v).

Poincaré Ball: Many works rely on a Poincaré ball, as do we in Chapter [0} as has been argued
in [NK17, MLM™ 19! [(GBHIS8| that embedding the latent space on a Poincaré Ball — a hyperbolic
space with negative curvature — allows to naturally embed continuous hierarchical relationships

between data points. This follows from the qualitative properties of such a hyperbolic space:

1. The entirety of the Poincaré Ball B¢ is contained within a hypersphere of radius 1//c

and dimensionality d, in what amounts to compactification of infinite space.

2. The distance function (and thus area element) of this space grows rapidly as one ap-
proaches the edges of BY, such that reaching the edge would require traversing an infinite

distance in latent space.

3. This behaviour naturally emulates the properties of hierarchical trees, whose size grow

exponentially as new branches ”grow” from previously existing branches.
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Quantitatively, the space B¢ is endowed with a metric tensor g¢ which relates to flat Euclidean
space,

7= (12 ) 00 2:5)

where r is a d-dimensional vector in latent space and g.(r) the Euclidean metric. As a result,

the distance element in B¢ may be written, in spherical coordinates,

9 2
ds* = (1 — cr2> (dr? + r*dQ3), (2.9)

where r = |r| is the radius from the origin of the space and df), is the differential solid angle
element in d dimensions. It easy to see that the distance element diverges as r — 1/4/c, thus
encoding the infinite hypervolume contained near the edges of the Poincaré Ball. Furthermore,
as ¢ — 0, the radius of the Poincaré Ball becomes infinity and g.(z) — g.(z), up to a constant
rescaling of the coordinates. Let v : ¢t — v(t) be a curve in B%, where t € [0,1] such that its

length is defined by

L(v(#)) = /0 At = /0 V) B (D) dt, (2.10)

where g€ is the matrix form of ¢¢ and v = % is the trajectory’s velocity vector. In component

form, this reads

:/01 Zdzzdx;(t)ggydx;;t) dt:/ﬂl (%ﬂ(w)g VVTv dt, (2.11)

p=1 v=1

where 2/ represents each coordinate, g;, is the component form of §° and in the last step we
have used in Eq. (2.8). In hyperbolic space, “straight lines” are defined by geodesics v,(t), i.e.,

curves of constant speed and least distance between points x and y. Thus,

7,(t) = argmin [L(fy(t))]w(l)zi and ‘—' = 1. (2.12)
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With Eq. (2.11) and Eq. (2.12)), one may show that the distance function d°(x,y) between two

points x and y on B? can be computed to yield

“(x = Larccos c b — y[*
Pey) = Jgareeosh 1+ 20—l ). (213)

IMinkowski Space-Time| (MST)): Our main contributions are related to the
Space-Time| (MST])). We define the [Minkowski Space-Time (MST)| to be characterized by the

metric of Equation (2.14]) with the element —1 denoting the temporal dimension and +1 ele-
ments the spatial dimensions. [MST] constitutes a pseudo-Riemannian manifold as its metric is
positive semi-definite as opposed to positive definite. Belonging to the Lorentzian group, the

is a flat spacetime.
N = diag(—1,+1,+1,+1). (2.14)

2.6 Wrapped Normal

While embedding data on a Riemannian space with the use of a Riemannian VAE of Chap-
ter [6] it is important to embed the used distribution in this space as well. Multiple ways
have been proposed to perform this operation. We follow the wrapped normal distribution

approach |[GLAT9, MLM™19].

For this, a normal distribution is mapped onto the manifold using the manifold’s exponential

map. Given a normal distribution z, ~ N(0,%) and the Riemannian sample z = exp,({¢), the
s

distribution’s density can be described as

dv'" (2|p, )
dM(z)

Vedy(p, z)
sinh(y/cds(p, 2))

Niga (2, 2) = = N (Alogu(2)]0, E)( ). (2.15)

With ¢ — 0 the Euclidean normal distribution can be obtained.
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2.7 Reinforcement Learning

In Chapterwe develop a Reinforcement Learning methodology. Reinforcement Learning (RL)
allows artificial agents to learn complex tasks by interacting with an environment F using a set
of actions A. The agent learns to take an action a at every step (in a state s) towards the target
solution guided by a reward signal r during training. The main goal is to maximize the expected
rewards in order to find the optimal policy 7*. In Q-Learning, a state-action value function
(Q)(s,a) is used to approximate the value of taking an action in a given state. The Q-function
is defined as the expected value of the accumulated discounted future rewards, which can be
approximated iteratively as: Qyy1(s,a) = E[r +~ymax,(Q;(s',a’))]. Here v € [0, 1] is a discount
factor that is used to incorporate the notion of uncertainty in future events. Mnih et al. [MT15]
proposed an approximation of the Q-function using a CNN by optimizing the network cost
L) =F [(r + max Qtarget(s',a';07) — Quet(s, a; 0))2} . Qiarget 1s a temporary fixed version
of Qnet, which gets updated every Nigger steps, used in order to avoid destabilization caused
by rapid policy changes. While # are the parameters of the network we optimize over.

In single-agent RL scenarios, individual models learn solely from states that result from the ac-
tions of an agent. Complementary to this, Multi-Agent RL (MARL) models learn from states
that result from multiple agents dynamically interacting with their shared environment. In
MARL models, there are K agents interacting with environment E. Each learns to take an
action af during a state s¥ using a reward signal rF. Thus, the environment is subjected to the
actions of all agents, as shown in Figure |4.2 Hence, the environment becomes non-stationary
as action a; in state s, will not always lead to the same future, since the future state is also
a function of the other agents. This causes a violation of the Markov assumptions needed for
the formulation of a RL scenario as a Markov Decision Process (MDP). To address this issue,
[FCAST18, RSAW™18] proposed to establish communication between the agents, thus taking
all agents’ actions into account.

Any agent communication signifies the exchange of information or knowledge about the un-
derlying Markov state of the environment. Communication between agents can be achieved

explicitly via a communication protocol like in [FAdEW16], where a limited bandwidth chan-
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nel is learned by the agents, or implicitly by sharing knowledge in the parameter space or
by combining value functions [GEKI17]. MARL scenarios can be classified as collaborative or
competitive depending on the relation of the communication between agents. In this thesis, we
define the collaborative scenario as agents that attempt to minimize a common loss function.
Competition between agents signifies a scenario in which agents try to minimize their own loss

function through increasing the loss function of other agents.

2.8 On the use of Causality

As we saw before, medical imaging is an umbrella term encompassing a number of imaging tech-
niques including Magnetic Resonance Imaging (MRI), X-ray imaging, Computed Tomography
(CT), and Ultrasound imaging (US), and is used primarily as supporting tool for diagnosis and
monitoring of diseases. From a computational perspective, the community has engaged in a
wide variety of tasks concerning the automated interpretation of medical imaging and enabling
a range of applications. Machine learning (ML) shows significant successes for applications like
automated localization and delineation of lesions and anatomies [RFB15, KLN"17] as well as
for the automated alignment of scans between patients and mapping of patient anatomy into
canonical interpretation spaces [MV98, [HKY?20, [GKGLF20, [COL™11]. Despite good in silico
results, many of the approaches fail to translate into the clinical practice. While the reasons
behind this can be complex and diverse, many have as a common factor the inability to adapt
and be robust in clinical practice. Mapping this to the popular systems engineering framework
of Technology Readiness Levels (TRL) [LGLV*21a] as shown in Figure 2.6, medical imag-
ing AI/ML applications often skip from TRL 4 — proof-of-concept— to TRL 7 —deployment—
overlooking the very important TRLs 5 and 6 that make new systems robust to real world
conditions. In Figure we exhibit a finer grain view on the steps between TRL 6 and 7
that we deem to be important during the development of production-level medical imaging ML

algorithms.

Concerning is the inability of commonly used AI/ML medical imaging methods to differentiate
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Figure 2.6: Technology Readiness Levels of ML Systems - most applications skip levels 5,6
where algorithms are made robust and production ready. Figure source:
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Figure 2.7: A in-depth view of the ML specific TRLs between TRL 6 and 7 in medical imaging

- Inspired by [LGLV*21a]. In this chapter we focus on the TRL 6.6 and argue the need and
benefits of causally robust ML algorithms
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between correlations and causation, making potentially deadly mistakes in the process. For
example, [DJL20] identified a number of approaches that claim to have been able to diagnose
COVID-19 from chest X-rays but ultimately fail to do so as they were instead picking up

spurious correlations like hospital identifiers and the ethnicity of the patient.

As pointed out by [CWG20], ML for medical imaging is susceptible to different domain shifts
that affect algorithmic performance and robustness in new environments. Population shifts
occur when the train and test populations exhibit different characteristics that might include the
prevalence of diseases, for example prevalence of lung nodules in polluted urban environments
is higher than in a rural setting. An ML model trained in one of the two settings is not able to
condition on the true causal links that are unseen in the images, hence, treats both populations

the same way.

Acquisition and annotation shifts affect the production of both images and ground truth labels
used to train ML algorithms. For example the same MRI scanner used to acquire both images
and annotations can lead to two different datasets, dependent on the scanner settings and

medical beliefs of the radiologist performing the annotations.

Finally, data selection biases are especially prevalent in the medical domains where expanded

datasets can be hard to create for ethical, economic, and legal reasons.

If acknowledged and mitigated by causal analysis, the aforementioned biases can help build ro-
bust and adaptable ML algorithms for medical imaging that minimize the chances of dangerous
predictions due to spurious correlations. In essence, many of the negative phenomena seen in
ML for medical imaging could be solved if the community expands its involvement with the
TRL points shown in Figure 2.7, which suggest the inclusion of causal analysis as an important
step. However, causal analysis is not commonly used for the development of ML applications
for medical imaging. Thus, in the following sections we review and explore recent research in
this direction and the use of causal analysis for medical image machine learning applications.
In addition we will attempt to identify trends and lay out our beliefs for future directions of

this field.
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2.9 Mathematical Foundations of Causality

We first introduce some key concepts in causality required for the upcoming discussion of
methods and Part [[T of this thesis. In Section[2.9.1] we discuss the concepts of Structural Causal
Models and their parametrization as Directed Acyclical Graphs as introduced in computer
science by J. Pearl. In Section we define the notions behind Rubin’s Potential Outcomes

framework.

2.9.1 Structural causal models

Definition 2.1 (Structural Causal Model). A structural causal model (SCM) specifies a set
of latent variables U = {uy,...,u,} distributed as P(U), a set of observable variables =
{v1,...,um}, a directed acyclic graph (DAG), called the causal structure of the model, whose
nodes are the variables U UV, a collection of functions F' = {f1,..., fa}, such that v; =

fi(PA;,w;), fori=1,...,n, where PA denotes the parent observed nodes of an observed vari-

able.

The collection of functions F' and the distribution over latent variables induces a distribution
over observable variables: P(V = v) 1= Y ¢ ¢ pa, )=y, £(i), In this manner, we can as-
sign uncertainty over observable variables despite the fact that the underlying dynamics are

deterministic. An example causal structure, represented as a directed acyclic graph (DAG), is

depicted in Figure [2.8a]

Definition 2.2 (Submodel). Let M be a structural causal model, X a subset of observed vari-
ables with realisation x. A submodel M, is the causal model with the same latent and observed
variables as M, but with functions replaced with F, = {f; | v; ¢ X} U {f}(PAj, uj) = |v; €
X}.

Definition 2.3 (do-operator). Let M be a structural causal model, X a set of observed variables.

The effect of action do(X = x) on M is given by the submodel M,.
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NN AN AN
( (d)
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Figure 2.8: Orange nodes are observed, green latent. (a) Example SCM; (b) twin network of
(a); (c¢) intervention in the twin network on node X*; (d) interventions in the twin network on

X & X*; (e) Uncounfounded version of (a).

The do-operator, seen in Figures[2.8¢ and [2.8d] forces variables to take certain values, regardless
of the original causal mechanism. Graphically, do(X = ) means deleting edges incoming to
X and setting X = z. Probabilities involving do(z) are normal probabilities in submodel M,:

P(Y =y |do(X =z)) = Pu,(y).

2.9.2 Counterfactual inference

Definition 2.4 (Counterfactual). The counterfactual sentence Y would be y (in situation

U =u), had X been z”, denoted Y,(u) =y, corresponds to' Y =y in submodel M, for U = u.

The latent distribution P(U) allows one to define probabilities of counterfactual queries, P(Y, =
Y) = D v, (u)=y £ (w). For z # 2’ one can also define joint counterfactual probabilities, P(Y, =
y, Yo =vy') = Zu\yz (W)=, &Y, ()=’ P(u). Moreover, one can define a counterfactual distribution
given seemingly contradictory evidence. Given a set of observed evidence variables E, consider
the probability P(Y, = ¢’ | E = e). Despite the fact that this query may involve interventions
that contradict the evidence, it is well-defined, as the intervention specifies a new submodel.
Indeed, P(Y, = ' | E = e) is given by [Pea09] > P(Y,(u) = y')P(u | e). The following

theorem provides an approach to computing such distributions.

Theorem 2.1 (Theorem 7.1.7 in [Peal9]). Given SCM M with latent distribution P(U) and
evidence e, the conditional probability P(Y, | €) is evaluated as follows: 1) Abduction: Infer

the posterior of the latent variables with evidence e to obtain P(U | e), 2) Action: Apply do(x)
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to obtain submodel M,, 3) Prediction: Compute the probability of Y in the submodel M, with
P(U | e).

Definition 2.5 (Twin Model [BP94]). Let V = {vy,...,v,} be observable nodes in the causal
model and V* = {v},... v’} the counterfactual duplicates of these. For every node v} in the
counterfactual model, its latent parent u; is replaced with the original latent parent w; in the
factual such that the original latent variables are now a parent of two nodes, v; and v}. A visual

representation of twin models is seen in Figure [2.8b

Theorem 2.2 (Counterfactual Inference in a Twin Model [BP94]). To compute a general
counterfactual query P(Y =y | E = e,do(X = x)), one modifies the structure of the coun-
terfactual network by dropping arrows from parents of X* and setting them to value X* = x.
Then, in the twin network with this modified structure, one computes the following probability

P(Y*=y| E =e, X* =) via standard inference techniques, where E are factual nodes.

2.9.3 Potential outcomes — Average treatment effect

The potential outcomes framework introduced by [SNDS90] and [Rub7§| explore the potential
outcomes of a given intervention. Formally the framework is primarily interested in Y (a),a € C
where Y is the outcome given intervention a which belongs in the set of possible actions C. For
the simple case where we are interested in the outcome of a specific treatment, we can define

use the following definitions:

Definition 2.6 (Treatment under Potential Outcomes). D;: Indicator of treatment intake for
unat ¢

1, if unit © received the treatment
D; = (2.16)

0, otherwise

Definition 2.7 (Potential Outcomes). Vy;: Potential outcomes for unit i depending if treatment

has been applied or not
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Vi, Potential Outcome for unit ¢ receiving the treatment

Yai = (2.17)

Wo.i, Potential Outcome for unit i not receiving the treatment

Using these quantities we are able to define the the causal effect

Definition 2.8 (Causal Effect). Causal Effect of the treatment on the outcome for unit i is the

difference between its two potential outcomes:

Ti = Vi — Vo (2.18)

In Equation (2.18)) we define the causal treatment effect for an individual unit . We can also

define the average treatment effect that looks into a group of individual units ¢ € G.

Definition 2.9 (Average Treatment Effect). Tarp is the difference between all treatment po-

tential outcomes and all control potential outcomes

1 & 1 &
TATE = NZ%,Z‘ — NZ%”"

= EV1i — Yol

= E[r;]

(2.19)

In literature we can find many variations of this measure like the individual treatment effect
(eg. [MLP21]) where we look on the treatment effect on an individual rather than aggregate
over a population. In the interest of conciseness we will not be be exploring the full range of
possible variations upon the ATE in this section but just acknowledge that they exist and call

upon them depending on the method we are discussing.

One last concept required for our discussion is propensity score. Introduced by [RR83| it
is defined to be the probability of treatment assignment conditioned on observed covariates.

Mathematically it can be described as e = P(T | X) where X are the covariates and T the
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treatment. Commonly used as a matching criterion to form sets of treated and untreated
subjects that are close in the covariate space; these sets are subsequently used to estimate the

causal effect of the treatment.

2.10 Causal discovery in medical imaging

Causal discovery is an open and challenging research problem, directly touching the most
fundamental aspects of scientific exploration; the discovery of causal relations [VCB21]. In
this setting we are trying to estimate the mechanisms that describe the causal links between
variables from data. In order to make the problem of causal discovery tractable, common causal

discovery methods make a series of assumptions that can be summarized as:

e Acyclicity - we are able to describe the causal structure as a Directed Acyclical Graph
(DAG)

e Markovian - all nodes are independent of their non-descendant when conditioned on their
parents

e Faithfulness - all conditional independences are represented in the DAG

e Sufficiency - any pair of nodes in the DAG have no common external causes

Moreover, the vast majority of approaches tackling causal discovery formulate the problem as
graph modeling challenge. We refer the reader to [GZS19, VCB21] for a more thorough review
of causal discovery methods based on graphical models. For the purposes of this section we note
that methods are often categorized based on their approach into constraint-based, score-based

and optimization-based [ZARX18] methods.

Constraint-based methods relate to approaches like [SGSH00] PC and Fast Causal Inference
(FCI) that test conditional independence between factors to assess their causal links. The main
intuition is that two statistically independent variables are not causally linked. First, pairwise

independence is evaluate to determine the undirected structure. Following this conditional
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independence is tested to orient the links between the nodes. If two nodes fail this test, then
they can be added to the separation set of each other used to orient colliders - nodes of the causal
graph with two or more incoming links. The main difference between the aforementioned PC
and FCI algorithms is FCI’s ability to be asymptotically correct in the presence of confounders.
Both of them are however limited to the causal equivalence classes, i.e., causal structures that
satisfy the same conditional Independence. A method that searches over the space of possible
equivalence classes is the Greedy Equivalence Search (GES) [Chi03] officially considered a score-
based method which uses the Bayesian Information Criterion (BIC). Similarly, [PSD™*20] use a
score based approach that characterizes the acyclicity constraint of Directed Acyclical Graphs

as a smooth equality constraint.

In the computer vision field, visual causal discovery has been spearheaded by tasks related
to the CLEVRER dataset [YGLT20] where ML algorithms are asked to understand a video
scene and answer counterfactual questions.[LTAT20] learn to predict causal links from videos,
by parameterizing the causal links as strings and springs where the algorithm predicts their
parameters. [LMZW22] perform a similar task by inferring stationary causal graphs from videos.
Furthermore, [NBS19] develop a causal discovery method based upon the use of attention-
enabled convolutional neural networks. [KCWT22| address the task of causal discovery by
training a neural network to induce causal dependencies by predicting causal adjacency matrices
between variables. Finally, works like [GGLT21] analyze how humans perform the task of causal

discovery in relation to how machine learning approaches the same task.

In the sub-field of medical imaging, causal discovery has not been explored to its fullest po-
tential. Most works involve functional Magnetic Resonance Imaging (f-MRI). {-MRI is able to
highlight active areas of the brain, and as during different physiological processes (working or
resting) activate a series of brain areas. Causal discovery in f-MRI attempts to identify causal
links among neural processes. [SRRZ718, SRRZG19] diverge from the usual DAG paradigm
and introduce the Fast Adjacency Skewness (FASK) method which exploits non-Gaussian fea-
tures of blood-oxygen-level-dependent (BOLD) signals to identify causal feedback mechanisms.
In a very interesting work, [HZZ"20| parametrize both causal discovery in f-MRI and domain

adaptation as a non-stationary causal task that they then proceed to solve. In the field of
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medicine but not imaging [MCO00] extract causal relations from medical textual data.

[BUYM™17] looked into applications on f-MRI and extracting causal relations between neural
processes by applying the most common causal inference techniques including dynamic causal
modeling, Bayesian networks, transfer entropy and ranked them based on their perceived suit-
ability and performance on the tasks at hand. Similarly, [CBTRDE21] explore deep learning
methods for schizophrenia analysis and outcome prediction, mostly with the use of f-MRI in-
puts, and argue for the need of causally enabled ML methods to produce plausible hypothesis
explaining observed phenomena. Recently [CRBC22] propose deep stacking networks (DSNs),
with adaptive convolutional kernels (ACKs) as component parts to aid the identification of

non-linear causal relationships.

Furthermore, [JLHT18| discuss bivariate causal discovery for imaging data. The authors develop
a non-linear additive noise model for that they show a causal discovery task with genetic data
and for causal inference in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) MRI data.
[RCP21] propose a Structural causal model that encodes causal functional relationships between
demographics and disease covariates with MRI images of the brain in an attempt to identify

Multiple Sclerosis (MS).

While the field of medicine is governed by causal relations between physiological processes, little
work has been done in the field of medical imaging and causal discovery. We believe that this is
mostly due to the significant inherent difficulty of the task at hand, in conjunction with the lack
of the required meta-data that are needed to characterize causal links that are not visible in the
image. In other words, we do not think that images by themselves possess enough information
for identification of causal links but we are adamant that they can serve as a useful tool and
source of extra information when combined with medical knowledge. It is, however, important
to note the potential the aforementioned time-series based causal discovery methods exhibit as
f-MRIs can themselves be thought of as time-modulated events, and be used in conjunction

with other time-based modalities.

Finally, relating back to Figure 2.7, causal discovery can aid bring to light causal links that

were not previously known. It can further help, probe the beliefs of other algorithms and hence
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root out spurious correlations or the encoding of societal biases that their creators carried. As
such we believe that causal discovery can assist the completion of TRLs 6.6 through audits
of the practitioners beliefs. Most importantly, however, in the subsequent sections we will
be discussing causal inference, that assumes the existence of high quality causal diagrams.
Causal discovery is responsible for establishing these diagrams and hence indirectly contributing

significantly at TRLs 6-6.4.

2.11 Causal Inference in medical imaging

While causal discovery using medical images is limited to some applications involving f~-MRI
scans, causal inference is significantly more active as an area of research. Highlighting its
importance, [CWG20] argue that causal inference can be used to alleviate some of the most
prominent problems in medical imaging. They argue that acquisition and annotation of medical
images can exhibit bias from the annotators and curators of the datasets. As such, causality
aware methods can learn to account for such biases and reduce their effects. Moreover, as the
training datasets represent a limited population with specific characteristics, medical imaging
algorithms are susceptible to population, selection and prevalence biases if not properly con-
trolled for these variations. These biases could for example arise when an algorithm is trained
by a vast majority on data that come from a given geographical region X, then it implicitly
learns the prevalence of diseases for that group; if it is deployed in a different region with a
population that is characterized by different genotype and phenotype characteristics, the biases

that the algorithm has learned could lead to mis- or under- diagnosis of diseases.

In our exploration of the use of causal inference in medical imaging literature we identified
five main sub-fields of research that leverage causal insights. We found that causal inference
is overwhelmingly used to contribute to fairness, safety and explainability of the existing ap-
proaches. There are some albeit limited uses in generative modeling of medical images, domain
generalization and out-of-distribution detection. As we will expand in the following sections,

we believe these areas are ready for more applications of causal inference.
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We note that all the works mentioned below have causality as a key part of their proposed
methodologies. We extended our review not only to peer reviewed publications but also to
notable preprints that appear to have produced significant discussion in the machine learning

medical imaging community.

2.11.1 Medical Analysis

We continue our literature review with causally enabled methods for medical analysis that

utilize imaging data.

In [WCD21] the authors use a normalizing flow-based causal model similar to [PCG20] in order
to harmonize heterogeneous medical data. Applied to T1 brain MRI for the classification of
Alzheimer’s disease, the method abides by the abduction-action-prediction paradigm to infer
counterfactuals which are then used to harmonize the medical data. [PW21] circumvent the
identifiability condition that all confounders have to be known and measured by leveraging
the dependencies between causes in order to determine substitute confounders; they apply
their method in brain neuroimaging for Alzheimer’s disease detection. On a similar note,
[ZDT*21] issue an alternative to expectation maximization(EM) for dynamic causal modeling
in -MRI brain scans. Their approach is based upon the multiple-shooting method to estimate
the parameters of ordinary differential equations (ODEs) under noisy observations required for
brain causal modeling. The authors suggest an augmentation of the aforementioned method
called multiple-shooting adjoint method by using the adjoint method to calculate the loss and

gradients of their model.

[CFL™22] propose a neural score matching method for high dimensional data that could be
potentially very helpful for the development of medical imaging applications as they develop
methods for causal inference in high dimensional settings; allowing thus the use of medical
images in a more straightforward way that avoids pre-processing them to a lower dimensional
latent space. Finally, [RHHT10] identified six problems that causal inference can assist in

solving in the field of functional MRI analysis.
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2.11.2 Fairness, Safety & Explainability

Another application of causal inference in the field of medical imaging revolves around fairness,
safety and explainability, directly related to TRLs 6.2 6.6 and 6.8. Medical tools like medical
imaging analysis have a significant impact on the well-being of people affected by their use.
Doctors and patients alike need to be able to trust the AT/ML methods in order to use them,
while contrary to other AI/ML applications unwanted bias and poor performance can often be
deadly. As such, the need to have fair, safe and explainable algorithms arises. Causal inference
is a great tool to analyze black box AI/ML methods and make sure that they are not carrying

unwanted societal biases and mitigate any robustness problems that might arise.

In this field [KSMZ"20] accompany their ML algorithm to detect polyps in human intestines
with a causality inspired analysis on the effectiveness of their method. Similarly [dSGS™T20] use
generative model produced brain MRI images of brain atrophy to evaluate and explore different
causal hypothesis on brain growth and atrophy. On a similar note [LSR*21] develop a causal
inference-based method to search associations in genomics data from the UK Biobank. Addi-
tionally, [BPGT21] employ causal analysis to explain the performance of their brain structure
segmentation network. Similarly [SWTB2I] employ mediation analysis to identify the units
and parameters of radiological reports that influence their classifier’s outcomes; this method is
applied on chest X-rays. In their work [ZDL721] develop a Bayesian causal model to interpret
the outputs and functionality of their Faster-RCNN based pelvic fracture classifier in CT im-
ages. Their Bayesian causal model matches lower confidence predictions with higher confidence
ones and then updates the prediction set based on these matching. [GSCHH] explore the ef-
fect of uncontrolled confounders in medical imaging applications and observe that regardless of
task and architecture, total confounding can be used to explain the difference in performance
between development of the models and real life applications. [AMAK22] evaluate new metrics
to quantify the effect of spurious correlations in age regression from hand X-rays. They show
that only under certain conditions these metrics can be trusted and call for a paradigm shift

in the effort to identify spurious correlations

Concerning fairness, [CCL™21] discuss the effects of biases in medical ML and how biases like
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image acquisition, genetic variation, and intra-observer labeling result in healthcare disparities.
They go on to argue that causal analysis in medical ML can greatly help mitigate such biases.
Expanding on this argumentation, [HDEST22|] argue that information fusion is key to achieve
greater transparency and safety in medical imaging ML applications. In a slightly different
position paper, [SCVH2I1] argue for the standardization of medical metadata in order to assist
causal inference techniques in biomedical ML. Along similar lines, [GML21] argues for the use
of causal intuition when designing medical imaging datasets. Meanwhile, [VRRK22] uses causal
inference to estimate the necessity and sufficiency of the type and quantity of data to include in
a medical imaging dataset in order to improve model performance under strict computational
and financial constraints. In addition, [VSGS21] contend that causal analysis can help alleviate
biases and provide the necessary trust to medical imaging application in deep space manned

missions.

Finally, [BJG22] investigated questions of algorithmic fairness in medical imaging ML under a
causal prism, focusing on the issue of under-diagnosis they highlighted some issues that warrant
more attention in prior pieces of literature. [SHKT22| perform a thorough evaluation of the
biases and unfairness that can arise in cross-hospital deployment of medical ML solutions assert-
ing a causal analysis as a potential method to alleviate these issues. [BPPT21| use propensity
scores (see section to quantify diversity due to major sources of population stratification

and hence assess fairness.

2.11.3 Generative methods

Generative modeling attempts to learn variable interdependencies such that the model is able to
generate realistic samples that abide by certain characteristics aiding the admittance past TRLs
6.4 and 6.8. Variational Autoencoders [KW13], Generative adversarial networks |[GPAM™14]
and normalizing flows [DSDBI6] are examples for approaches that try to estimate the under-
lying data distribution from which they then sample to produce new data. Causal inference
in generative modeling is a relatively underdeveloped field, especially in the context of medical

imaging due to the inherit difficulty to acquire good quality training signals for the counterfac-
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tual samples.

[GVMB22] develop a two stage methodology where Tuberculosis infected lung CT images are
analyzed in a disentangled manner and produce counterfactual images depicting how the patient
would look like if they were healthy. Contrary to other approaches the authors use a DAG to
represent the image generation process and parametrize it using a neural network such that
sampling and use of it is straightforward for the counterfactual generation step. [PCG20]
developed a normalizing flow model to perform the abduction step in an abduction-action-
prediction counterfactual inference task and are able to generate plausible brain MRI volumes.
Reynaud et al. in [RVDT22| assume a different approach and develop a generative model
based on Deep Twin Networks [VKGL21]. Performing counterfactual inference in the latent
space embeddings, the authors are able to generate realistic Ultrasound Videos with different
Left Ventricle Ejection Fractions. Their approach is similar to [KSDV1S] in the sense that a
GAN is used to provide a training signal for the generated, counterfactual samples. Moreover,
[KHNT22] in a methodologically similar note, generate counterfactual images to guide the

discovery of medical biomarkers in brain MRI volumes.

Finally [SKL722] use deep diffusion model to ask counterfactual questions and generate hard
to obtain medical scans. These, in turn, are used to augment existing datasets for other

downstream tasks.

2.11.4 Domain Generalization

One of the most promising areas where causal reasoning can be applied in the field of medical
imaging is Domain Adaptation and Out-of-Distribution detection, directly associated with TRL
6.4. If we model the generative process that results in a medical image and include factors
like the medical history, the disease, imaging domain, etc. we can then go on and interpret
domain generalization and adaptation as a model that is able to perform well under different
treatments in the imaging domain parameter, as argued by [HZZ20]. In their paper Huang
et al model domain adaptation as a non stationary change in the underlying causal graph and

propose methods to identify and resolve these changes. [ZDSK™21| analyze the domain shifts
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experienced in clinical deployment of AIML algorithms from a causal perspective and then
proceed to investigate and benchmark eight popular methods of domain generalization. They
find that domain generalization methods fail to provide any improvement in performance over
empirical risk minimization in situations where we find sampling bias. Similarly [FPKK22]
model the causal relationships leading to the medical images and create synthetic datasets in
order to evaluate the transportability of methods to external settings where interventions on

factors like ages, sex and medical metrics have been performed.

[OCL™21] apply a causal analysis on the problem of domain generalization in segmentation of
medical images. They first simulate shifted domain images via a randomly weighted shallow
network; then they intervene upon the images such that spurious correlations are removed and
finally train their segmentation model while enforcing a domain invariance condition. [VLT21]
develop a method to reuse adversarial mask discriminators for test-time training to combat
distribution shifts in medical image segmentation tasks. In their discussion of their method
they explain the good performance of their method under a causal lens. Finally [KOPT19
build a causal Bayesian prior to aide MRI tissue segmentation to generalize across different

medical centers.

2.11.5 Out of Distribution Robustness & Detection

We ought to consider the use of causal reasoning and inference on out of distribution detection
tasks aiding TRLs 6.6 and 6.8. Commonly seen as anomaly detection tasks many methodolo-
gies attempt to learn the underlying distribution of “normal”- in-distribution data and assess
whether test out-of-distribution “pathological” samples belong to the same distribution or not.
In a related task, researchers sometimes treat the out-of-distribution as a robustness criterion
and attempt to develop methodologies that can operate equally well in all domains. It is evi-
dent that an alternative, where we learn the causal dependencies that make samples that are
considered out-of-distribution can yield significant benefits in the field of anomaly detection.
In this sub-field we only found a few works exploring this approach in medical imaging but we

believe that more works will appear once the community gets more familiar with the benefits
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of causal reasoning.

[YLH™21] give a causal explanation to diversity and correlation shifts and proceed to benchmark
out-of-distribution methods, showing that the aforementioned shifts are the main components
of the distribution shifts found in OOD datasets. Similarly [YXLIL21], introduce an influence
function and a novel metric to evaluate OOD while analyzing their contributions from a causal
standpoint. [LSWT21] propose a causal semantic generative model in order to address OOD
prediction from a single training domain. Utilizing the causal invariance principle they dis-
entangle the semantic causes of prediction and other variation factors achieving impressive

results.

On the robustness of medical procedures [DZK™*22], built a causal tool segmentation model that
iteratively aligns tool masks with observations. Unable to deal with occlusions and without
leveraging temporal information the authors of this recent work also comment on the future

next steps of robust causal machine learning tools.

Even though not directly applied in medical imaging, causality has been playing an important
role in the algorithmic robustness literature as seen in [ZGLT22, PSWBIS]. Meanwhile the
machine learning for medical imaging community has shown great interest in developing robust
algorithms, [HMT21, HWB™19]. We hope that these two communities will soon come together

and use causal reasoning in making machine learning for medical imaging algorithms robust.



Chapter 3

A Case Study

In this chapter we discuss a case study to give prominence to the need of an

IDiagnostic System| (ADS)). We want to aid the motivation and understanding of the practical

applications of this thesis. The chapter below is based upon [VSGS21] where the author was
the primary driver of the case study setting out and discussing the potential of automated

diagnostic systems in deep space exploration scenarios.

In this case study we point out that future short or long-term space missions require a new
generation of monitoring and diagnostic systems due to communication impasses as well as
limitations in specialized crew and equipment. Machine learning supported diagnostic systems
present a viable solution for medical and technical applications. We discuss challenges and
applicability of such systems in light of upcoming missions and outline an example use case
for a next-generation medical diagnostic system for future space operations. Additionally, we
present approach recommendations and constraints for the successful generation and use of

machine learning models aboard a spacecraft.

3.1 Introduction

Space agencies have a renewed drive to take human space exploration beyond
and into deep space. NASA’s Artemis program outlines a clear path to return to

41
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the Moon and to go beyond to Mars [NAS17]. Additionally, recent successes in the commercial
space sector by major players such as SpaceX and Blue Origin make human spaceflight more ac-
cessible, affordable and future long term-missions a reality. Yet future long duration spaceflight
require systems that are independent of [LEOQ] operations such as constant communication, the
ability to transfer large amounts of data via multiple systems in a relatively short time-frame
or the ability to request and exchange crew if needed. On Earth, [MI] and machine automa-
tion is already driving the next industrial revolution and resulted in fully autonomous industrial
processes in domains such as agriculture as well as manufacturing [AAUST19, [YKBTT9]. Space-
flight itself, however, is far behind such advances. Here we discuss challenges [MI] supported
systems face in the space domain as well as the applicability and advantages of systems
on a spacecraft. We highlight aforementioned items via an example of an autonomous medical

system and describe an infrastructure for the successful development of such systems.

3.2 Challenges for Machine Learning aboard Spacecraft

Space is challenging and manned space exploration is dangerous and unforgiving. Moreover,
the long term effects of human presence in micro gravity are still not fully known. Current
space missions do rarely include a medical officer among the crew and rely on specialists who
are also trained in emergency medicine. While this is sufficient for minor and trained emergency
cases, it does not allow for more serious and complex medical treatments. Health related checks
and emergencies are handled in a telemedicine regime where instructions are communicated to
the astronauts via ground to spacecraft channels. In extreme emergencies the astronauts can
always make the journey back on Earth. As missions veer further away from Earth, returning
for medical treatment and relying on simultaneous communications becomes infeasible as both
distance and communication latency increases significantly. For a deployed [ML] system aboard
a spacecraft there are several challenges to consider: a) limited live testing abilities available,

and testing in the form of payloads on missions are expensive; b) systems that are deployed

need to be at a high [Technology Readiness Level (TRL)| [LGLV™21b|; ¢) environmental effects

may influence deployed systems. For example, how ionizing radiation can affect deployed space
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capable hardware [PB05], affecting the consistency of sensor behavior such as early or late sen-
sor fusion; leading to potentially corrupted data to be processed e) payloads are constrained by
weight, so shipping large compute infrastructures is infeasible; f) fully autonomous applications
can be found mainly on controlled environments that assume almost complete access to infor-
mation and environmental parameters; g) and more importantly the lack of labeled data for
each task along with limited interpretability and explainablity of current [MI] systems add to
the complexity. Contrary to that, any space-faring vehicle is faced with extreme environmental
conditions that not only are hard to control or predict, but in some cases are challenging to
human scientific comprehension. Hence, [MI] systems must be as robust as possible to changes

of their operating environments.

3.3 Applicability & Advantages

Incorporating autonomous processes in a spacecraft is a complex task as technology and the
associated needs constantly develop. Some key points, however, are: (1) Reduce Latency and
Earth Reliance - A significant amount of operations aboard modern day spacecrafts and the ISS,
require the constant communication with mission control on Earth [Deml17]. As space explo-
ration expands further away from [LEO]and the Moon, the delay in communication represent an
insurmountable obstacle for remote guidance, control and communications. Characteristically,
we note that the round-trip time for current communications with Mars ranges between 5 and
20 minutes depending on the state of the two planets orbits [NAS20]. [ML] thus, can resolve
the dependency on communications and perform the mission critical information processing
aboard. (2) Adapting Maintenance - Modern spacecrafts both manned and unmanned, consti-
tute extremely complex systems that even with the use of automated checks are still prone to
faults, especially when faced with extraordinary circumstances. The crew might not be able to
solve the issues by themselves. To tackle this we believe that [ML] systems can perform func-
tions that transcend anomaly detection and fault prediction. An ideal deployed solution
needs to account for automated maintenance and resolution of faults both in hardware and

in the software of the spacecraft. (3) Reduce latency for functions that don’t require manual
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intervention and can be conducted at scale. For example, automated checksums for data or
models (4) Recent advances in[ML|like bit quantization, pruning, and hardware approximations
[WDZ719] enable inference on resource constraint edge devices which can also be similar to the

target hardware in space [HJLT20).

3.4 Medical Use Case

In the previous sections we have set out some challenges as well as advantages for the use of
IMIJ on spacecraft. In this section we will be exploring the medical use case. As mentioned
before, medical treatment in space relies on communication with the earth, a reliance we need
to remove as we progress into deep space missions. A major part of medical treatment is the
ability to inspect bodily functions in a non invasive manner through the use of medical imaging

devices. [MRI] [CT] and X-Rays are widely used on earth but are not ideal for space use, as we

explain below. To this effect, we propose the use of [Point Of Care Ultrasound (POCUS)| as a

lightweight non ionizing imaging solution.

[MI] Enabled Imaging: Medical imaging devices are often slow, requiring significant resources
to operate and store and depend on the use of ionizing radiation (e.g. X-Rays/CT Scans) that
has negative effects on patients and doctors alike [FDA21]. One notable exception to the above

constraints is [Point Of Care Ultrasound| (POCUS)). Mobile device enabled (US)

probes are safe for patients and doctors, require minimal resources to operate —weighing less

than 1kg— and offer real time imaging capabilities [GEH21]. However, acquiring medically

significant images with a [POCUS| probe is non trivial and requires expert operators.

As expert users might not always be available in deep space missions we envision the use of

[MT] enabled [POCUS] probes that guide the user to medically relevant areas.

Approaching the task of navigation one can identify straight away the need to be able to deter-
mine where the intelligent agent is with respect to the patient’s body. Basic anatomy knowledge
by both patient and other crew members is assumed for the purposes of this application. Nav-

igating to points of medical interest, though is non trivial. Following medical practice of first
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identifying standard planes and anatomical landmarks; [RI] solutions of disembodied agents
have been proposed in [AOLT19b, VAK™19| to perform the above tasks, providing high accu-
racy and low computational constraints. [MBST9, [HAT™20, LWX™'21|] expand the methods
including the degrees of freedom of the US probe into the agent’s action space and optimize
directly on identifying landmarks while controlling a virtual probe. All the above methods
find themselves limited to the anatomies that they have been trained on, with their computa-
tional burden rising significantly when trained to find standard planes or landmarks of multiple

anatomies.

As such we believe that a hierarchical approach to the problem would help keep complexity
and computation low enough for space craft applications while maintaining high enough perfor-
mance. Approaches like MAX-Q [Die00] have withstood the test of time and have theoretical
guarantees on convergence and the ability of the algorithm that given a set of subtasks it can
find the global optimal policy. In short, MAX-Q constructs a hierarchical action tree that a
higher level agent uses to sets out subtasks for other agents. In this fashion one can design a
fully autonomous agent that collects information in form of images through [POCUS]| naviga-
tion, assesses biomarkers based on measurements derived from landmarks, and regresses the

diagnosis.

Furthermore, [EJRB™ 18| [DG16l RG18] have shown that incorporating modules that aid agents
“imagine” how scenes would look like from different points of view, increases their perfor-
mance in scene understanding. Hence, we are firm believers that incorporating such modules

in approaches like [MBS19] would increase their performance capabilities.

Finally, as medical applications are of critical importance, appropriate checks and balances
should be put in place to avoid any harm to the crew. We believe that a rule based set
of parameters should be developed in collaboration with physicians that would constitute a
fallback system. Having no dependence on learned or inferred information we are able to
guarantee a basic level of care to the astronauts in case all other systems fail. On top of the

safety-net rule based system, a causal inference infrastructure can be used to assess the the

probabilities of causality (Sufficiency and Necessity) [BWZ"18, [KLRS17, LSM™17, VRREK20,
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BBH721|]. Causal counterfactual inference enable us to assess the causal links and potential

outcomes of treatments providing, thus, a more informed decision process.

3.5 Infrastructure considerations for Machine Learning

systems on Spacecraft

Developing novel methods to provide mission critical treatments to astronauts is a hard
task. In the previous section we set out some thoughts on a potential application for medical
imaging aboard a spacecraft. In this section we will be briefly exploring infrastructure con-
siderations that are directly related to the operation and development of medical imaging
solutions. These considerations are also apparent on earth bound applications but gain

increased importance due to the edge cases that they are called to operate on during spaceflight.

Data Collection Medical data acquisition is faced with a series of challenges. The privacy
of the patients donating their data has to be protected throughout the data acquisition and
model development processes. In order to comply with all legal obligations, we propose the
data to have NTHR [NIH21] approved methods in place for making patient data anonymous.
Meanwhile, storage of data must be in a HIPAA [HIP21] compliant platform. Federated learning
also present promising methods in regards to secure data processing [KMY"16]. Going beyond
the need of anonymization and maintenance we would like to draw the reader’s attention to

two constraints of increased importance on medical applications

Domain Shift: Domain shift robustness is an open topic of [MI] research that focuses on
making existing methods robust to distributional shifts from the underlying training data do-
main [LZWJ16, ZWW™20]. In medical applications and more prominently in medical imaging
applications domain shifts are easier to manifest and harder to overcome. The first major fac-
tor in this phenomenon comes from the equipment used. Medical equipment, when installed
in hospitals and health centers is configured by the seller to the exact specifications of the at-

tending physicians, as such, two different doctors using the same base equipment on the same
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patient can result in two quite different images. The standardization of medical equipment

configurations in space missions would aid to decrease the equipment-induced domain shifts.

Another source for domain shift comes from the training patient characteristics. Different
populations exhibit different medical characteristics. Hereditary traits as well as phenotype
derived attributes place an individual in different medical risk groups and force pathologies to
manifest with different probabilities. These differences are often picked up by [MI]algorithms as
unwanted inductive biases, skewing the learned conclusions. In the context of space missions,
astronauts have diverse backgrounds both genetically and in terms of phenotype, as such models
trained on a general population not representative of the characteristics of the crew can provide
skewed estimations of biomarkers vital for diagnosis. It is imperative, then, that the deployed

models be calibrated to the genetic background and phenotype of the astronauts.

Anomalous phenomena: As stated in the above motivation, the effects on human well-being
stemming from prolonged exposure to cosmic radiation and other space related phenomena are
not fully understood. It is unknown, hence, how the human body might react to adverse
conditions. [MI] applications cannot, then, be expected to cover the full range of scenarios,
on the contrary they should be expected to fail when presented with data that constitute
an anomalous effect. In order to combat potential failure cases of the medical systems on-
board a spacecraft, we suggest accompanying any algorithm with an anomaly detection
mechanism (perhaps probabilistic or out-of-distribution mechanics), that flags non standard bio
markers [WBR20], and an active learning [Set12] feedback pipeline such that new, medical

phenomena are incorporated in the evolution of the medical algorithms on-board.

Computational Considerations High communication latency creates the demand for on-
board computation. However, cosmic radiation and weight offers strict constraints on the
available on-board compute resources. Cosmic radiation is able to produce errors in modern
scale computing units, while weight restrictions exist in all parts of a mission, from lift-off to
grounding. [MI] applications should, then, be able to function without heavy computational
needs, a non-trivial feat especially on medical imaging algorithms. This reinforces our case

towards the use of [POCUY| as they have been shown to be computationally and physically
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lightweight. Recently [HJL™20] has shown that NVIDIA’s Jetson Xavier modules are able to
withstand a significant level of proton-based radiation, making them optimal candidates for
on-board inference and fine-tuning infrastructure. NASA has also awarded an SBIR contract
to Numem [Gha20] to develop a radiation hardened DNN co-processor for a wide variety of

applications, from low power machine vision to healthcare.

We note that of equal importance are storage capabilities that unfortunately are also compro-
mised by weight and radiation restrictions when used in orbit. While storing models pre-trained
on earth is a viable short term solutions, we foresee the need for fine tuning and inference on
newly collected data. As such we focused our case study on the computational capabilities

rather than storage.

3.6 Summary

[ML}supported medical diagnostic systems on spacecraft are necessary for long-term space mis-
sion to overcome limitations in ground-to-spacecraft communication and lack of qualified med-
ical crew. In this case study, we outlined the importance of incorporating [ML}enabled medical
applications on spacecrafts and considered challenges that need to be overcome in terms of
anomaly detection and domain adaptation. Finally, we discussed ideas on how to augment
existing [POCUS] algorithms such that they constitute a complete diagnostic system. We gave
the example of a hierarchical [RTjmethod that also includes causal inference checks and balances
such that the health and safety of crew members is guaranteed. Having set out the motivation

of our applications we now turn towards developing the components outlined in Figure [1.1}
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Exploration
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Chapter 4

Exploring & Finding

As set out in the Introduction of this Thesis and Figure [I.1] we will first tackle the problem of
exploring our environment and finding points of medical interest. Of course, this is not a trivial
task, we will be suggesting a novel reinforcement learning approach that allows multiple agents
to communicate implicitly with each other and aid each other in achieving the end tasks. For
the benefit of the reader Figure shows the relative position of this chapter in our efforts
towards building a [ADS] This chapter is based upon [VAK™19] published in MICCAI 2019
where the author conceived of the study, developed the appropriate tools and methods, ran the

experiments and led the writing of the paper

The exact localization of anatomical landmarks in medical images is a crucial requirement for
many clinical applications such as image registration and segmentation as well as computer-
aided diagnosis and interventions. For example, for the planning of cardiac interventions it is
necessary to identify standardized planes of the heart, e.g. short-axis and 2/4-chamber views
[ALFV™18]. It also plays a crucial role for prenatal fetal screening, where it is used to estimate
biometric measurements like fetal growth rate to identify pathological development [RPN12].
Moreover, the mid-sagittal plane, commonly used for brain image registration and assessing
anomalies, is identified based on landmarks such as the and [AOL™19a]. Linking back
to our case study from Chapter An astronaut helping a fellow crew member undergoing

an ultrasound screening will not necessarily have the medical expertise to find the appropriate
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Figure 4.1: We first look into the exploration branch and how to identify points of medical
interest

medical landmarks that would be informative for the [ADS] As such, assuming a basic un-
derstanding of human anatomy the need arises for an automated method of guiding them to

medically relevant points.

Manual annotation of landmarks is often a time-consuming and tedious task that requires
significant expertise about the anatomy and suffers from inter- and intra-observer errors. Au-
tomatic methods on the other hand can be challenging to design because of the large variability
in the appearance and shape of different organs, varying image qualities and artifacts. Thus,

there is a need for methods that can learn how to locate landmarks with highest accuracy and

robustness; one promising approach is based on the use algorithms |[GGM™16/, IAOL™19al.

We present a novel [Multi Agent Reinforcement Learning (MARL)| approach for detecting mul-

tiple landmarks efficiently and simultaneously by sharing the agents’ experience. We identify

three main points in our approach: (i) We introduce a novel formulation for the problem of

multiple landmark detection in a[MARL|framework; (7i) A novel collaborative [Deep Q-Network|

(IDQN) is proposed for training using implicit communication between the agents; (7i) Exten-

sive evaluations on different datasets and comparisons with recently published methods are
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provided (decision forests, [Convolutional neural networkl (ConvNet|), and single-agent [RL).

4.1 Related Work

In the literature, automatic landmark detection approaches have adopted machine learning
algorithms to learn combined appearance and image-based models, for example using regression
forests [OBGT17] and statistical shape priors [GCLBI15]. Zheng et al. |ZLGT15] proposed
using two CNNs for landmark detection; the first network learns the search path by extracting
candidate locations, and the second learns to recognize landmarks by classifying candidate
image patches. Li et al. [LACT18] presented a patch-based iterative CNN to detect individual
or multiple landmarks simultaneously. Ghesu et al. [GGM™16] introduced a single deep
agent to navigate in a 3D image towards a target landmark. The artificial agent learns to
search and detect landmarks efficiently in an [RT]scenario. This search can be performed using
fixed or multi-scale step strategies |[GGZT19]. Recently, Alansary et al. [AOL™19a] proposed
the use of different architectures for landmark detection with novel hierarchical action
steps. The agent learns an optimal policy to navigate using sequential action steps in a 3D image
(environment) from any starting point towards the target landmark. In [AOLT19a] the reported
experiments have shown that such an approach can achieve state-of-the-art results for the
detection of multiple landmarks from different datasets and imaging modalities. However, this
approach was designed to learn a single agent for each landmark separately. In [AOL™19a] it has
also been shown that performance of different strategies and architectures strongly depends on
the anatomical location of the target landmark. Thus we hypothesize that sharing information

while attempting simultaneous detection reduces the aforementioned dependency.

4.2 Proposed Method

We formulate the problem of multiple anatomical landmark detection as a multi-agent rein-

forcement learning scenario. Building upon the work of [GGM™16] and [AOL™19a] we extend
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Figure 4.2: (a) A single agent and (b) multi agents interact within an environment.

the formulation of landmark detection as a [Markov Decision Process (MDP)| where artificial

agents learn optimal policies towards their target landmarks, which defines a concurrent

tially Observable Markov Decision Process (POMDP)[ (co-POMDP)[GEL5]. We consider our

framework concurrent as the agents train together but each learns its own individual policy,
mapping its private observations to a personal action [GEKI7]. We hypothesize that this is nec-
essary as the localization of different landmarks requires learning partly heterogeneous policies.

This would not be possible with the application of a centralized learning system.

Our RI] framework is defined by the States of the environment, the Actions of the agent, their

Reward Function and the Terminal State. We consider the environment to be a 3D scan of the

human anatomy and define a state as a |Region of Interest| (ROI|) centered around the location

of the agent. This makes our formulation a POMDDP)]as the agents can only see a subset of the
environment [JSJ95]. We define the frame history to be comprised of four [ROIs. In this setup
each agent can move along the z, y, 2 axis creating thus a set of six actions. The agents evaluate
their chosen actions based on the maximization of the rewards received from the environment.
The reward function is defined as the relative improvement in Euclidean distance between their
location at time ¢ and the target landmark location. In our multi-agent framework, each agent

calculates its individual reward as their policies are disjoint.

During training, we consider the search to have converged when the agent reaches a region
within Imm of the target landmark. Episodic play is introduced in both training and testing.
In training, the episode is defined as the time the agents need to find the landmarks or until they

have completed a predefined maximum number of steps. In case one agent finds its landmark
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Figure 4.3: Proposed [Colab-DQN]| for the case of two agents; The convolutional layers and
corresponding weights are shared across all agents making them part of a Siamese architecture,
while the policy making fully connected layers are separate for each agent.

before all others, we freeze the training and disable network updates derived from this agent
while allowing the other agents to continue exploring the environment. During testing, we
terminate the episode when the agent starts to oscillate around a position or exceeds a defined

maximum number of frames seen in the episode similar to [AOL™19a].

4.2.1 Collaborative Agents

Previous approaches to the problem of landmark detection by JAOLT19al, |[GGZ™19] and
[GGM™16| considered a single agent looking for a single landmark. This means that fur-
ther landmarks need to be trained with separate instances of the agent making a large scale
application unfeasible. Our hypothesis is that the position of all anatomical landmarks is inter-
dependent and non-random within the human anatomy, thus finding one landmark can help to
deduce the location of other landmarks. This knowledge is not exploited when using isolated
agents. Thus, in order to reduce the computational load in locating multiple landmarks and
increase accuracy through anatomical interdependence, we propose a collaborative multi agent
landmark detection framework called [Colab-DQN] The following description will assume just
two agents for simplicity of presentation. However, our approach scales up to K agents. For

our experiments we show evaluations using two, three and five agents trained together.
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ADQN]Jis composed of three convolutional layers interleaved with maxpool layers followed by
three fully connected layers. Inspired by Siamese architectures [BGL*93], in our[Colab-DQN]
we build K [DQN|networks with the difference that weights are shared across the convolutional
layers. The fully connected layers remain independent since these will make the ultimate
action decisions constituting the policy for each agent. In this way, the information needed to
navigate through the environment are encoded into the shared layers while landmark specific
information remain in the fully connected ones. In Figure we graphically represent the pro-
posed architecture for two agents. Sharing the weights across the convolutional layers helps
the network to learn more generalized features that can fit both inputs while adding an im-
plicit regularization to the parameters avoiding overfitting. The shared weights enable indirect
knowledge transfer in the parameter space between the agents, thus, we can consider this model
as a special case of collaborative learning [GEK17] where collaboration and communication is

implicit.

4.3 Experimentation

4.3.1 Dataset:

We evaluate our proposed framework and model on three tasks: (i) brain landmark detec-
tion with 728 training and 104 testing volumes [JJT08]; (ii) cardiac landmark detection
with 364 training and 91 testing volumes [dMDS™14] and (iii) landmark detection in fetal brain
[US| with 51 training and 21 testing volumes. Each modality includes 7-14 anatomical ground

truth landmark locations annotated by expert clinicians [AOL™19a).

4.3.2 Training:

During training an initial random location is chosen from the inner 80% of the volume, in order

to avoid sampling outside a meaningful area. The initial [ROI] is 45 x 45 x 45 pixels around
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Method AC PC RC LC CSpP
Supervised CNN | - - - - 5.47 + 4.23
DQN 246144 | 205£1.14 |[337£1.54 |[3.25+£1.59 |3.66+211
|Colab-DQN| 0.93+0.18 | 1.05+0.25 | 2.52+2.25 | 241 +1.52 | 3.78 £ 5.55

Table 4.1: Results in millimeters for the various architectures on landmarks across brain [MRIl
and fetal brain US. Our proposed Collab [DQN]| performs better in all cases except the [CSP]
where we match the performance of the single agent.

the randomly chosen point. The agents follow an e-greedy exploration strategy, where every
few steps they choose a random action from a uniform distribution while during the remaining
steps they act greedily. Episodic learning with the addition of freezing action updates for the
agents that have reached their terminal state until the end of the episode is used, as detailed

in Section [4.2

4.3.3 Testing:

For each agent, we fixed 19 different starting points in order to have a fair comparison among
the different approaches. These points were used for all testing volumes for each modality at
25%, 50% and 75% of the volume’s size. For each volume the Euclidean distance between the
end location and the target location was averaged for each agent for each of the 19 runs. The

mean distance in mm was considered to be the performance of the agent in the specific volume.

Multiple tests have been performed using our proposed architecture. Comparisons are made
against the performance on multi-scale landmark detection [GGZ™19], fully supervised deep
[LACT18] as well as a single agent landmark detection algorithm [AOL™19al.
In case of cardiac landmarks we compare with [OBG™17] that utilizes decision forests. Dif-
ferent variations like the Double or Duelling are not evaluated since their
performance provides little to no improvement for the task of anatomical landmark detection

as exhibited in [AOLT19a].

Even though our method can scale up to K agents given enough computational power we lim-

ited our comparison to the |[Anterior Commissure| (AC)) and the [Posterior Commissure| (PC|) of
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the brain; the and [Mitral Valve Centre (MV)| of the heart; the [Right Cerebellum|

|(RC)\, [Left Cerebellum (LC)| and [Cavum Septum Pellucidum)| (CSP)) for the fetal brain. These

are common, diagnostically valuable landmarks used in the clinical practice and by previous
automatic landmark detection algorithms. For completeness and to facilitate future compar-
isons, we provide our performance comparison also for the training of three and five agents
simultaneously. In Table [L.1, we show the performance of the brain [MRI]| and fetal brain [US]
landmarks using the different approaches. In Table we exhibit the results for three and five

agents trained simultaneously and the results for cardiac landmarks.

4.4 Discussion:

As shown in Tables and our proposed method significantly outperforms the current
state-of-the-art in landmark detection. p-values from a paired student-t test for all experiments
were in the range 0.01 to 0.0001. We perform an ablation study by training instances of a single
agent with double the iterations and double the batch size. The study has been conducted on
the Cardiac [MR]| landmarks that have exhibited the biggest localization difficulties because of
larger anatomical variations across subjects than observed in brain data. Our results confirm
that the agents share basic information across them, which helps all of them perform their
tasks more efficiently. These results support our hypothesis that the regularization effect from

the gradients collected from the increased experience and knowledge of the multi-agent system

(a)

Method |AP| |MV|
Landmark 3 Agents | 5 Agents
g g Inter-Obs. Error | 5.79 £ 3.28 | 5.30 £ 2.98
AC 0.94+0.17 | 0.98 +0.25 —
Decision Forest 6.74+4.12 | 6.32+3.95
PC 0.96 £0.20 | 0.90 +0.18
IDQN| 4.47+£264 | 5.73+4.16
Landmark 3 | 1.45+0.51 | 1.394+0.45
|DQN| Batch x2 4.30 £12.07 | 5.01 4+4.49
Landmark 4 N/A 1.42+0.90 :
Tandmark 5 N/A 173 £ 0.61 [DQN| Iterations x2 | 4.78 +13.87 | 5.70 + 18.11
: : [Colab-DQN| 3.96 +5.07 | 4.87+£0.26

(b)

Table 4.2: (a)Multiple agent performance, training and testing were conducted in the Brain
MRI; Landmarks 3,4,5 represent respectively the outer aspect, the inferior tip and the inner
aspect of the (b) multi-agent performance on cardiac dataset;
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is advantageous. Furthermore, we created a single agent with doubled memory but due to the
random initialization of experience memory, the agent failed to learn. In addition, as shown
in Table (a), the inclusion of more agents leads to similar or improved results across all
landmarks. It is interesting to note that even though we perform better in all landmarks,
our approach can only match the performance of a single agent for the CSP landmark.
We theorize that this is due to the different anatomical nature of the [RC| [LC| landmarks
compared to the [CSP|landmark, thus the joint detection does not present an advantage. We

chose to utilize the [DQN]| in this chapter rather than existing policy gradient methods like

IAsynchronous Advantage Actor Critic (A3C)| as the is represented by a single deep

that interacts with a single environment. use many instances of the agent
that interact asynchronously and in parallel. Multiple agents with multiple incarnations
of such environments are computationally expensive. In future work, we will investigate the
application of other methods for multiple-landmarks detection using either collaborative or
competitive agents. Finally we ought to note that as the information passing is implicit and
primarily effects the agents during training error accumulation and trajectory drift effects are
minimized during inference. As such, if one agent experience a catastrophic divergence and
fails to locate its target, other agents are not affected to an extent that would cause them to

lose their targets as well.

4.4.1 Computational Performance:

Training multiple agents together does not only provide benefits in performance of landmark
localization, it also reduces the time and memory requirements of training. Sharing the weights
between the convolutional layers helps to reduce the trainable parameters by 5% in case of two
agents and by 6% in case of three agents when compared with the parameters of two and three
separate networks respectively. Furthermore, the addition of a single agent to our architecture
reduces the required number of parameters by 6% compared to a single standalone agent.
Due to the regularization effect that multiple agents have on their training and the implicit

knowledge transfer, the training time our approach needs on average 25.000-50.000 less time
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steps to converge compared with a single [DQN| and each training epoch needs approximately
30 minutes less than the training of 2 epochs in a separate single (NVIDIA Titan-X, 12

GB). Inference is on par with a single agent at ~20fps.

4.5 Chapter Summary

In this chapter we formulated the problem of multiple anatomical landmark detection as a
multi-agent reinforcement learning scenario, we also introduced a Collaborative
for landmark detection in brain and cardiac [MRI| volumes and 3D [US] We train K agents
together looking for K landmarks. The agents share their convolutional layer weights. In this
fashion we exploit the knowledge transferred by each agent to teach the other agents. We
achieve significantly better performance than the next best method of [AOLT19a] decreasing
the error by more than 1mm while taking less time to train and less memory than training K
agents serially. We believe that a Bayesian exploration approach is a natural next step, which

could be addressed in future work.

Since the time of writing and publication of this work, a series of methods have been proposed
and built upon the algorithms of this chapter. [LRA20] directly extend the concept of MARL
for anatomical landmark detection by building explicit communication channels between the
agents. Meanwhile [YHH™21| incorporate time domain information by using an Recurrent
Neural Network (RNN) backbone to their MARL algorithm. While the advances of anatom-
ical landmark detection are numerous, certain main axes of research emerge. Methods solely
concerned for with identifying the landmarks often opt of deep learning methods like the faster
R-CNN |CLD™21]. On the other hand, robotics oriented applications that require both accurate
detection of the landmarks and the trajectories of localization opt for reinforcement learning

methodologies.

In this way we set our first building block towards an autonomous diagnostic system. In the
next chapter we will be looking into how to contemplate and imagine the 3D structure of a 2D

object we saw in our exploration.



Chapter 5

Imagining Objects

Having established methods to explore the environment and identify points of interest, we
turn our focus to trying to image how the depicted 2D objects appear in 3D. Moreover we
will try to segment away regions of interest in these 3D reconstructions. Understanding the
3D properties of objects is a vital part of intelligence and with this chapter we inch forward
towards achieving this greater and difficult goal. This work is classified under the Fxploration
paradigm of the as seen in Figure . This chapter is based upon [VBH"20],published in
the TTA workshop of MICCAI 2020 where the author conceived the method, planned and ran

the relevant experiments.

X-Ray imaging is quick, cheap and useful for front-line care assessment and intra-operative
real-time imaging (e.g., C-Arm Fluoroscopy). However, it suffers from projective information
loss and lacks vital volumetric information on which many essential diagnostic biomarkers are
based on. In this chapter we explore probabilistic methods to reconstruct 3D volumetric images
from 2D imaging modalities and measure the models’ performance and confidence. We show
our models’ performance on large connected structures and we test for limitations regarding
fine structures and image domain sensitivity. We utilize fast end-to-end training of a 2D-3D

convolutional networks, evaluate our method on 117 scans segmenting 3D structures from

IDigitally Reconstructed Radiographs (DRR)|with a Dice score of 0.91 £ 0.0013.

60
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Images/Videos

Figure 5.1: Subsequently we look into the exploration branch and how to imagine the 3D
structure of a 2D object we observed

5.1 Introduction

Computed tomography (CT) scans provide detailed 3D information of patient anatomy that
is vital to many clinical workflows. For many pathologies, accurate diagnosis relies heav-
ily on information extracted from images and volumes [Rubl4], e.g. biomarkers de-
rived from 3D lung segmentations are used to characterize and predict Tuberculosis progres-
sion [VDVVdBDS03]. scans, however, are both time-consuming and expensive to perform,
and are not always available at the patient’s current location, resulting in delayed diagnosis and

treatment. [CT] scans also present a higher risk to the patient due to increased radiation expo-

sure over a typical [Chest X-Ray (CXR)| Meanwhile are routinely taken in the clinical

practice at significantly decreased cost and radiation dosage while acquisition times are many

orders of magnitude less than a [CT]scan.

Learning based methods have shown great potential for synthesizing structurally coherent
information in applications where information is lost due to non-invertible image acquisi-
tion [HRRR1§|. A primary example of such an application is projection. As the human

anatomy is locally well-constrained, a canonical representation can be adopted to learn the
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anatomical features and extrapolate a corresponding 3D volume from a 2D projection view.
This can be achieved by reflecting likely configurations, as they were observed in the training
data, while inference is conducted by giving a sparse conditioning data sample, like a single

projection.

We show how probabilistic segmentation techniques [BTCT19, BSKT19| can be extended with
the ability to reconstruct 3D structure from projected 2D images. Our approach evaluates the
potential of deep networks to invert projections, an unsolved problem of projective geometry
and medical image analysis. We evaluate our method by reconstructing 3D lung segmentation
masks and porcine rib-cages from 2D [DRRE. We show that our approach works well for large,
connected regions and test for limitations regarding fine, unconnected anatomical structures
projected on varying anatomy and domain sensitivity across datasets. We further show how
to adapt our methods to perform Unsupervised Domain Adaptation on NIH chest X-Rays.
The proposed network is fast to train, converges within a few hours and predicts 3D shapes in

real-time.

5.2 Related Work

Extracting 3D models from a single or multiple 2D views is a well-established topic in computer
vision [LKLI18, ISWZ718]. Earlier approaches included learning shape priors, and fitting the 3D
shape model onto the 2D image. In [AVIT16, [KW09], the authors attempt to reconstruct ribs
by using, a priori known, statistical shape models. Both methods use a bi-planar approach as
they utilize 2 orthogonal X-ray views. These methods do not generate a[CT}Hike image, as they

only deform a solid rib-like template.

With the advances in deep learning, generative deep convolutional neural networks have been
proposed to perform image generation in the context of medical imaging. In a recent work,
parallel to ours, Ying et al. proposed X2CT-GAN [YGM™19] to synthesize full 3D volumes

from 2D X-rays. Like [AVIT16, KWO09], Ying et al. also use multiple views to create the 3D

volume. However, instead of statistical shape models, Ying et al. uses|Generative Adversariall
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INetwork (GAN)| to synthesize 3D volumes from 2D X-rays. As [GANk are trained to

approximate the probabilistic distribution of the training dataset implicitly, they are known to
hallucinate “plausible” features. This is detrimental in cases of fine structures, e.g., bronchi,
blood vessels and small lesions. In the case of vessel-like structures which are almost random in
construction, a will hallucinate a plausible structure that is highly probable from images
in the training dataset, instead of generating a structure that’s extrapolated from the input.

Hence the resulting structures are of poor quality, often disconnected and non realistic.

In [YYY™"16] the authors reconstruct a 3D volume of an object from a 2D image of it. Contrary
to X-Rays which can be thought of as the “shadow” of the object, [YYY 16| used as inputs 2D
images of 3D structures, not their projections. Hence there was significantly less information
loss than in the case of projections. [AFNI7] attempts a similar task to ours but aims at
decomposing the provided X-Ray image rather than reconstructing the volume. More
aligned to our work, Henzler et al [HRRR18] creates 3D Volumes from 2D Cranial X-Rays. Their
architecture is similar to ours, however, they only regress the 3D cranial structure, whereas we
attempt to regress directly to Hounsfield units (HU). Furthermore we adopt a probabilistic

technique while their model is fully deterministic.

5.3 Methodology

Adapting a known 2D or 3D architecture to be able to perform a task across dimensions is not a
trivial task. Special consideration has to be given in the flow and augmentation of information.
As projection is an information-destroying process our methods have to be able to deduce the
lost information in order to revert the process. This can be achieved through appropriate
pathways of information through the network. It is impossible to be entirely certain that
the restored information is correct as projection is a many-to-one operation, thus we believe
that a probabilistic approach can offer reasonable confidence intervals. We extend two base

architectures to perform this task as they our outlined in Fig. [5.2]
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Figure 5.2: Two approaches for probabilistic 2D-3D un-projection.

5.3.1 2D to 3D MC-Dropout-U-Net

Our first proposed method extends the work of [BSKT19]. Inputs will be first transformed into
three dimensional objects using the structural reconstruction module and then passed through
a 3D U-Net [CALT16]. The U-Net is equipped with dropout layers on the decoding path, which
are kept active during inference to mimic stochastic behavior. Fig. shows an overview over

the proposed architecture.
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5.3.2 Structural Reconstruction Module:

2D images can be considered as a 3D image with a “depth” of one. A series of five 3D transposed
convolutional layers, with stride greater than 1 in the z-axis, is used to match the spatial
dimensions of the volumetric 3D target. As opposed to bilinear up-sampling we propose to
use transposed convolutions due to their theoretically better ability to learn more complex and
non-linear image resizing functions [DV16]. The network at this stage contains a conceptual
representation of the 3D properties of the object. As the 3D properties of the volume are yet
to be fine-tuned by the subsequent 3D U-Net, the output of this layer does not hold human-

understandable information of the 3D structure.

5.3.3 3D Segmentation:

With the input data in correct spatial dimensions, segmentation can be performed using a 3D
U-Net [CALT16]. Similarly to its well-known 2D counterpart, a 3D U-Net follows an encoding-
decoding path with skip connections at each resolution. The network consists of four resolution
layers; each consisting of two 3 x 3 x 3 kernels with strides of 1 x 1 x 1, followed by a 2 x 2 x 2
max pooling with strides of 2 x 2 x 2. Skip connections are used across the encoding and the
decoding path, connecting same resolution levels, in order to propagate encoded features at each
resolution. A dropout layer is added at the end of the decoder with a dropout probability of
0.6. These layers are kept active during inference as per the MC-Dropout methodology [GG16].
The network is then trained on 2D images with the respective 3D targets for segmentation and

a binary cross-entropy loss.

5.3.4 2D to 3D PhiSeg

In [BTCT19] Baumgartner et al. introduce PhiSeg; a probabilistic segmentation algorithm able

to capture uncertainty in medical image segmentations.

Phiseg is comprised of three modules; the prior, posterior and likelihood networks. The algo-
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rithm is modeled after a Conditional Variational Auto-Encoder where the posterior and prior
networks operate as the encoders producing a series of latent variables z in different resolution
levels. The likelihood network operates as the decoder utilizing the different resolution latent
variables sampled from a normal distribution to produce segmentations. It is worth noting that
the posterior network takes as input the ground truth segmentation and hence it is only used
during training. An auxiliary KL divergence loss between the distributions of the prior and the

posterior is employed to steer the prior network to produce “good” latent variables.

We extend the previous method in three major ways aimed at controlling and augmenting the

information contained in the DRR] image.

1. Distillation Module:

We propose a “distillation” module that performs the inverse operation of the Structural Recon-
struction Module and we add it as a pre-processing step of the posterior network. The ground
truth image is passed through a series of convolutional layers to “distill” its 3D information
to a 2D representation. The goal of this “distillation” is to build an informative lower dimen-
sional representation of our 3D volume. The resulting feature maps are concatenated with the
input [DRR] image and passed through the posterior network. Contrary to the aforementioned
2D-3D U-Net PhiSeg is modeled after a VAE, hence the encoded latent distribution is highly
susceptible to noisy inputs. In order to avoid the encoding of noise that would change the
characteristics of our distribution we chose to work on 2 dimensions during the encoding phase
rather than in 3. We would like to note that a fully 3D PhiSeg with a Structural Reconstruction

Module as in the 2D-3D U-Net was evaluated but its training was unstable.

2. 3D Likelihood network:

We extend the likelihood network to perform 3D reconstruction. The latent variables that the
prior/posterior networks produce are transformed into 3D vectors and used as inputs for the

likelihood network. We extend the latent vectors using vector operations rather than learning
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an augmentation to decrease the computational load of the the network. The series of latent
variables are then passed through 3D decoder network, sharing the same architecture as the

decoder path of the deterministic 3D U-Net.

3. Fusion Module:

Our next extension of PhiSeg comes in the form of a fusion module similar to [HRRR1§| at the
end of the likelihood module. Contrary to [HRRR18] our fusion method is fully learned by the
model. Features extracted from the input[DRR]image x are concatenated to the output s of the
likelihood network and convolved together to produce s’ which serves as the final output of the
network. The intuition behind this module lies with the assumption that PhiSeg will be able
to reconstruct the overall structure but may lack details, thus the input [DRR] image is passed
through a convolutional layer to extract relevant features which are then used in conjunction
with the proposed segmentation s. We also note that the fusion module is not included in the
2D-3D U-Net as the direct skip connections of the model satisfy the flow of information that

the fusion module aims at creating.

4. Unsupervised Domain Adaptation:

Finally we propose a new augmentation of PhiSeg aimed at performing Unsupervised Domain
Adaptation through self supervision. We chose the task of reconstruction as an auxiliary task
in accordance with [STDET9| since it is semantically close to our target segmentation task.
To this end we make a new copy of the prior/posterior and likelihood networks that share the
weights of the aforementioned modules. We train the resulting model for both segmentation and
reconstruction in parallel. Hence the shared encoding paths learn to extract useful information
from both domains. In section we exhibit results using this technique to segment lungs

from NIH X-Rays.
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5.4 Experiments and Results

For our experimentation we focus on two tasks, segmentation and volumetry. Two datasets
have been used: 60 abdominal images of healthy human patients (Ezp1), and 57 porcine
livers [KVSel4] (Ezp2). Both datasets are resampled to isotropic spacing of lmm X lmm x 1lmm.
[DRRE p were then generated by projecting the 3D volume on the[DRR]plane p = Mf according

to:

Dij = ZW(Z,], k)f<l7<]7 k)

ivjik
where f is the voxel density vector and M is the projection matrix calculated using the Siddon-
Jacob’s Raytracing algorithm [Jial0]. The synthetic X-ray images of the thorax and porcine
abdomen are taken at a fixed distance of 2m and 1m respectively from the volume’s isocen-
ter, pixel spacing is 0.51mm. Images contain 512 x 512 pixels, which in this particular configu-
ration, aligns the image and volume spatially in pixel space. Both images were then
downsampled to 64 x 64 for network training, with the [CT] volume target centre cropped to
preserve spatial alignment with respect to the input. A third dataset (Fzp3), obtained
from the NTH Clinical Center, was used for a qualitative ablation study. 100 random chest X-
ray images from the ChestX-ray8 [WPL™17] dataset were selected. No ground truth is present

for this experiment.

5.4.1 FExzperiment 1: Compact Structures

The first experiment assesses the network’s ability to segment large connected regions. The
thoracic dataset was used, with data split; 50 volumes for training and 10 for testing.
Annotations were manually made to create ground truth masks for the lung structures. As the
lungs appear much darker than other body structures, direct regression to the volume is a

comparable ground truth target to the manual segmentation masks.

All networks are trained using the Adam-optimizer with an initial learning rate of 1 x 10~* and

a batch size of four. The resulting segmentations were post processed by thresholding based on



5.4. Experiments and Results 69
Method Exp.1 Volume Ratio | Exp.1 Dice | Exp.2 Dice
Det. U-Net 0.96 0.86 0.41
2D-3D PhiSeg 0.92£0.12 0.914+0.01 | 0.46 £0.05
2D-3D PhiSeg w/o fusion | 1.31 +0.22 0.81+£0.05 | 0.45=£0.07
2D-3D U-Net Dropout 0.91 +0.01 0.90 + 0.01 0.48 £0.03
2D-3D U-Net Dropblock | 0.97 +0.012 0.83 = 0.007 | 0.36 £0.12

Table 5.1: Average Dice score and Volume Ratio (W) of lung and porcine segmentations

compared to manually generated 3D ground truth. Exp.2 shows the performance of our methods
when the target task is to reconstruct fine 3D structures. In the first experiment we compare
the predicted volume in 3D and compare it to the ground truth one. With a perfect score of
1, the volumes are calculated by summing the voxels of the volumes in question. Moreover the
dice scores (higher being better) aim to assess the correct localization and fine structures of
our predictions.

their pixel intensity values followed by median filtering with a kernel size of 3 x 3 to eliminate

sparse noise.

Tableshows the average Dice similarity coefficient (DSC) for the predicted volume compared
to the target volume. Dice accuracy for both approaches give equivalent performance. Table
also exhibits the ratio between the predicted volume of the lungs and the ground truth. This is is
achieved by counting the pixels that lay inside the segmented volume. In terms of quantitative
evaluation our deterministic model achieves high Dice score. Meanwhile our dropout and
dropblock probabilistic approaches provide us with an on par or better performance to the
deterministic method. The variance exhibited on a per sample basis is 0.02 on dice score and
0.03 on the ratio of lung capacity. The probabilistic method provides us with more informative
lower and upper bound. As the process of projection inherently destroys information, it is
our belief that providing informed upper and lower bounds for our metrics is a more suitable

approach.

Furthermore a version of Phi-Seg without our proposed fusion module was evaluated and noticed
a significant increase in the variance of our measurements as well as degraded performance. This
observation is in accordance with our hypothesis that the fusion model inserts high level details

to our proposed segmentation. Qualitative examples are shown in Figure (a).
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] top

(a) Lung Segmentation with 2D-3D Unet; Left-Right: Input DRR; 3D Ground
Truth; 3D Prediction 2D-3D-Unet; Prediction 2D-3D PhiSeg

(b) Porcine Rib Cage Segmentation with 2D-3D Unet; Left-Right: Input DRR; 3D
Ground Truth; 3D Prediction 2D-3D-Unet; Prediction 2D-3D PhiSeg

Figure 5.3: Reconstructed Samples for Experiments 1,2. We use [KPBI12|] to enhance depth
perception in the 3D figures. Interestingly we observe that both methods are quite accurate in
predicting the lung volumes, while the PhiSeg struggles with the resolution of fine structures
in the porcine rib cage.

5.4.2 FExperiment 2: Fine Structures

In order to test for limitations and to evaluate the network’s ability to segment fine structures we
aim to segment the ribcage with the publicly available porcine dataset [KVSeld]. Porcine
ribs are smaller and finer than human ribs and they project largely on different anatomy
(stomach and liver). This data has higher resolution and anatomical focus than the dataset in
Fxp 1, which serves as additional robustness test. The dataset consists of 58 volumes and has
been split into 48 volumes for training and 10 for testing. Automated thresholding via pixel
intensity was used to provide a manual ground truth from the 3D volumes. Known Hounsfield
units (HU) for bones in [CT|have been used to define this threshold (+1800 to +1900 HU). The
network has been trained with a binary cross-entropy loss, using the Adam optimizer with an
initial learning rate of 1 x 10™* and a batch size of four. Similarly to Exp1, the input to the
network is a two dimensional DRR]image while the segmentation target is the 3D segmentation

mask.

The resulting segmentations achieved an average Dice score of 0.41 in the deterministic case.
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Meanwhile our probabilistic approaches were on par or better than the deterministic, achieving
a Dice of 0.48 £ 0.03, while providing us with a more informed inference. We note that the
difference between our PhiSeg model with and without the fusion module is smaller but still
present. We believe this is due to the much harder task of segmenting fine structures across
dimensions. Furthermore the Dice score is highly influenced by small outliers caused by noise
and a blurry reconstruction of the spine as well as a slight misregistration between the predicted
and ground truth volumes. Qualitative results are provided in Fig. [5.3(b). Note that small and
fine structures as the tips of the ribs are reasonably well formed and shown in the predicted

volume.

5.4.3 FExperiment 3: Domain Adaptability

In order to evaluate the nature of knowledge acquired by the network, and to test potentially
limited domain invariance, the network that has been used and trained for Exp! was evaluated
with chest X-ray images from the NTH chest X-Ray dataset [WPL™17]. In addition we evaluate
our UDA method on the Montgomery Chest X-Ray dataset that is comprised of 2D chest

X-Rays with corresponding 2D segmentations.

As can be seen from Figure (a), where the lungs are semi-occluded by an imaging artifact, our
network produced the underlying 3D segmentation. This observation signifies that the network
learns to reconstruct the anatomy rather than learning a mean lung segmentation. Without
corresponding [CT] volumes, it is not possible to quantitatively evaluate the performance of
the network. However, qualitative assessment of 91 subjects shows robust performance of our
approach. In the Montgomery dataset the resulting 3D segmentation perimeters are unknown.
Thus, we learn a projection to 2D and then compare to the ground truth, resulting in a dice
score of 0.77 when we optimize towards the main DRRACT] task and 0.86 when we optimize
towards the UDA. It is important to note that information is lost during the projection from 3D
to 2D during the evaluation period, which explains the decreased performance. In Figure|5.4|(b)

we show a selected example from the UDA algorithm.
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(a) UDA on NIH Chest X-Ray Dataset; (b) UDA on the Montgomery X-Ray
Left-Right: Input X-Ray; Mean of pre- Thorax Dataset; Left-Right: Input X-
dicted volume across z-axis; 3D recon- Ray; 2D Ground Truth; 2D-3D PhiSeg
struction of volume. volume projected onto 2D

Figure 5.4: Examples from Experiment 3.

5.5 Discussion

As shown in Fxperiment 1, our proposed method achieves good Dice scores for 3D lung seg-
mentation while providing informative uncertainty as lower and upper bounds of the volume
and dice score. To the best of our knowledge, this is the first probabilistic method to perform
cross-modality 3D segmentation by unprojecting 2D X-ray images with acceptable performance.
FExperiment 2 and Ezperiment 3 have been designed to test expected limitations. In Fxperiment
2 we observe that the prediction of fine structures can work, but with varying performance for
either of the methods. Fxperiment 3 shows that our method has promising domain adaptation

properties. However, fine-tuning and calibration will be needed for applications.

5.6 Summary

In this chapter we have introduced simple methods to perform probabilistic 3D segmentation
from a projective 2D X-ray image. Our networks are data efficient as they have been trained
with approximately 60 training [DRRHCT] pairs and time efficient as they converge within ~ 2
hours. In future work we could explore the capabilities of our approach for the reconstruction
of vessel trees, e.g. coronary arteries from C-Arm Fluoroscopy. We expect that such recon-

structions can be well suited to accurately initialize the registration of pre-operative scans.

Having established methods for finding points of interest in medical images and understanding
the 3D properties of 2D depictions of objects we can move forwards to recalling our past

experiences that could help us reason about the information we extracted from our observations.
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Chapter 6

Reasoning about the Future

We now turn our focus to applications relating to the central notions of this thesis. To make
our navigation in medical environments and the reasoning about the potential pathologies more
effective we need the ability to assess future developments, that is the reason we have dedicated
an entire sub-branch of our [ADS| on future outcome prediction as seen in Figure [6.1] Even
though our predictions cannot be pinpoint accurate, a probabilistic view of possible futures
that are the causal consequence of the gathered facts and information can greatly help to
establish possible courses of action. In relation to our case study Chapter [3, we envision our
deployed [ADS] system to run simulations of possible outcomes and assessing the paths it needs
to take in order to aid the astronaut in need. This chapter is based upon [VRRK20],currently
under review in JMLR, where the author conceived the main ideas, developed and ran the
experiments for the proposed methods and tools. The paper form of this chapter is currently

under review at the Journal of Machine Learning Research.

6.1 Introduction

In many everyday scenarios we make causal predictions to assess how situations might evolve
based on our observations and experiences. Machine learning has not been developed to this

level yet. However, automated, causally plausible predictions are highly desired for critical

74
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Figure 6.1: In this chapter we will be looking into the ability of our to reason about how
a scene might evolve visually

applications like medical treatment planning, autonomous vehicles and security. Recent works
have contributed machine learning algorithms for the prediction of the future in sequences and
for causal inference, e.g., [KTY'18]. One major assumption that many approaches implicitly
adopt, is that the space of the model representation is a flat Euclidean space of N dimensions.
However, as shown by [AHH18], the Euclidean assumption leads to false conclusions as a model’s
latent space can be better characterized as a high dimensional curved Riemannian manifold
rather than an Euclidean space. Furthermore, the Alexandrov-Zeeman theorem [Zee64l, [KK14]
suggests that causality requires a Lorentzian group space and advocates the unsuitability of

Euclidean spaces for causal analysis.

In this chapter, we present a novel framework that changes the way we treat hard computer
vision problems like the continuation of frame sequences. We embed information on a spatio-
temporal, high dimensional pseudo-Riemannian manifold - the [MST] - and utilize the special
relativity concept of light cones to perform causal inference. We focus on temporal sequences

and image synthesis to exhibit the full capabilities of our framework.

In summary our contributions are:
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e We extend representation learning to spatio-temporal Riemannian manifolds that follow
the ideas of the while being agnostic towards the used embedding architecture and

the prescribed task.

e We introduce a novel utilization of the concept of light cones and use them for convincing

frame synthesis and plausible prediction of future frames in video sequences.

e We provide theoretical guarantees about the causal properties of our model and demon-

strate a causal inference framework.

6.2 Related Works

High dimensional Riemannian manifolds for machine learning are utilized by a few major works.
[AHH18] show evidence that more general Riemannian manifolds characterize learned latent
spaces better than an Euclidean space. Their work however, utilizes generators that have
been trained under an Euclidean assumption. Contrary to that, [NK17] introduce the use of
a Poincaré ball for hierarchical representation learning on word embeddings, showing superior
performance in representation capacity and generalization ability while employing a Riemannian
optimization process. [NKI18] extend the previous work to a Lorentzian manifold as this offers
improvements in efficiency and stability of the distance function. In this chapter we accept the
argument made by Nickel et al. but extend it as we argue in Section that causal inference

requires a Lorentzian group space as pointed out by [Zee64].

[GBHI§| embed word information on a Poincaré ball and form entailment cones. The authors
propose to work with Directed Acyclical Graphs (DAG) and strive for non overlapping cones
in a Poincaré ball. In contrast to this, we encourage overlapping light cones in a Lorentzian

manifold to model future events.

[SWKMMI15] use a space-time idea similar to ours but interpret the time axis as a ranking
rather than as temporal information. Their method is intended for dimensionality reduction and

does not generate further samples, or considers causal relationships between sampling points.
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Finally, [MLM™19] train a Variational Autoencoder (VAE) constrained to a Poincaré ball while
also employing the appropriate Riemannian equivalent to a normal distribution as well as
Riemannian optimization. We consider this work as the closest related since it is the only

approach that has shown good performance in the image domain.

In the Computer Vision focused field of future frame prediction for video sequences, [KTY 18|
propose the causal InfoGAN which, however, lacks theoretical guarantees for causal abilities.
[JEEL19] aims at predicting the probabilistic bottlenecks where the possible futures are con-
strained instead of generating a single future. Similarly, we are not attempting to predict
a single future, rather we predict all plausible futures in a way that naturally enables us to

identify all probabilistic bottlenecks; see Section [6.3.4]

In other works concerned with video continuation, e.g., [MCL16, VPT16a] use CNNs to regress
future frames directly, while [VYHT17] introduce an LSTM utilizing the difference A between
frames to predict motion. Further works include the use of optical flow [LLLGI§| or human pose
priors [VYZ"17]. The autoregressive nature of these methods results in accumulated prediction
errors that are propagated through the frames the further a sequence is extended. Beyond a

few frames, these approaches quickly lose frame-to-frame coherence.

In order to mitigate these limitations, works like [VPT16b| propose generative models to predict
future frames and [TLYK18a] offers a generative model that disentangles motion and content.
Neither can infer the causal implications of their starting positions. [SLV2I] perform video
action prediction using a hyperbolic latent space, however, their method does not tackle any

causality related questions nor is it free of autoregressive error compounding.

Finally, [LTAT20] is the closest work to ours. [LTAT20|’s aim is causal discovery, which they
perform by reducing the problem of causal link prediction to pictorial structure prediction; i.e.,
their method predicts deformable links between key points of objects limiting the application

range.
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6.3 Theoretical Formulation

6.3.1 On the choice of space

In his seminal 1964 work, E.C. Zeeman [Zee64] makes the case that the causality group RM that
arises from the concept of partial ordering in a[MST|implies an inhomogeneous Lorentz group as
the symmetry group of RM. We highlight the explicit mention of Zeeman on the unsuitability
of an Euclidean topology to describe RM due to its local homogeneity, which does not arise in
RM. In [KK14] the authors prove that from observable causality we can reconstruct the MST}
Hence, we are in a position to argue that the use of a for embeddings, which belongs to

the inhomogeneous Lorentz group, would reinforce causal inference capabilities.

We extend [NK18] and argue that the use of the Lorentzian manifold, which coincides with the

[MST] is both more efficient as an embedding as well as enabling causal arguments,

6.3.2 Minkowski Space-Time and Causality

Mathematically a space can be described by its metric, which defines the way the inner product
of two vectors in this space is determined, i.e., the way we calculate distances. Consequently,
the inner product (., .), of two vectors a and b in 1+ 3D Minkowski space-time can be defined

as

3 3
<a’ b>77 = Z Z a,un;wbu

p=0 v=0 (6.1)
= —aobo + a161 + (1262 + CL3b3,
where the coordinate 0 is understood to be the time coordinate.

One of the consequences of endowing the latent space with a Minkowski-like metric is the

emergence of causality in the system. This property can be more readily seen by employing the
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concept of proper time. Given a manifold M endowed with a Minkowski metric 7,,,, we define
the proper time 7. This is the time measured by an observer following along a continuous and
differentiable path C(s) parametrized by s € [0, 1] between two events {x,y} € M such that

C(0)==,C(1) =y,

Te = / - Z dr,dz,. (6.2)
c o

In order to ensure 7 € R, we require Y, dz? < daf, where i € 1,2, ...,d. Therefore, the rate
of change |dx|/dr in the spatial coordinates is capped by the time evolution of the system. In
other words, there exists a maximum speed limit which C must obey at every point. Further, it
means that there exist pairs of space-time points z, y which cannot be possibly connected by a
valid path C | lest 7 ¢ R. In order to describe this phenomenon we borrow the concept of a light
cone from special relativity. The set of solution paths {Cy(s)} such that Cy(0) = (¢9,%o) and
Tc, = 0 describe the fastest any particle or piece of information can travel within the system
starting from (%o, Xg). This boundary is known as the light cone, and is such that R = {Cy(s)},
where R is the causal region of the point (¢g,xg). Every space-time point x € R is said to
be within the light cone. As shown by Eq. , no valid path C(s) can cross OR. Thus, two
space-time points can only influence each other if they lie within each other’s light cone, that
is, if they can be connected by a valid path C. The region R splits into two disjoint sets: R™
and R~. RT lies within the future light cone of a particle at time t,, and thus includes all of
the points (t1,x3) € R such that ¢; > t;. Conversely, R~ includes the points (3, x2) € R such

that t5 < ty and characterizes the past light cone of a particle at time t,.

If we have two space-time vectors = (ty,Xg) and y = (¢1,x1) we can describe their relation
as timelike when (z,y) < 0, spacelike when (z,y) > 0 and lightlike when (x,y) = 0. A timelike
position vector lies within the light cone of a particle at the origin of the system. A spacelike
vector lies outside of it, and a light-like vector lies exactly at its edge. One can then generalize
this idea beyond the origin, and thus compute the inner product of the difference between two

space-time vectors x — y = (At, Ar) |, i.e.,

(y —x,y — x) = —At* + |Ar|?. (6.3)
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Hence, when the separation of the vectors x and y is time-like, they lie within each other’s
causal region. In that case we can argue that there is a path for event x, that belongs in the
model that defines the latent world of represented data, to evolve into event y within a time
period At. Thus, by constructing the light cone of an initial point x we can constrain the
space where the causally resulting points may lie. We can then see that this mathematical
construction of the latent space naturally enforces that the velocity of information propagation
in the system be finite, and that an event can only be influenced by events within its past light
cone, i.e., the model is causal. By mapping this into a machine learning perspective we argue
that in a latent space that is built to follow the MST|metric an encoded point can then be used
to create a light cone that constrains where all the causally entailed points may be encoded to

or sampled from.

6.3.3 On Intersecting Cones - Association

A light cone can be constructed with each point of the latent space as its origin. Consider
point zy to be an initial point derived from, for example, an encoded frame f; from a video
sequence: by constructing the light cone C around xy we are able to deduce where the various
causally related xg.; points might lie. By setting ¢ to be a specific time instance, we are able
to further constrain the sub-space to points that lie inside of the conic section. These points
are causally plausible results from point zy within the time ¢. Geometrically, we can visualize

this as a plane cutting a cone at a set time. We visualize this in Figure [6.2a]

A second point x; that lies inside the light cone of zy can be derived from an encoded frame
f1. Similar to zy we construct the light cone € whose origin is x;. We then define the conic
intersection C'S = Cy N C;. Following the causality argument, we deduce that the enclosed
points in C'S are causally related to both zy and z; as they lie in the light cones of both.
In addition, by constraining the intersecting time plane, we constrain the horizon of future

prediction.

Consequently, we propose Algorithm [I| as a method of future frame prediction using light cones

on a Minkowski space-time latent space. We graphically illustrate Algorithm [1}in Figure [6.2b]
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(a) Visualization of the emerging structure of a light (b) Visualization of the intersecting cones al-
cone. The intersecting plane at point z = 3 signifies gorithm. The subspace marked in yellow con-
the 2-dimensional feature space at time 3. The inte- tains the points that are causally related to
rior of the cone subspace contains all possible frames points Fp 1 2.

given a original video frame at point z = 0.

Figure 6.2: Visual aids for the proposed algorithm. Note that for visualization purposes we
are exhibiting a 14 2 dimensional Fuclidean space rather than a high dimensional Riemannian
manifold.

Algorithm 1 Future Prediction using Intersecting Light Cones

Input: Frame Sequence F' ; Queried Time T'
Output: Predicted Frame
1: for t < T do
M fi + MinkowskiEmbedding(ft)
Cury, < LightCone(M ft)
if t > len(F') then
Samplesys g, < sample(Cary,)
M fiy)  choose(Samplesysy,)
end if
CS «+ intersection(Cprr)
fout < choose(sample(CS))
Predicted Frame < Decoder(fout)
11: end for

SOONDUA W

6.3.4 On the Entropy and the Aperture of Cones

When considering the intersection of the cones in Algorithm[I]it is vital to examine the aperture
of the cone at time 7T'. For simplicity, we assume that the gradient of the side of the cone is 45°
for all cones. However, such an assumption implies that each frame and hence each cone evolves
with the same speed and can reach the same number of states at a given time. For real world
scenarios this is not necessarily true as, for example, the possible states in ¢4 1 for a ball rolling
constrained by rails are less than a ball rolling on a randomly moving surface. Hence, the actual

gradient of the cone depends on the number of states that are reachable from the state depicted
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in frame t. This quantity is also known as the thermodynamic entropy of the system. It is
defined as the sum of the states the system can evolve into. Calculating the thermodynamic
entropy of a macro-world system as in a real world dataset is not trivial and we are not aware of
any appropriate method to compute this at the time of writing. Hence, we are forced to make
the aforementioned assumption of 45° of cone gradient. We note that the concept of information
entropy commonly used in computer science is distinct to thermodynamical entropy and a map

between the two is non trivial.

However, given a frame sequence F, a set of counter example frames C'F' and following Algo-
rithm 1| but omitting the sampling steps, it is possible to build more accurate light cones in a
contrastive manner. Hence, it is possible to acquire a proxy for the thermodynamic entropy
of the system. We note that the proxy can only be accurate to a certain degree as any frame
sequence is not able to contain enough information to characterize the full state of the world.

We leave further study of this phenomenon to future work.

6.3.5 Intervention on Minkowski Space Time

Given an [MST] where we have embedded our beliefs about the world we are able to further
perform hypothetical causal interventions. These interventions come into the form of choosing
specific paths as in step choose of Algorithm [I] Given a heuristic # which is application depen-
dent and could even be parametrized by a neural network, we enforce a path that represents the
do(Y") operation. Performing causal interventions by setting paths through the [MST| gives us
the additional advantage of having complete control of the process, allowing the interventions
to be fully interpretable. The difference compared to regular associations is that we enforce
a specific event to happen by choosing a point in our latent space and then construct the
appropriate conical structures. In addition, we note that this process affects the probabilities
of future causally linked events only locally rather than globally as associations do, this is in

accordance to the general intuition of causal intervention, as nicely explained in [GMD™20]. In

Figure we illustrate this method.
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6.3.6 Counterfactuals on Minkowski Space Time

As explained in Section [2.9] counterfactual inference can be achieved either following the three
step process laid out by [Pea09] or via the difference of the average treatment effect as discussed
by |[Rub05]. In this section we will show how both these approaches could be interpreted
in a graphical way inside the In Figure [6.3b, we exhibit a visualization of a sample
counterfactual analysis of X with X being the factual prior. In other words, given the factual
knowledge X we set up the future and past lightcone of point X. This is equivalent to the
Abduction step by Pearl. Our method and probabilistic abduction are equivalent as in both
cases we constrain the possible subsequent events and update their probabilities given the
conditioning one. Next, we identify the other conditioning variables B and based on that we
perform the do(Y”’) operations as required, fulfilling the Action step. At this point we are able
to analyze the resulting modified lightcones and identify the probability of the counterfactual

query X.

Moreover, we are able to perform a Rubin inspired average treatment analysis. Such an analy-
sis is achieved by identifying the points inside the conditioning factual event’s lightcone repre-
senting the intended treatment and counterfactual treatment and then analyzing the required

counterfactual event queries.

Most counterfactual queries assume a partial ordering in time and ask questions about alter-
native timelines where different events have occurred in the past. Contrary to other methods
where time is a latent variable dealt with implicitly, our method explicitly includes time in the

process of causal inference permitting for more accurate conclusions to be drawn.

6.3.7 Step-by-Step Visualization of the Proposed Algorithm

In order to help the reader further their understanding of the intuition behind our proposed
algorithm we will be conducting a mental experiment with the help of some visual examples.
Note that for ease of understanding the figures will follow the convention of 2+1 dimensional

euclidean space.
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A
~ X
Do
Y
(a) Visualization of causal intervention. Inter- (b) Visualization of causal counterfactual anal-
vention is conducted by enforcing a specific path ysis. We represent a sample counterfactual
through the latent space representing the interven- analysis that implies different events in a prior
tions in question. time instant. We first identify the prior event

and then take a different causal path to find
our causal query X allowing us to observe it
and calculate its probability of happening.

Figure 6.3: Visualization of the causal inference graphical methods.

Given a frame F we embed it on our space as in Figure [6.4a] As the next frame F; can only
have finite differences in content compared to the first, our intuition dictates that its embedding

has to lie close to the original Fy, we denote this region with yellow in Figure [6.4D]

* The next frame cannot be that

Imagine a frame 3 diff t 3
ifferen
Embeg s 1 .
T Ry * Must be embedded Fy
- @ e e o
® 2 0 1oz 3 somewhere close - 2 0 IR
-1 -
-2 -2
-3 -3

(a) Lets assume a frame Fp that we embed in our space. (b) The position of the next frame should be close in this
space.

Figure 6.4

In Figure we assume without loss of generality a position where F} will be embedded. If
the next frame was known then we would simply embed it in our space in a manner similar to

Fy.
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Suppose it’s here

-0.8

-1.2

(a) Embedding of a second frame.

* We build a circle around F,

* We extend the circle around F;,
F, as more possible frame
become "available”

* Fourth frame is a consequence
of frames 1,2,3 so it must liein
the intersection of their circles

(b) Embedding of a third frame F5 and enlargement of the circles of frames 0,1. A fourth
frame has to lie on the intersection of the circles.

Figure 6.5

Lets assume now that we have repeated the aforementioned process for a total of 3 frames and
embedded them on our space. For conceptual ease, we assume frames Fy,Fi,F, are known a
priori and we simply embed them in our space. The question that arises is where would F3
lie? To tackle this question we have to remember that the frames constitute a sequence, hence
time is also a factor that would affect our answer to the above question. In a 2D space we
can model the passage of time by increasing the radius of the circles where the next frames lie.
We base this observation on the fact that as time progresses, the content of subsequent frames

can be increasingly different. Thus their embedding will be increasingly further away from our
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original frame Fj.

Frame F3, however is the consequence frame of all Frames Fy,F},Fs, Hence given the circles of
past frames are scaled accordingly to signify the passage of time from their original time ¢ to ¢’

in question, the new frame has to lie in the intersection of these. As seen in figure

A

Figure 6.6: In space-time this would look like the intersection of cones. Due to the fact that
the increasing radius of the 2D circles create a cone in 3D.

Our mental experiment thus far has been treating time as an invisible factor that only alters
the radius of the circles. If we were to represent time as a separate observable dimension (2+1
dimensional space) then the aforementioned circles become cones, as seen in Figure [6.6] Hence
the intersection of circles to find the constrained latent space where F3 would lie becomes the

intersection of cones. We visualize this in Figure
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Figure 6.7: Two potential causal paths from points a,b to a new point c¢. Note that if its these
points represent a sequence then the causal path will have to pass from A - B — C

6.4 Experimentation

6.4.1 Training

Our proposed algorithm is invariant to the method used to train the embedding. In an ideal
scenario, we require an encoder-decoder pair that is able to map any image to a latent space
and to reconstruct any latent code. For the purposes of this chapter’s evaluation we have chosen
the method by [MLM™19] as our baseline embedding, as it is the only approach that has shown

good image domain performance.

[MLM*19] construct a Variational Auto Encoder (VAE) that enforces the latent space to be
a Poincaré Ball. It can be shown [NK18] that a n—dimensional Poincaré ball embedding can
be mapped into a subspace of the Minkowski space-time by an orthochronous diffeomorphism

m: P"— M",
(1 + ||=]|?, 221, ..., 22,,)
1 —|z]? ’

m(zy,...o,) = (6.4)
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and back with the inverse m=! : M™ — P"

_1 (.,1;1,...’ n)
y) = e I 6.5
m~(xq, ... xy) 1+ 2 (6.5)

where z; is the i-th component of the embedding vector.

We extend [MLM™19] to enforce the embedding to a subspace of the by utilizing Eq.
and [6.5] We treat the space’s dimensionality as hyper-parameter and tune it experimentally.
We establish that the optimal embedding of our data can be achieved in an 1 + 8 dimensional
space, i.e., 1 time and 8 space dimensions. The model consists of a MLP with a single hidden
layer and was trained with the Riemannian equivalent of the Adam optimizer [SWKMMI5]
with a learning rate of 5e — 4. Training the model with Moving MNIST requires less than one

hour on a Titan RTX Nvidia GPU.

6.4.2 Inference

Our proposed Algorithm [I] is executed during inference as it does not require any learned
parameters. We sample from a Gaussian distribution wrapped to be consistent with our in
a manner similar to [MLM™19]. Inference can be performed in about 0.5 seconds per intersecting

cone.

6.4.3 Dataset

As a proof-of-concept we use a custom version of the Moving MNIST dataset [SMS15]. Specifi-
cally we employ 10.000 sequences consisting of 30 frames each, making a total of 300.000 frames.
Each sequence contains a single digit. The first frame is derived from the training set of the
original MNIST dataset, while the subsequent frames are random continuous translations of
the digit. Construction of the test set followed the same procedure with the first frame derived
from the test set of the original MNIST dataset. We created 10.000 testing sequences of 30

frames each. Each frame is 32 x 32 while the containing digits range from 18px — 25pz.
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We further use the KTH action recognition dataset by [SLC04] to highlight the real world
capabilities of our method. We focus on the walking and handwaving actions and use all 4

distinct directions. Different person identities are used in the train-test split.

6.5 Results

6.5.1 Experiment 1: Single Cone Image Synthesis

In the first experiment we evaluate the ability of the light cone to constrain the latent space
such that samples lying inside the cone are reasonably similar to the original frame. We train
our model with 148 latent dimensions. Following standard VAE sampling we produce 100.000
random samples using a wrapped normal distribution. As expected, the tighter the imposed
time bound is, the fewer samples are accepted. We note that for ¢t = 2 only 2 samples were
accepted, for ¢ = 10 our method accepts N = 31% of the samples and for ¢t = 20, N = 71%.
In Figure we exhibit qualitative results for Experiment 1. We note that as the time limit
increases we observe higher variability, both in terms of morphology and location of the digits,
while the identity of the digit remains the same. This is in accordance with the theory that

the “system” would have enough time to evolve into new states.

6.5.2 Experiment 2: Intersecting Cones

In the second experiment we evaluate the ability of our algorithm to predict frames by inter-
secting light cones. There is no unique path a system might evolve in time. Our algorithm does
not aim at producing a single future, rather it is able to produce multiple plausible futures. At
a single time instant we can find any number of probable frames that extend a sequence. Hence,
the choose step of Algorithm [I]depends on the target application. In this experiment, to guide
the choice of frames, we map the sampled points to image space and compare the structural
similarity of them with the original frame of t = 0. We adopt a simple manner to choose

the next step and we do not provide the model with any further conditioning information to



90 Chapter 6. Reasoning about the Future

Intersecting 2 Cones

T=0
-» AAAAAGHR =
-» AAAEODAG ﬂ
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(a) Samples from Experiment 1. (b) Samples from Experiment 2.

Figure 6.8: (a): Random sampling was constrained in Experiment 1 such that the samples lie
inside the light cone with an upper temporal bound. Moving from the top down the first frame
T = 0 sets the origin of the first cone. Subsequent samples lie within the cone of the original
frame with increasing time budgets cited on the left hand side. Samples in the last row of
Figure (a) had no constraints imposed on them. We observe larger morphological and location
differences as time progresses. This is consistent with the theory that the system had enough
time to evolve into these states. (b): In Experiment 2 we are intersecting 2 cones. For ease
of reading, the figures have been arranged so that the movements are more apparent. On the
left in (b) we exhibit vertical movements while on the right we exhibit horizontal movements.
The arrows guide the direction of reading in the figure. The red bordered frame serves as the
initial seed while the T' = 2, T = 4 frames are predicted future frames for 2 and 4 time steps
respectively

highlight the default strengths of the proposed algorithm. In an online inference scenario the

reference frame could be updated as ground truth frames become available.

In Figures and we exhibit qualitative results of our algorithm when intersecting 2 and
5 cones respectively. In Figure each set of results evaluates a specific movement, vertical
or horizontal. In Figure [6.9a] we exhibit the case of intersecting 5 cones. As this scenario allows
up to 10 time steps for our model to evolve we notice a great number and more varied results.
In the first two rows the depicted digits bounce while moving towards one direction. In the
third row the digit 0 exhibits morphological changes and in the fourth row the digit 6 gradually
moves its closing intersection upwards to become a 0. As our model is only trained with
single frames of MNIST digits it is not constrained to show only movement or morphological
changes. Rather it can vary both as seen in Figure [6.9a] The transmutation of the digit 6
to 0 is a probable, albeit unwanted, outcome under certain scenarios. In addition, we note
that we are not providing any labels or additional information to the model during inference.

In principle, one could condition the model to produce probable future frames by tuning the
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choose procedure of Algorithm [1]

6.5.3 Experiment 3: Realistic video data

As a third experimentation we use the KTH action dataset. Examples of the performance of
the proposed algorithm are shown in Fig. [6.9b] Due to the computational constraints of the
Poincaré VAE, which we are using as a base model, we are limited to one action at a time
during training. We note how our algorithm retains characteristics like the shade of gray of
the clothing while producing plausible futures. Each frame differs to the previous by 2 time
instances giving ample time for the subject to change directions. We believe that with a higher
capacity network a similar performance can be achieved on more complex scenes and higher

resolution videos.

T=0 T=2 T=4 T=6 T=8 T=10 T=0 T=2 T=4 T=6 T=8 T=10
Bouncing
Moving "
Leftwards Man walking
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left
Moving I-
Rightwards
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and changing
Opening up directions
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Rightwards P
— = | Man waving arms
Gradual - — upwards
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Moving Slowly v Y * * zﬂan waw:g arms
Rightwards ownwards
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(a) Moving MNIST (b) KTH movement video sequences dataset

Figure 6.9: Samples from Experiment 2 (a) and Experiment 3 (b). We are intersecting 5 cones
trained on the moving MNIST dataset in (a) and the KTH movement video sequence dataset in
(b). The latter is representative for a real-world use-case scenario. Next to each row we added
an explanatory caption about the type of observed movement. Differences in image brightness
in (b) are due to PyTorch’s contrast normalization in the plotting function.

6.5.4 Experiment 4: Prediction drifting

We evalute the accumulation of autoregressive errors for the task of future prediction, as well
as indications about possible causal breaches. As we mentioned before, autoregressive solutions
to the prediction problems incur accumulation of errors that lead to degradation of the visual

quality of the produced images. In methods that perform prediction tasks in the latent space
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SSIM degradation vs. Time
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Figure 6.10: [Structural Similarity Metric/ (SSIM)) comparison of our method against [DF18].
In time instant 6 our method produces effectively 0 ssim error and remains low up to 10 time
steps into the future, while both fixed prior and learned prior SVG methods degrade rapidly.

such errors decrease. In addition, other methods do not have guarantees of causal performance,

leading to potential morphological changes of the object in the image or non-continuous motions.

In order to evaluate the above two challenges in our method we assess the [Structural Similarity]

[Metric (SSIM)|of the produced frames up to 10 time steps into the future. We compare against

a well known method [DF18] that uses the moving MNIST dataset for future prediction. In
Figure [6.10] we show the results of the average of 100 runs of the [SSIM] error of our method
and the fixed and learned prior versions of [DF18]. We compare the generated frames against
their ground truth sequence frames. For the choose step of our algorithm, we randomly pick a
generated frame that lies inside the lightcone of the input frame. We note that while [DF1§]
degrades rapidly as time progresses, our method does not. Indeed, on average our method
provides negligible [SSIM] error up to 6 time steps into the future. We further note that our
method only uses a single input frame in this experiment compared to the two or more required

by the SVG method.

We hypothesize that a significant drift in the [SSIM] measure could be the effect of either non-
causal drifting, 7.e., the method producing frames that are not causally related to the original
frames, due to autoregressive error compounding, or a combination of the two. Trivial solutions
of just outputting the same frame would, indeed, lead to a negligible [SSIM] error. However,

as seen in Figures [6.8al, [6.8b] and [6.9a] our method does not collapse to trivial outputs. Hence,

we can argue that the effects of autoregressive error compounding are minimized together with

errors from generated non-causally linked frames.
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Figure 6.11: Causal Inference examples for both interventions and counterfactuals, Red is the
original conditioning frame; Blue is the target frame to reach with interventions and Green is
the counterfactual conditioning frame.

6.5.5 Experiment 5: Causal Inference

In the final experiment we explore the aforementioned path-based causal inference processes.
In Figure [6.11] we show examples for both, interventions and counterfactuals. In both cases
to guide interventions we give the model a target frame depicted in blue. Subsequent frames
were chosen after random sampling given that their position in the latent space approached the
target frame. We observe that in both cases our algorithm is able to generate a plausible path
from the initial query frames to the target ones. In such a way one could explore the potential
outcomes and possible paths to a query state, hence, extracting causal intuition about the
problem at hand. In relation to counterfactuals we do not generate a single counterfactual, but
rather a series of possible counterfactuals, as we do not impose any identifiability monotoniciy
constraints, as detailed in [Pea09]. Contrary to other synthesis methods that abide by the
Abduction-Action-Prediction or the Twin network paradigm this method, does not make any
strong assumptions on the underlying causal diagram or suffers from the computational scaling
laws of Abduction-Action-Prediction. Moreover as we produce a series of potential outcomes
the “select” step of our algorithm is crucial. For simplicity we chose the next step randomly
but one could envision specific selection algorithms that allow the incorporation of domain
knowledge or application specific filtering. These additions, however, do come with the trade-
off that an increase complexity of the selection step exponentially increases the algorithms

complexity as this step is repeated after each sampling.
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6.6 Discussion

As the model is only trained as a VAE on single frames and not on sequences, the notion of time
is not encoded in the weights of the network. Hence, all the resulting movement and predictive

abilities are derived from our proposed algorithm and the natural embedding abilities of the

MST]

We emphasize the time-agnostic nature of our algorithm. With this we denote that our ML
model does not learn the concept of time, but of all possible scenarios. Time is incorporated by
the way we parse and constrain the latent space. Our predictions are constrained in time but are
probabilistic in nature. The proposed algorithm is able to produce multiple plausible futures.
We believe this is a very important feature for future prediction and sequence extrapolation
techniques as it can be used as an anomaly detection technique. Specifically, if one of the
produced futures includes a hazardous situation, an automated system can adapt in order to

avoid an outcome, enabling for example defensive driving capabilities in autonomous vehicles.

Even though our method is in principle auto-regressive, it does not suffer from the accumulation
of errors as it is both probabilistic and relies on efficient latent space sampling rather than the

ability of a neural network to remember structural and temporal information about the image.

Furthermore, we believe that the quality of the predicted frames as well as the definition of the
subspace from which the samples should be derived could be improved by incorporating the
inferred thermodynamic entropy of the frame. We will explore the link between the informa-
tion and thermodynamic entropy in future work. In addition, even though our framework is
architecture agnostic, a customized architecture for the prediction task would be an intriguing
direction. We believe that the use of the Poincaré VAE heavily reduces our abilities to produce
good visual quality samples due to its extreme difficulty to train. Potential future development

avenues could include the use of diffusion models instead.

Finally, as our model allows us to find all probable scenarios that might exist, it can be used
as a causal inference tool in the “potential outcomes” framework by [Rub05]. Given a state we

are able to probe possible scenarios and investigate plausible outcomes, hence, deduce causal
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relations within the data. In addition, by using the past light cone R, we are able to probe

the events that could have led to an observed state enabling counterfactual analysis.

6.7 Summary

Machine learning techniques are able to build powerful representations of large quantities of
data. We leverage this ability and propose that hard computer vision problems can be ap-
proached with minimal learning in an architecture agnostic manner. Strong mathematical and
physical priors are the key. In this chapter, we extend early Riemannian representation learning
methods with the notion of Minkowski space-time as it is more suitable for causal inference.
We further propose a novel algorithm to perform causally plausible image synthesis and future
video frame prediction utilizing the special relativity concept of light cones. We showed our
algorithms’ capabilities both in the synthetic Moving MNIST dataset as well as the real-world
KTH dataset.



Chapter 7

Counterfactual Inference in Tabular

and Medical Data

In the previous chapter we discussed how to predict potential future directions of videos in
a causally enabled way. In this chapter we will dive a bit deeper into the causal analysis of
phenomena and establish methods to assess counterfactual queries. Figure shows the posi-
tioning of the ability of answering counterfactual questions in relation with the other modules of
an [ADS] Even though our previous approach was computationally lighter than other works in
the field, we still abode by the common Abduction-Action-Prediction paradigm. In this chapter
we explore an alternative paradigm - the twin networks. We first evaluate this novel approach
in a wide array of medical and financial data. More crucially, though, in this chapter we ad-
dress one of the major requirements of our main application. How do we ensure our causal
predictions are accurate, and we have learned to correct model. This is a topic commonly
known as identifiability. This chapter is based upon the associated publication at the causal
workshops of UAT 2022 and ICML 2022, while the full paper is under review at Nature Machine

Intelligence [VKGL21].

96
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Figure 7.1: In this chapter we look into how to assess counterfactual queries

7.1 Introduction

“If my credit score had been better, would I have been approved for this loan?”, “What is the
effect of the diabetes type on the risk of stroke?”. Causal questions like these are routinely asked
by scientists and the public alike. Recent machine learning advances have enabled the field to
address causal questions in high-dimensional datasets to a certain extent [SLKI8, [AWVDS17,
SBV19]. However, most of these methods focus on Interventions, which only constitute
the second-level of Pearl’s three-level causal hierarchy [Pea09, [BCII20]. At the top of the
hierarchy sit Counterfactuals. These subsume interventions and allow one to assign fully

causal explanations to data.

Counterfactuals investigate alternative outcomes had some pre-conditions been different. The
crucial difference between counterfactuals and interventions is that the evidence the counter-
factual is “counter-to” can contain the variables we wish to intervene on or predict. The first
question posed at the start of this paper, for instance, is a counterfactual one. Here we want
to know if improving our credit score will lead to loan approval in the explicit context that the
loan has just been declined. A corresponding interventional query would be “what is the impact

of the credit score on the loan approval chances?”. Here, evidence that the loan has just been
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denied is not used in estimating the impact. The second question posed at the start of this
paper—regarding the effect of diabetes type on the risk of stroke—is an interventional question.
By utilizing this additional information, counterfactuals enable more nuanced and personalized
reasoning and decision making. Counterfactual inference has been applied in high profile sectors
like medicine [RLJ20, [0S19], legal analysis [LGZ13]|, fairness [KLRS17], explainability |[GPS21],

and advertising [ALI19].

To perform counterfactual inference, one requires knowledge of the causal mechanisms. How-
ever, the causal mechanisms cannot be uniquely determined from observations and interventions
alone. Indeed, two causal models that have the same conditional and interventional distribu-
tions can disagree about certain counterfactuals [Pea09]. Hence, without additional constraints
on the form of the causal mechanisms, they can generate “non-intuitive” counterfactuals that

conflict with domain knowledge, as originally pointed out by [OS19].

This raises the question of how best to choose the causal mechanisms so that resulting coun-
terfactual inference is trustworthy in a given domain. Despite the importance of counterfactual
inference, this question has only been addressed in causal models with binary treatment and
outcome variables [TP00]. The case of categorical variables remains unanswered. Beyond
binary variables, previous work has only derived upper and lower bounds for counterfactual
probabilities [ZB20]. In many cases, these bounds can be too wide to be informative. We
address this challenge by introducing for causal models with categorical variables the notion of
counterfactual ordering, a principle that posits desirable properties causal mechanisms should
possess, and prove that it is equivalent to specific functional constraints on the causal mech-
anisms. Namely, we prove that causal mechanisms satisfying counterfactual ordering must be

monotonic functions.

To learn such causal mechanisms, and perform counterfactual inference with them, we intro-
duce deep twin networks. These are deep neural networks that, when trained, are capable of
twin network counterfactual inference—an alternative to the abduction, action, € prediction
method of counterfactual inference. Twin networks were introduced by [BP94] and reduce esti-

mating counterfactuals to performing Bayesian inference on a larger causal model, known as a
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twin network, where the factual and counterfactual worlds are jointly graphically represented.
Despite their potential importance, twin networks have not been widely investigated from a
machine learning perspective. We show that the graphical nature of twin networks makes them

particularly amenable to deep learning.

We empirically test our approach on a variety of real and semi-synthetic datasets from medicine
and finance, showing our method achieves accurate estimation of counterfactual probabilities.
Moreover, we demonstrate that if counterfactual ordering is not enforced, the model gener-
ates “non-intuitive” counterfactuals that contradict domain knowledge in these cases. Our

contributions are as follows:

1. We introduce counterfactual ordering for causal models with categorical variables, which

posits desirable properties causal mechanisms should posses.

2. We prove counterfactual ordering is equivalent to specific functional constraints on the

causal mechanisms. Namely, that they must be monotonic.

3. We introduce deep twin networks to learn such causal mechanisms and perform counter-
factual inference. These are deep neural networks that, when trained, can perform twin

network counterfactual inference.

4. We test our approach on real and semi-synthetic data, achieving accurate counterfactual

estimation that complies with domain knowledge.

7.2 Background

We invite the reader to refer back to Section[2.9|for an in-depth view on counterfactual inference.
In this chapter we will be expanding the notions covered in the beginning of this thesis to
counterfactual inference using the twin networks and the ability to identify causal effects from

observational data.
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7.2.1 Twin network counterfactual inference

A practical limitation of Theorem is that the abduction step requires large computational
resources. Indeed, even if we start with a Markovian model in which background variables
are mutually independent, conditioning on evidence—as in abduction—mnormally destroys this
independence and makes it necessary to carry over a full description of the joint distribution
over the background variables [Pea09]. [BP94] introduced a method to address this difficulty.
Their method reduces estimating counterfactuals to performing Bayesian inference on an larger
causal model, known as a twin network, where the factual and counterfactual worlds are jointly

graphically represented, described in technical detail below.

As was discussed above, abduction-action-prediction counterfactual inference requires a lot of
computational resources. Twin networks were specifically designed to address this difficulty
[Pea9, BP94]. Indeed, consider the following passage from Pearl’s “Causality” [Pea09, Section
7.1.4, page 214]:

“The advantages of delegating this computation [abduction] to inference in a Bayesian
network [i.e., a twin network] are that the distribution need not be explicated, con-
ditional independencies can be exploited, and local computation methods can be

employed”

This suggests that the computational resources required for counterfactual inference using twin
networks can be less than in abduction-action-prediction. This was put to the test by [GLP19)

and shown empirically to be correct, with their abstract stating

“twin networks are faster and less memory intensive by orders of magnitude than

standard [abduction-action-prediction] counterfactual inference”

A key difference is that in a twin network, inference can be conducted in parallel rather than
in the serial nature of abduction-action-prediction. For instance, sampling in twin networks
is faster than in the abduction-action-prediction, as twin networks propagate samples simulta-

neously through the factual and counterfactual graphs—rather than needing to update, store
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and resample as in abduction-action-prediction. Thus, full counterfactual inference in a twin
network can take up to no more than the amount of time sampling takes, while in abduction-
action-prediction one incurs the additional cost of reusing samples and evaluating function
values in the new mutilated graph. This is potentially advantageous for very large graphs, or

for graphs with complex latent distributions that are expensive to sample.

We now remind the reader the details of the twin network. A twin network consists of two
interlinked networks, one representing the real world and the other the counterfactual world
being queried. Constructing a twin network given a structural causal model and using it to
compute a counterfactual query is as follows: First, one duplicates the given causal model,
denoting nodes in the duplicated model via superscript *. Let V = {vy,...,v,} be observable
nodes in the causal model and V* = {v},...,v%} the duplication of these. Then, for every
node v in the duplicated, or “counterfactual,” model, its latent parent w; is replaced with
the original latent parent w; in the original, or “factual,” model, such that the original latent
variables are now a parent of two nodes, v; and v}. The two graphs are linked only by common
latent parents, but share the same node structure and generating mechanisms. To compute
a general counterfactual query P(Y =y | E = e,do(X = z)), one modifies the structure of
the counterfactual network by dropping arrows from parents of X* and setting them to value
X* = x. Then, in the twin network with this modified structure, one computes the following
probability P(Y* =y | E = e, X* = x) via standard inference techniques, where E are factual

nodes. That is, in a twin network one has:

PY =y|E=¢edo(X =1)) =
(7.1)
PY"=y|E=eX"=ux)

To illustrate this concretely, consider the causal model with causal structure depicted in Fig-
ure [2.8a, where variables X,Y are binary. The counterfactual statement to be computed is
P(Y=0]Y =1, do(X =0)). The twin network approach to this problem first constructs
the linked factual and counterfactual networks depicted in [2.8b] The intervention do(X* = 0)

is then performed in the counterfactual network; all arrows from the parents of X* are removed
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and X* is set to the value O—graphically depicted in 2.8¢ The above counterfactual query
is reduced to the following conditional probability in 2.8¢ P (Y*=0]Y =1,X* =0), which

can be computed using Bayesian inference techniques.

Our contribution: Despite their importance for counterfactual inference, twin networks have
not been widely studied—particularly from a machine learning perspective. In the Methods
section we demonstrate how to combine twin networks with neural networks to estimate coun-

terfactuals.

7.2.2 Non-identifiability of counterfactuals

As a general principle, observational and interventional data do not allow for identification of
counterfactual distributions, as multiple parametrizations of the causal phenomenon can be
consistent with the observed data. Eq. illustrates this phenomenon with a simple example.
With our example we aim to emphasise how in such a simple case where identifiability is
violated all models agree on the observational and interventional quantities but disagree on
the counterfactuals. As such without extra information we are not able to determine which
is the correct model. Lets assume the exemplary case of DAG 2.8¢, with XY binary, Uy a
four-valued variable distributed under ¢(Uy) and =X to be the logical negation of X. Uy and
its distribution ¢(Uy ) is a latent noise variable that represents the probabilistic element in our

otherwise deterministic DAG .

X, ifUy=0
0, ifUy=1
Y = (7.2)
1, iUy =2
-X, ifUy =3

In this case the conditional probabilities are given by P(Y | X) are: P(Y = 0|X =0) = ¢(Uy =
0)+q(Uy =1)and P(Y =0|X = 1) = q(Uy = 1) 4+ q(Uy = 3). As there are no confounders
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in our example, these coincide with the interventional distributions P(Y | do(X)).

The causal model in Eq. has 3 parameters, but the conditional distributions only provide
2 constraints on these parameters. Hence, due to the existence of this free parameter, there
can exist models with the same conditional distributions, but different counterfactuals. This
observation can bee seen as follows. Consider the following counterfactual query P(Yx—1 =1 |

Y =0,X =0). It can be written as:

P(Yyo1=0]Y =1,X =0) =

which follows by noting ¥ = 1 and X = 0 implies either Y = =X or Y = 1, which happens
with probability ¢(Uy = 2) + ¢(Uy = 3), and within this context the only way Y = 0 when
X =1isif Y = =X, which occurs with probability ¢(Uy = 3). Note that there is no way to
write this counterfactual probability in terms of the conditional distributions P(Y | X) alone.
Moreover, one can have two models with the same functional form as Eq. that yield the
same conditional distributions, but give different predictions for the above counterfactual query.
An example is one model with distribution over Uy given by {q(Uy)}3 = {1/2,1/6,1/6,1/6},
another with {q(Uy)}s = {1/3,1/3,1/3,0}. Hence, there are counterfactuals that are not
identifiable from data. Such counterfactual distributions cannot be expressed in terms of ob-
servational or interventional distributions alone. This can lead to counterfactual predictions

that conflict with domain knowledge, as shall be shown in the next section.

7.3 Methods

7.3.1 Non-identifiability & domain knowledge

Is non-identifiability of counterfactuals a problem? Given a causal model trained on obser-
vations and interventions, can we always trust its counterfactual predictions? In general

the answer is no: counterfactual predictions from a causal model can conflict with domain
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knowledge—even if it perfectly reproduces observations and interventions, as we now show.

In epidemiology, causal models with the structure of Figure [2.8¢| are studied, where X is the
presence of a risk factor and Y is the presence of a disease. From epidemiological domain
knowledge, it is believed that risk factors always increase the likelihood of a disease being
present [TP0O0]—referred to as “no-prevention”, that no individual in the population can be
helped by exposure to the risk factor [Pea99]. Hence, if one observes a disease, but not the
risk factor, then, in that context, if we had intervened to give that individual the risk factor,
the likelihood of them not having the disease must be zero—as having the risk factor can only

increase the likelihood of a disease.

We’ll now describe two causal models that generate the same observations and interventions,
yet the counterfactuals generated by one model satisfy the above domain knowledge and the
other do not. Consider the two different parameterizations of the causal model discussed in
Section [7.2.2} {q(Uy)}3 = {1/2,1/6,1/6,1/6} and {q(Uy)}3 = {1/3,1/3,1/3,0}. Both models
have the same conditional distributions, and we have P(Yy—; = 1) > P(Yx—o = 1) and
P(Yx—y = 0) < P(Yx—o = 0). This tells us that intervening to set X = 1 always makes
Y = 1 more likely, and doesn’t increase the likelihood of Y = 0 relative to X = 0. So, at the
interventional-level, these models seem to comply with Epidemiological domain knowledge that

says that the presence of a risk factor, that is, X = 1, always makes disease, Y = 1, more likely.

Despite this, in the first model P(Yxo; =1|Y =1,X=0) < P(Yx—o=1|Y =1,X =0).
According to this model, Y = 1 becomes less likely when we intervene with X = 1 in the
counterfactual context Yy_o = 1-—even though intervening to set X =1 can only make Y =1
more likely, and does not increase the likelihood of Y = 0. This is a very “non-intuitive”
counterfactual prediction from the point of view of an Epidemiologist. However, in the second
model, P(Yx_; =1|Y =1,X=0)=P(Yxo=1|Y =1,X =0). Indeed, in this model,
no matter the counterfactual context, intervening to set X = 1 never reduces the likelihood

Y = 1. Thus the second model complies fully with Epidemiological domain knowledge.

As the models agree on the data they’re trained on, we must impose extra constraints to learn

the model that generates domain-trustworthy counterfactuals. In the next section, we present
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a simple principle that provide such constraints.

7.3.2 Counterfactual ordering

We continue to consider the causal structure from Section [7.2.2] with a DAG as depicted in
Figure 2.8¢) However, now X,Y are categorical variables with an arbitrary number of cate-
gories N, M each. Inspired by the Epidemiological example from the previous section, we now
define counterfactual ordering, which posits an intuitive relationship between counterfactual

and intervantional distributions.

Definition 7.1 (Counterfactual Ordering). A causal model with categorical treatment variable
X and categorical outcome variable Y satisfies counterfactual ordering if there exists an order-
ing on interventions and outcomes {xg,x1,...,Tn}, {Yo, Y1, ..., ym} such that P(Yy, = yi) >
P(Yy, = yr) and P(Yy, = yn) < P(Yy, = yn) for all i > j and k > h, then it must be the case

that P(Yy, > ye|Yer = y*) > P(Ya, > yi|Yer = y*) for all counterfactual contexts {y*,z*}.

This encodes to the following intuition: If intervention z; only increases the likelihood of out-
come ¥y, relative to any intervention x; with j < ¢, without increasing the likelihood of y;, for
all h < k, then intervention z; must increase the likelihood that the outcome we observe is
at least as high as y;, regardless of the context. Counterfactual ordering places the following

constraints on a causal model.

Theorem 7.1. If counterfactual ordering holds P(Yy, = yi|Yy, = yn) = 0 for all 1 > h and

K3

1> 7.

Proof. First note that P(Y, = ¢/|Y,y = y) = 0 for any ¢ # y follows from the definition
of counterfactuals. The conjunction of this and counterfactual ordering implies 0 = P(Y,, >
YelYe, = yn) > P(Ya, > yi|Ye, = wyn). As probabilities are bounded below by 0, we have
P(Ye, > lYe, = yn) = 210 P(Ye; = wilYa, = yn) = 0. Again, as probabilities are non-

negative, we have P(Y,, = yi|Y;, = yn) = 0 for all [ > h and i > j. O
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Equalities of the form P(Y, = |Y,» = y) = 0 are equivalent to the statement {Y, = ¢/} A{Yy =
y} = False, where A is the logical AND operator. Therefore, the conjunction of the input-
output pairs X = z,Y =9 and X = x,Y = y cannot occur in such a causal model. This yields
constraints on the model parameters beyond those imposed by observations and interventions

that can be enforced during causal model training.

It is important to note that we are not saying every causal model should satisfy counterfactual
ordering. As in all works on causal inference, it is ultimately up to the analyst to decide if such
an assumption appears reasonable in a given domain. As discussed in the previous section,
counterfactual ordering appars a reasonable assumption in Epidemiology. In the Experiments
section, we empirically demonstrate on data from medicine and finance that models that are
trained to satisfy counterfactual ordering comply with domain knowledge, while models that

aren’t appear in conflict with domain knowledge.

7.3.3 Counterfactual ordering and Counterfactual Stability

Counterfactual stability has been proposed by [OS19] as a different way to restrict the type of
counterfactuals a causal model can output, to ensure they are “intutive”. We define counter-

factual stability then prove a relation between it and counterfactual ordering.

Definition 7.2 (Counterfactual Stability). A causal model of categorical variable Y satisfies

counterfactual stability «f it has the following property: If we observe Y, = y, then for all

Yy # y, the condition Ifgf;ﬁ?) > ]P;E);’”jylg implies that P(Y, = y'|Yy = y) = 0. That is, if we
observed Y =y under intervention X = x, then the counterfactual outcome under intervention

X =12’ cannot be equal toY =y’ unless the multiplicative change in P(Y, = vy) is less than the

multiplicative change in P(Y, =y').

This encodes the following intuition about counterfactuals: If we had taken an alternative action
that would have only increased the probability of Y = z, without increasing the likelihood
of other outcomes, then the same outcome would have occurred in the counterfactual case.

Moreover, in order for the outcome to be different under the counterfactual distribution, the
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relative likelihood of an alternative outcome must have increased relative to that of the observed

outcome.

Counterfactual stability is weaker than counterfactual ordering, as it imposes fewer constraints
on the model. In fact, counterfactual ordering between intervention and outcome values implies

counterfactual stability holds between them:

Theorem 7.2. If a causal model satisfies counterfactual ordering then it satisfies counterfac-

tual stability.

Proof. First, Theorem says counterfactual ordering implies P(Y, = ¢/|Yy = y) = 0. Addi-

P(Yx:y) P(Ya::y’)
» P(Yy=y') = P =y)

tionally, we need to show that when counterfactual ordering holds =
P(Y, = ¢|Y» = y) = 0. From counterfactual ordering we have P(Y, = y) > P(Y, = y) and
P(Y, =) < P(Yy = /). The latter implies ]Ij((;,/””—j/;) < 1, which when combined with the

former yields: P(Y, =y) > %P(}@ = y).. Concluding the proof. O

7.3.4 Counterfactual ordering functionally constrains causal mech-

anisms

[OST19] were unable to derive any general functional constraints counterfactual stability places
on the causal mechanisms underlying a given causal model. They were only able to compute
counterfactuals satisfying it in a single, specific type of causal model. Namely, one where the
mechanisms are parameterised using the Gumbel-Max trick. By contrast, we now derive general
a functional constraint on causal mechanisms that is equivalent to counterfactual ordering. In
the next section we will show how to learn causal models that satisfy this constraint. Thus we
are able to learn causal models that satisfy counterfactual ordering without the need for specific

parametric assumptions—such as the Gumbel-Max trick, as was required for counterfactual

stability by [OS19).

Definition 7.3 (Monotonicity). If there exists an ordering on interventions and outcomes:

{I07x17"'7IN}7 {y07y17"’7yM} such that P(sz = yk) > P<Y:EJ = yk) and P(}/IEZ - yh) <
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P(Yy, = yn) for all i > j and k > h then Y,(u) > Yy (u) for all u. Equivalently, the events

Y, = yn} AMYs, = yi} = False for alli > j and h <.

Theorem 7.3. Given an intervention & outcome ordering, counterfactual ordering € mono-

tonicity are equivalent.

Proof. First we show counterfactual ordering implies monotonicity. From Theorem [7.1], coun-
terfactual ordering implies {Y,, = yn} A {Yy;, = w} = False for all 4 > j and h < [, as

P(Yz, = yn|Ya, = y1) = 0. Monotonicity follows.

Next we show monotonicity implies counterfactual ordering. Monotonicity implies that for
intervention X = =z, the likelihood of the outcome being higher in the outcome ordering in-
creases, while the likelihood of the outcome being lower in the ordering decreases relative to
the likelihoods imposed by intervention X = z’ which lies lower in the intervention ordering.
All that remains is to show that for such interventions, z,2’, and outcome Y = y for which
P(Y, =y) > P(Yy = y), it follows that P(Y, > y|Yy = v*) > P(Yy > y|Ye = y*) for all

counterfactual contexts {y*, z*}.

P(Y, > y|Y, = y*) is computed by first updating P(U) under z*, y* and computing P(Y > y)
in the submodel M,. That is, it corresponds to the expected value of P(Y,(u) > y) under
u ~ P(Ul|z*,y*). From monotonicity one has Y, (u) > Y,/ (u) for all u. Hence, for any U = u
that results in Y,/ (u) > y, that same U = w yields Y, (u) >y, as Y, (u) > Y»(u) > y. Hence, as
there are at most as many values of U that lead to Y, > y as lead to Y,» > v, one has P(Y,(u) >

y) = P(Yy(u) > y) for any U = u. This follows because P(Yy(u) > y) =3y, P(U = u)

(u)=y
together with the observation that summands in ZuD, () >y P(U = u) are a subset of summands

in >y, sy P(U = u). Taking expectations under P(Uly*, z*) yields the proof. O

[TP0OQ] proved that in an SCM with DAG with binary X,Y, where Y is monotonic in
X, the probabilities of causation—important counterfactual queries that quantify the degree
to which one event was a necessary or sufficient cause of another—can be uniquely identified
from observational and interventional distributions. See Section [.3.6] for a definition of the

probabilities of causation. We thus have the follow corollary to theorem [7.3]
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Corollary 1. In a counterfactually ordered SCM with DAG and binary X,Y , the proba-

bilities of causation are identified from observational and interventional distributions.

For categorical variables beyond the binary case, it is unknown whether monontonicity implies
unique identifiability. However, in this work we are not concerned with counterfactuals being
uniquely defined, as long as “non-intuitive” counterfactuals are ruled out. Constraints on the
model beyond those imposed by observations and experimental data are said to partially-identify
counterfactual distributions. In the next section we demonstrate how to learn causal models

satisfying counterfactual ordering from data.

7.3.5 Deep twin networks

We now present deep twin networks which combine twin networks with neural networks to
learn the causal mechanisms and estimate counterfactuals. Importantly, we will discuss how to

ensure the function space learned by the neural network satisfies counterfactual ordering.

Contrary to prior Bayesian network approaches deep twin networks allow us not only to estimate
counterfactual probabilities from data but to learn the underlying functions that dictate the
interactions between causal variables. Hence we are able to gain a deeper insight on the
mechanisms represented in the structural causal model that generate the counterfactuals we
want to predict. Moreover we are able to quantify the uncertainty about the outcome by learning
the latent noise distribution. Finally, the use of neural networks allow us to gain flexibility and
computational advantages not present in previous plug-in estimators. Specifically we will see
that our methods admits an arbitrary number and type of confounders Z while estimating
counterfactual probabilities, a stark difference to plug-in estimators, such as those presented in

[CK20].

Our approach has two stages, training the neural network such that it learns the counterfactually
ordered causal mechanisms that best fit the data, then interpreting it as a twin network on
which standard inference is performed to estimate counterfactual distributions. Note that if

one can generate counterfactuals, one can also generate interventions.
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For clarity, we confine our explanations to the causal structure from Figure where X,V
are categorical variables with X € {1,...,N} and Y € {1,..., M}, and Z can be categorical
or numerical. Note there can be many Z. Our method can be extended to multiple causes and
a single output straightforwardly. To generalize this approach to an arbitrary causal structure,
one applies our method to each parent-child structure recursively in the topological specified

by the direction of the arrows in the causal structure.

Training deep twin networks: To determine the architecture of our neural network, we
start with the causal structure of the SCM we wish to learn, and consider the graphical struc-
ture of its twin network representation. Our neural network architecture then exactly follows
this graphical structure. This is graphically illustrated for the case of binary XY from Fig-
ure [2.8a] with twin network in Figure 2.8d in Figure[7.2] In the case of binary X, Y, the neural
network has two heads, one for the outcome under the factual treatment and the other for
the outcome under the counterfactual treatment. Furthermore two shared—but independent
of one another—base representations, one corresponding to a representation of the observed
confounders, Z, and the other to the latent noise term on the outcome, Uy, are employed. For
multiple treatments we have N neural network heads, each corresponding to the categories of
X. To interpret this as a twin network for given evidence X,Y, Z and desired intervention X*,
we marginalize out the heads indexed by the elements of {1,..., N}/X, X*. To train this neural
network, we require two things: 1) a label for head Y*, and 2) a way to learn the distribution

of the latent noise term Uy-.

For 1), we must ask what the expected value of Y* is, for fixed covariates Z, under a change
in input X*. This corresponds to E(Y*|X*, Z). Given the correspondence between twin net-
works and the original SCM outlined in Equation from Section , this corresponds to
E(Y|do(X), Z), which is the expected value of Y under an intervention on X for fixed Z. There
are many approaches to estimating this quantity in the literature [SJS16, AWVDS17, [JSS16],
SBV19]. We follow [SLKI8]due to their method’s simplicity and empirical high performance.
Any method that computes E(Y|do(X), Z) can be used, however. In addition to specifying
the causal structure, the following standard assumptions are needed to estimate E(Y|do(X), Z)

[SLKI18]: 1) Ignorability: there are no unmeasured confounders; 2) Overlap: every unit has
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Figure 7.2: From DAG to twin network DAG to deep neural network (NN) architecture for
binary X,Y. Rectangular blocks are NN blocks, like FCN layers or Lattices; forward intersec-
tions are concatenation of features.

non-zero probability of receiving all treatments given their observed covariates. Computing

this expectation provides the labels for Y™*.

For 2), consider the following. Formally, the causal structure of Figure hasY = f(X, Z,Uy)
with Uy ~ q(Uy) for some g. Without loss of generality |[GKCT18|, one can rewrite this as
Y = f(X,Z,9(Uy)) with Uy, ~ & and Uy = g(Uy ), where £ is some easy-to-sample-from
distribution, such as a Gaussian or Uniform. Hence we have reduced learning ¢(Uy) to learning
function g, whose input corresponds to samples from a Guassian or Uniform. Taken together,

this provides a method to train our deep twin network. A summary is provided in Algorithm 2]

Algorithm 2 Training a deep twin network

Input: X: Treatment, Z: Confounders, X*: Counterfactual Treatment; Y: Outcome; C: DAG of causal structure; I: loss imposing
constraint on causal mechanisms

Output: F: trained deep twin network

1: Set F’s architecture to match twin network representation of C, as in Figure

2: To obtain label for counterfactual head, estimate E(Y|do(X), Z), yielding training dataset D := {X, X*, Z;Y,Y*}

3: for z,z*, z;y,y* € D and uy ~ N(0,1) do

4 Yy =F(o,a*,uy,2)
5
6

Train F by minimizing MSE(y,y') + MSE(y*,y ") + I(D)
. end for

Enforcing constraints on the causal mechanisms: There are a few approaches to ensure
that the function space learned by a neural network satisfies counterfactual ordering. Recall
from Theorem that such constraints correspond to limits on the type of input-output pairs
consistent with the function. One approach is to specify a loss function penalising the network
for outputs that violate the constraints, as done in [SAM97]. Alternatively, counterexample-
guided learning [SEMB20] can be employed, to ensure the trained network does not produce

any of these outputs when given the corresponding input. Lastly, as Theorem [7.3] equates



112 Chapter 7. Counterfactual Inference in Tabular and Medical Data

counterfactual ordering with monotonicity, a recent method uses “look-up tables” |[GCPT16| to
enforce monotonicity, and has been implemented in TensorFlow Lattice. Theorem requires
that the treatment and outcome categorical variables be themselves ordered. One method of
ordering our treatment variables is based on their perceived preference, i.e. based on domain
knowledge. In the absence of domain knowledge one could look at the Average Treatment
Effect (ATE) =: + >, (v1(i) — yo(i)), where y; represents the treated outcome while yo the
control outcome, as well as the interventional probabilities P(Y | do(X)). We then determine
an estimate of the relationship governing the treatment and the outcomes by observing the
trend of the ATE or P(Y | do(X)) as we change the treatments. The treatments are then
ordered such that their relationship towards the outcomes can be characterized as monotonic.
If one does not have access to interventional probabilities, then one can estimate them from

observational data [SLK18].

Estimating counterfactuals: We can now use the trained model to perform counterfactual
inference. The reason our neural network architecture matches the Twin Network structure
is that performing Bayesian inference on the neural network explicitly equates to performing
counterfactual inference. For Figure [2.8a] there are two counterfactual queries one can ask: (1)
PYx—w =y | X =2,Y =y, Z=2),(2) PVxez =9,Yx—w = V' | Z = z), where any of z,y, z
can be the empty set. Recall from Section that in a twin network (1) corresponds to
PY*=y | X =2Y =y, X*=2'), and (2) corresponds to P(Y =y, Y* =9 | X =2, X" =
x’). Any method of Bayesian inference can then be employed to compute these probabilities,

such as Importance or Rejection Sampling, or Variational methods. See Algorithm [3]

Algorithm 3 Deep twin network counterfactual inference

Input: X: Treatment, Uy: Noise, Z: Confounders, X*: Counterfactual Treatment; Y: Outcome Y *: Counterfactual Outcome; F
: Trained deep twin network; Q: desired counterfactual query (in this example, Yx_,» = v’ | X = z,Y =y, Z = 2))
Output: P(Q): Estimated distribution of Q.
1: Convert P(Q) to twin network distribution: P(Yx—p =%’ | X =2,Y =y, Z =2) > P(Y* =9’ | X =2,Y =y, X* = 2')
2: Compute P(Y* =v¢' | X =2,Y =y, X* =2a'):
3: for x,2’, 2z € Diest do
for [uy]n ~N(0,1), N € N do
Sample (7,§* = F(z,2’,uy, z)) such that g =y
The frequency of these samples for which §* =y’ yields P(Q)
end for
end for
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7.3.6 Probabilities of Causation: Definitions

The probabilities of causation are important counterfactual queries that quantify the degree to
which one event was a necessary or sufficient cause of another. Recently these have been applied
in medical diagnosis [RLJ20] to determine if a patient’s symptoms would not have occurred
had it not been for a specific disease. Here, the proposition binary variable W is true will is

denoted W = 1, while its negation, W = 0, denotes the proposition W is false.

1. Probability of necessity:

P(Yxeo=0|X=1,Y =1)

The probability of necessity is the probability event Y would not have occurred without

event X occurring, given that X, Y did in fact occur.

2. Probability of sufficiency:

P(YX:1:1|X:0,Y:0)

The probability of sufficiency is the probability that in a situation where X, Y were absent,

intervening to make X occur would have led to Y occurring.

3. Probability of necessity & sufficiency:

P(YX:0 == O,Yle == 1 ’ Z)

The probability of necessity & sufficiency quantifies the sufficiency and necessity of event
X to produce event Y in context Z. As discussed in section joint counterfactual

probabilities are well-defined.
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7.4 Related Works

Despite the large body of work using machine learning to estimate interventional queries rela-

tively little work has explored using machine learning to estimate counterfactual queries.

Machine learning to estimate counterfactual queries: Recent work from [PCG20] used
normalising flows and variational inference to compute counterfacual queries using abduction-
action-prediction. A limitation of this work is that identifiability constraints required for the
counterfactual queries to be uniquely defined given the training data are not imposed. Work
by Oberst and Sontag [OS19], expanded by [LJMT21], used the Gumbel-Max trick to esti-
mate counterfactuals, again using abduction-action-prediction. While this methodology satis-
fies generalisations of the monotonicity constraint, it does so because the Gumbel-Max trick
has a limit on the type of conditional distributions it can generate—mnot because the authors
imposed partial-identfiability constraints during the learning process. Hence the Gumbel-Max
may not be suitable for the computation of counterfactual queries requiring different (partial-
)identifiability constraints. Additional work by Cuellar and Kennedy, [CK20] devised a non-
parametric method to compute the Probability of Necessity using an influence-function-based
estimator. This estimator was derived under the assumption of monotonicity. A limitation of

this approach is that a separate estimator must be derived and trained for each counterfactual

query.

A large body of work addresses the issue of partial identifiability of counterfactuals from data.
Historically, this line of work was initiated by [BP97], who explored bounds on the probabilities
of causal queries of binary variables using linear programming. Recently, [ZB20] extended such
linear programming derived upper and lower bounds beyond binary outcomes to the case of
continuous outcomes. Additional work by [JZ21] bounded counterfactuals by mapping the SCM
space onto a new one that is discrete and easier to infer upon. Finally, [IA94] proposed Local
average treatment effects as means of identifications of interventional queries from observational

data.

Machine learning to estimate interventional queries: Recently there has been much
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interest in using machine learning to estimate interventional conditional distributions. These
were aimed at learning conditional average treatment effects: E(Yx—; | Z) — E(Yx—o | Z). Ex-
amples include PerfectMatch [SLK18|, DragonNet [SBV19], PropensityDropout [AWVDSI1T],
Treatment-agnostic representation networks (TARNET) [SJS16], Balancing Neural Networks
[JSS16]. Each work utilised neural network architectures similar to the one depicted in Fig-
ure [7.2, with sight modifications based on the specific approach. Other machine learning ap-
proaches to estimating interventional queries made use of GANs, such as GANITE [YJVDSIS]
and Causal GAN [KSDV1§|, Gaussian Processes [WTJM20, [AvdS17], Variational Autoencoders
[LSM™17], and representation learning [ZBS20, |AZT*21), YLL™18].

While our architecture shares similarities with these, there is one main difference. By interpret-
ing our architecture as a twin network in the sense of [BP94]—as discussed in Section[7.3.5}—and
explicitly including an input for the latent noise term Uy, we can elevate our network from es-
timating interventional queries to fully counterfactual ones by performing Bayesian inference

on it.

7.5 Experimentation

We now evaluate our counterfactual ordering principle and our deep twin network computational
tool. We focus on four publicly available real-world datasets, the German Credit Dataset
[DG17], the International Stroke Trial (IST) [SN11J, the Kenyan Water task [CK20] and the
Twin mortality dataset [LSM™17]. We further use two synthetic and two semi-synthetic tasks

to test our proposed methods. Full dataset description is in Section [7.5.1}

We break our research questions (RQ) into two distinct types: ones that assess our counter-
factual ordering principle, and ones that assess the counterfactual estimation accuracy of deep
twin networks. Specifically, to assess counterfactual ordering, we wish to determine if not en-
forcing it leads to domain knowledge conflicting counterfactuals in real datasets, relative to
enforcing it. To estimate counterfactual estimation accuracy of deep twin networks satisfying

counterfactual ordering, we test on synthetic and semi-sythentic datasets—where we by design
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have access to the ground truth—as well as on a dataset involving twins, where we use features
of one twin as a the counterfactual for the other. Finally, we also test on a real dataset involv-
ing binary treatment and outcome. We do this as Corollary [I| showed that in counterfactually
ordered causal models with binary variables, certain counterfactual probabilities are uniquely
identified from data. Hence for binary variables we can determine how accurate our deep twin

network method is relative to these known identified expressions.

e RQ1: If counterfactual ordering isn’t enforced, do counterfactuals conflict with domain

knowledge?

e RQ2: By imposing counterfactual ordering, do generated counterfactuals comply with

domain knowledge?

e RQ3: Can we accurately estimate counterfactual probabilities using deep twin networks?

7.5.1 Description of Datasets Used

Semi-Synthetic examples for RQ1 & RQ2

Here we describe in detail all the datasets used in this chapter. In the German Credit Dataset
the treatment is a four-valued variable corresponding to current account status, and the out-
come is loan risk. The International Stroke Trial database was a large, randomized trial of an-
tithrombotic therapy after stroke onset. The treatment is a three-valued variable corresponding
to heparin dosage, and the outcome is a three-valued variable corresponding to different levels
of patient recovery. In both cases we explore semi-synthetic settings, where the treatment and
confounders are derived from the original dataset but the outcome is defined in a synthetic
fashion. Synthetic outcomes allow us to determine the ground truth counterfactuals and prob-
abilities of causation (see for definition). We also evaluate our algorithm with the real

world outcome of the German Credit Dataset.

Below we define the semi-synthetic outcome for both datasets - the German Credit Dataset
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and the International Stroke Trials one:

;

X+7Z if Uy =0

0, if Uy =1

X x 7, it Uy =2
V=42 if Uy =3 (7.3)

1, if Uy = 4

step(X — 1), if Uy =5

\2*step(X—1), if Uy =6

where the treatment X and the confounders Z span the range X,Z € [0,2]. Step is the

Heaviside step function. In our experimentation Uy was drawn from a uniform distribution

Meanwhile for the IST dataset: Let X be the dosage of aspirin treatment and the counfouders
be defined as SEX := biological sex of patient, AGE:= age of patient thresholded at 71 years,
CONSC := level of consciousness the patient arrived in hospital with. The outcome Y =

1/(1+ e 9) with g being given by:

g = X + SEX+0.2 + (CONSC — 1)
(7.4)

+ 0.5« X * SEXx AGE + U,

Real World examples for RQ3

Moreover, the Kenyan Water task is to understand whether protecting water springs in Kenya by
installing pipes and concrete containers reduced childhood diarrhea, given confounders. Firstly,
monotonicity is a reasonable assumption here as protecting a spring is not expected to increase
the bacterial concentration and hence increase the incidence of diarrhea. [CK20] reported a low
value for Probability of Necessity here—suggesting that children who developed diarrhea after
being exposed to a high concentration of bacteria in their drinking water would have contracted

the disease regardless. However, as there is no ground truth here, further studies reproducing
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this result with alternate methods are required to gain confidence in [CK20]’s result. We follow
the same data processing as in [CK20], The Kenyan water dataset originates from [KLMP15]
licensed under a non commercial use clause and with the requirement for secure storage, both

conditions have been fulfilled by the authors. The data was preprocessed following [CK20)].

For the Twin Mortality data, two versions were used. First databases provided by [LSM™17]
were processed to remove NaNs. No further processing was administered. This constituted
the completely real version of the Twin Mortality dataset. However, as both [LSM™17| and
[YJVDSI§| process the data to create a semi-synthetic task, in the spirit of proper comparison

we used the data as processed and provided by [YJVDS18], with no additional processing.

Synthetic examples for RQ3

Finally we set out the two synthetic examples used in RQ3 to test our Deep Twin Network

methodology. Let:

hXin:O
V=40, ifUy=1 (7.5)
1 iUy =2
Hence
mezpwyf%i?zwzm (7.6)
p(s) = —— LU =0) &

In addition we consider a confounded example for RQ3

(

X x 2, ifUy =0
Y =10, it Uy =1 (7.9)

1, if Uy =2

\
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ATE 0 1 2
0 0 0.3059  0.8914
1 -0.3059 0 0.5854
2 -0.8914 -0.5854 0

Table 7.1: Treatment: Semi-Synthetic Existing account status, Outcome: Synthethic. As the
change from treatment 0 to 1&2 has a positive Average Treatment Effect, the relationship
is increasing monotonic. Here we are investigating our ability to determine the direction of
monotonicity. We observe that the ATE is positive as we increase the treatment we get a larger
ATE, hence the monotonicity direction is correctly surmised

where

X=U,&7

Hence

P(N) = - (7.10)

P(S) = (7.11)

P(NS) = P(Uy = 0)P(Z = 1) (7.12)

7.5.2 Determining monotonicity direction

Before we attempt to answer the aforementioned Research Questions we investigate methods
to determine the monotonicity direction at a given dataset. In Table we provide the ATE of
a semi-synthetic existing account status from the German Credit Dataset [DG17] with a fully
synthetic outcome defined in Equation . We observe that for a control treatment 0 changing
the treatment to [1,2] the ATE increases, indicating a monotonic increasing relationship. In
addition, we could observe the interventional probabilities where as we increase the value of
the treatment the probability of a higher outcome increases, we show this in Table 7.2l This

reinforces our beliefs regarding the type of monotonicity.

Similarly, Table (7.3 Table include the ATE and the interventional probabilities for a real
world variant of the above dataset where the treatments are again the current account status

of the individual but the outcome is their classification as good or bad risk. At this point, we
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P(Y[do(X)) 0.0 1.0 2.0

0.6396 0.2056 0.1548
0.4635 0.2518 0.2847
0.1656 0.2620 0.5723

N = O

Table 7.2: Same data as Table [7.1l Here we look at the interventional probabilities. As Rows
are treatments, and columns are outcomes

ATE 0 1 2 3
0 0 -0.0791 0.1029 0.2174
1 0.0791 O 0.1820  0.2965
2 -0.1029 -0.1820 0 0.1145
3 -0.2174 -0.2965 -0.1145 O

Table 7.3: Following the same investigation as Table . Treatment: Account status, Outcome:
Risk Status. We get the same insights but there is a potential we could be exchanging Treatment
0 and 1, As we see later on this is not necessary and we hypothesise this violation in the
monotonic ATE is due to noise of the real world data.

may call upon our domain knowledge and determine if the break in the monotonic trend is due
to noisy observations or a different ordering of the treatments. As this is a real world dataset in
which the outcome attribution is inherently noisy we observe an outlier behavior from treatment
1. Upon closer inspection we observe that treatment 1 corresponds to a negative balance in
the individual’s checking account while treatment 0 indicates no existing checking account. As
such one could either switch the treatment ordering to obey the monotonicity, or in the case
that this break in monotonicity is suspected to be due to noisy data one could enforce prior
knowledge-based monotonicity. Here, we follow our prior knowledge and attribute the break of
monotonicity to noise. Our reasoning is based on the fact that an individual without a prior

credit account is a larger unknown for a financial institution.

P(Y|do(X)) 0.0 1.0

0.1919 0.8081
0.5450 0.4549
0.3336  0.6663
0.1265 0.8735

W N =Oo

Table 7.4: P(Y|do(X)) of the same dataset, rows indicate treatments while columns outcomes
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P(T”,T) 0.0 1.0 2.0 3.0
0 0 0.0816 + 0.1414  0.0860 = 0.1191  0.0344 + 0.0208
1 0.1439+£0.1396 0 0.1156 + 0.0984  0.1297 + 0.1306
2 0.1286 4+ 0.0726  0.1290 £ 0.1347 0 0.0741 + 0.0752
3 0.0680 + 0.0457 0.1854 + 0.1452 0.0974 & 0.1140 0

Table 7.5: Non-constrained model. P(7",T) = P(Riskaccount Status=rr = good |
Account Status = T, Risk = bad). Columns and rows are Treatments. We observe counter-
intuitive probabilities as the lower triangular sub-matrix offers higher probabilities than the
upper triangular one. That is, if we observe evidence where bad account status led to bad risk,
the non-constrained model predicts an increase in net worth would have led to a lower chance
of being deemed a good risk—even though all other factors are kept fixed. An un-intuitive
result that conflicts with domain knowledge of the finance industry.

P(T",T) 0.0 1.0 2.0 3.0
0 0 0.3022 4+ 0.0415 0.3977 £ 0.0382  0.4040 + 0.0381
1 0.1079+0.0322 0 0.3891 + 0.0988  0.4118 + 0.0545
2 0.0670 + 0.0156  0.2816 + 0.0653 0 0.4470 + 0.0751
3 0.1383+0.0442 0.2953 +0.0344 0.3522 & 0.0577 0

Table 7.6: Counterfactual Ordering. P(7",7) = P(Riskaccount Status=rr = good |
Account Status = T, Risk = bad). Columns and rows are Treatments. We observe intuitive
results as the lower triangular sub-matrix offers lower probabilities than the upper triangular
one. That is, when we observe evidence in which bad account status led to bad risk, the coun-
terfactually ordered model predicts an increase in net worth would have led to a higher chance
of being deemed a good risk—an intuitive result that complies with domain knowledge in the
finance industry.

7.5.3 Answering RQ1 & RQ2

We now investigate the German Credit real-world dataset and the International Stroke Trial
dataset in an effort to answer RQ1 and RQ2. We train a deep twin network on German Credit

data using Algorithm [2]

In Table and Table [7.5 we estimate the counterfactual probability P(Riskaccount Status=1" =
good | Account Status = T, Risk = bad) for a model satisfying counterfactual ordering and
an unconstrained model respectively. That is, we ask what the probability that our loan risk
would be good if we improved our account status, given that our account status is currently
bad and we were just deemed a poor risk of a loan. We note that the unconstrained model

offers us non-intuitive probabilities that, when put in context, do not make sense in the real
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P 0.0 1.0 2.0 3.0

0 0 0.4773 £0.0182 0.4243 £0.0272 0.3894 + 0.0147
1 0.6049 £0.0386 0O 0.5791 £ 0.0340 0.5616 4= 0.0183
2 0.6081 +=0.0388 0.6025 £ 0.0806 0 0.5221 £ 0.0130
3 0.6265 £ 0.0297 0.6580 £0.0431 0.5188 £0.0272 0

Table 7.7: Switched counterfactual ordering — Probability of counterfactual P(7,7") =
P(Yx—pm = 1| X =T,Y = 0) - columns and rows are Treatments — We observe counter-
intuitive probabilities of necessity as the lower triangular sub-matrix has higher probabilities
than the upper triangular

P 1.0 2.0

0 0 0.1260 £ 0.0070  0.0000 = 0.0000
1 0.0000 £ 0.0000 0O 0.2262 £ 0.0429
2 0.0000 4= 0.0000 0.0000 £ 0.0000 0

Table 7.8: P = P(Yx—1 = Column|Yx—o = Row). In this semi-synthetic example we expected
a good behaving model that provides the lower triangular part of the table to be 0.

world. We observe that when we condition on evidence in which bad account status led to bad
risk, the unconstrained model predicts that increasing an individual’s net worth would have
resulted in a lower probability of being deemed a good risk than decreasing their net worth.
This result defies common sense, answering RQ1. On the other hand, when we observe bad
account status led to bad risk, the counterfactually ordered model predicts that an increase in
an individuals net worth would have led to a higher chance of them being deemed a good risk
than a decrease in their worth in this context. This result fits with our understanding of the

financial industry, answering RQ2.

In Table [7.7] we show a special ablation case where we on purpose changed the direction of
monotonicity leading to the generation of counterfactuals that clash with our understanding of

the financial industry - further supporting our argumentation.

Moreover, Tables show counterfactual probabilities from our method applied to the semi-
synthetic account status treatment and synthetic outcome. We note that our model slightly
violates the monotonicity constraints by providing non zero probabilities to two cases where
they should be 0. However, both of these are within our acceptable experimental error, with

one being less than 1%, the other being just over 1%
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P 0.0 1.0 2.0
0 0.0000 0.1190 0.0079
1
2

0.0000 0.0000 0.2037
0.0000 0.0000 0.0000

Table 7.9: P = P(Yx—1 = Column|Yx—y = Row).

P 1.0 2.0

0 0 0.0482 £ 0.0006  0.1840 £ 0.0001
1 0.0011£0.0019 O 0.1130 £ 0.0069
2 0.0000 £ 0.0000 0.0135£0.0058 0

Table 7.10: P = P(Yx—1 = Column|Yx—o = Row).

Finally regarding the IST dataset, Tables show the counterfactual probabilities for

the semi-synthetic heparin treatment and synthetic outcome.

7.5.4 Answering RQ3

As a reminder we reiterate the third research question, RQ3: Can we accurately estimate

counterfactual probabilities using deep twin networks?

Synthetic data We first evaluate whether we can accurately estimate the probabilities of
causation on synthetic data. We test on data generated by an unconfounded as well as a
confounded synthetic causal model, whose functional forms are outlined in the Section [7.5.1]
Following the algorithms 2], [3] we train a deep twin network on data from each case and enforce

monotonicity.

We test on both unconfounded and confounded causal models, with causal structure from
Figure and Figure respectively. The data generation functions are defined in Equa-
tion and Equation The functions remain monotonic in X. Given these, we construct
synthetic datasets of 200000 points split into training and testing under an 80 — 20 split. The
samples U, were drawn from either a uniform or a Gaussian distribution, depending on the
experiment. Confounders Z were taken from a uniform distribution. We opt for a high number

of samples such that we do not bias our analysis due to small sample sizes. In the real world
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P 0.0 1.0 2.0
0 0.0000 0.0266 0.0917
1
2

0.0000 0.0000 0.0911
0.0000 0.0000 0.0000

Table 7.11: P = P(Yx—1 = Column|Yx—o = Row).

Method U, P(N) P(S) P(N&S)
Synth Ground Truth Uniform 0.5 0.5 0.33333
Synth Twin Net Uniform  0.50214 £ 0.00387 0.50046 4 0.00631 0.33449 + 0.00401
Synth w/ Conf Ground Truth Gaussian 0.54706 0.35512 0.27443
Synth w/ Conf Twin Net Gaussian  0.54563 £ 0.00276  0.35177 £ 0.00144  0.27207 £ 0.00125

Table 7.12: Results of Synthetic experiments. P(N): Prob. of Necessity; P(S): Prob. of
Sufficiency; P(N&S): Prob. of Necessity and Sufficiency. Our model achieves highly accurate
estimations of the probabilities of causation on synthetic data.

experiments the dataset sizes are smaller. Results for a trained twin network are in Table[7.12]
We accurately estimate all Probabilities of Causation in both unconfounded and confounded
cases when ground truth and candidate distributions are the same. In Figure [7.3] we also
show performance of (a) unconfounded and (b) confounded cases as ground truth distribution
of Uy in synthetic generating functions changes, but candidate training distributions remain

fixed—showing robust estimation.

Probability of Necessity Probability of Necessity
0.5

0.4

0.3

P(n)

0.2

0.1

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
P(Uy=p) P(Uy=p)

(a) (b)

Figure 7.3: Predicted & ground truth Probability of Necessity as distribution of Uy varies in
synthetic generating functions, but training distributions do not. Plots show robust estimation.
(a) unconfounded, (b) confounded. Errors bars in both
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Method P(N) P(S) P(N&S) AUC-ROC / F1

KW Median Child Cuellar et al. 2020 0.12£0.01 - - -

KW TN Median Child 0.13598 +0.049 0.09811 +0.031 0.31778 £0.012 -

KW TN Test Set 0.06273 +£0.020 0.03914 £ 0.016 0.08521 £ 0.034 -

Twin Mortality Ground Truth 0.33372 0.01011 0.01353 0.83/- Louizos et al. 2017
TM TN Test Set 0.12241 £ 0.019 0.01401 £ 0.003 0.01174 +0.002 0.86/0.83

Table 7.13: Results of Kenyan Water (KW) & Twins Mortality (TM) with Twin Network (TN),
P(N): Prob. of Necessity; P(S): Prob. of Sufficiency; P(N&S): Prob. of Necessity & Sufficiency.
In KW we agree & improve on [CK20]. In TM we overestimate P(N), but report accurate P(S)
& P(N&S), & better AUC than [LSM™17].

Credit Dataset ‘ IST - Aspirin ‘ IST - Heparin
F1S No Constrains Counterfactual | No Constrains Counterfactual | No Constrains Counterfactual
cores Linear Layers Ordering Linear Layers Ordering Linear Layers Ordering
Factual 0.4929 0.8637 0.6113 0.6417 0.3497 0.9758
Counterfactual 0.4698 0.9795 0.7152 0.9501 0.4103 0.9851

Table 7.14: F1 score of counterfactual predictions for semi-synthetic German Credit Dataset
with Treatment: Existing account status, Outcome: Synthetic; & International Stroke Trial
(IST) Dataset with Treatment: Aspirin, Outcome: Synthetic; Treatment: Heparin, Outcome:
Synthetic. See Section for dataset description.

Semi-synthetic data In Table we show the results of our semi-synthetic experiments,
for both the German Credit Datasest as well as the International Stroke Trial. Here, as the
outcomes are synthetic, the ground truth is known a priori, hence we are able to calculate
the associated F1 scores for each of the models. The counterfactually ordered models are more
accurate at predicting both factual and counterfactual outcomes answering RQ3. Moreover, not

enforcing counterfactual ordering leads to reduced performance in counterfactual estimation.

Real-world data We show now, and discuss performance on the Twin Mortality data of

[LSM™17] and the Kenyan Water task from [CK20)].

In the case of Kenyan Water dataset, treatment and outcome are binary, so we can compare the
deep twin networks estimated counterfactual distributions to the uniquely identified counterfac-
tual distribution via Corollary [l The Kenyan Water task is to understand whether protecting
water springs in Kenya by installing pipes and concrete containers reduced childhood diarrhea.
First, monotonicity is reasonable here as protecting a spring is not expected to increase the
bacterial concentration and hence increase the diarrhea incidence. [CK20] reported a low value

for Probability of Necessity here—suggesting that children who developed diarrhea after being
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exposed to a high concentration of bacteria in their drinking water would have contracted the
disease regardless. However, as there is no ground truth, further studies reproducing this re-
sult with alternate methods are required to gain confidence in [CK20]’s result. We follow the
same data processing as in [CK20]. Our findings are in Table [7.13| and agree with [CK20] on
Probability of Necessity. Moreover, unlike [CK20], we can also compute Probability of Suffi-
ciency and Probability of Necessity and Sufficiency. We can thus offer a more comprehensive
understanding of the role protecting water springs plays in childhood disease. Our results show
that exposure to water-based bacteria is not a necessary condition to exhibit diarrhea and it
is neither a sufficient, nor a necessary-and-sufficient condition. This provides further evidence
that protecting water springs has little effect on the development of diarrhea in children in

these populations, indicating the source of the disease is not related to water.

In the Twin mortality dataset the goal is to understand the effect being born the heavier of
the twins has on mortality one year after birth, given confounders regarding the health of the
mother and background of the parents. Previous work addressed this with intervention queries.
We use counterfactual queries—specifically the probabilities of causation. We follow [LSM™17,
Y JVDS18|’s preprocessing. As in [LSM™17|, we treat each twin as the counterfactual of their
sibling—providing a ground truth reported in[7.13] Again, monotonicity is justified here as we
do not expect increasing birth weight to lead to reduced mortality.

First, given birth weight and mortality evidence provided by one twin, we aim to estimate the

expected counterfactual outcome had their weight been different. That is, compute

E(Mortality e | Mortality™, Weight™, Z),

where Z are observed confounders. We achieve a counterfactual AUC-ROC of 86% and F1
score of 83%. |[LSM™17] addressed this same question using only used interventional queries.
That is, they computed E(Mortalityyy.|Z) and only achieve AUC 83%. We thus outperform
[LSM*17]’s AUC by 3%. Full results can be found in Table[7.13] Here, by explicitly conditioning
on and using the fact that the observed twins had birth weight and mortality, we are able to

update our knowledge about the latent noise term of the other twin. Our improved AUC score
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showed using this allowed more accurate estimation of the “hidden” twins outcome. This cleanly
illustrates the difference between interventions and counterfactuals. To give a comparison to
prior work, we computed the average treatment effect from our model, yielding —2.34% +0.019
which matches |[LSM™17]—showing our model accurately estimates interventions as well as

counterfactuals.

Table reports our estimation of the Probabilities of Causation. Note that no previous work
has computed these counterfactual distributions. Despite accurate estimation of the Probabil-
ity of Sufficiency, and Necessity & Sufficiency, our model underestimates the Probability of
Necessity. This can be explained by a large data imbalance regarding the mortality outcome—
affecting the Probability of Necessity the most as mortality is the evidence conditioned here.
Nevertheless, we correctly reproduce the relative sizes of the Probabilties of Causation, with

Probability of Necessity an order of magnitude larger than the others.

7.6 Summary

This chapter introduced counterfactual ordering, a principle that posits desirable properties
causal mechanisms should posses to rule out “non-intuitive” counterfactuals. We proved it
is equivalent to causal mechanisms being monotonic. To learn such causal mechanisms, and

perform counterfactual inference with them, we introduced deep twin networks.

Throughout our experimentation we asked a series of counterfactual questions whose answers
we found to be in accordance with the conclusions other pieces of literature have drawn. It is
important to note though that all our results and methods assume the knowledge of a causal
diagram. Determining such a diagram is not within the scope of causal inference but of causal
discovery. Such tasks are interesting and challenging. Moreover, as we are unable to determine
experimentally the validity of our counterfactual predictions we would rely on our mathematical
analysis and other methods like sensitivity analysis and refutation methods to determine the

performance of methods.



Chapter 8

Counterfactual Inference in Medical

Images

As we explored topics in causally enabled ML and its application to medical data, we developed
a novel methodology - the deep twin networks. In this chapter we look into applying our method
to medical images. We further tackle a real world limitation of lack of total identifiability. As
medical images and phenomena are high dimensional and complex the standard identifiability
constraints cannot be applied. The need, thus, arises to make expert knowledge judgments to
determine the validity of the learned models. This work has been done in collaboration with
Hadrien Reynaud that is the first author of the associated publication [RVHT21], featured in
MICCAT 2022. T contributed with the idea of applying the deep twin networks from Chapter [7]
the theory of twin networks and a baseline implementation of them in Tensorflow 2. H.R.
then re-implemented them in Pytorch and engineered the pipeline required to train them with
images. 1 also provided continual support by guiding H.R. to potential solution for the latter

part of the project where access to true counterfactuals was not possible.

128
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Figure 8.1: In this chapter we look into how to perform counterfactual image and video gener-
ation

8.1 Introduction

How would this patient’s scans look like if they had a different LVEF}? How would this [US] view
appear if I turned the probe by 5 degrees? These are important causality related questions
that physicians and operators ask explicitly or implicitly during the course of an examination
in order to reason about the possible pathologies of the patient. While in the second case the
interventional query of turning the probe is easy to resolve — by performing the action— queries
like the first case, where we ask a counterfactual question, cannot be answered that easily.

Indeed, these fall under the third and highest rung of Pearl’s [Pea9] hierarchy of causation.

Counterfactual queries probe into alternative scenarios that might have occurred had our actions
been different. For the first question of this paper, we ask ourselves how the patients scans
would look like if they had a different [LVEF] Here, the treatment would be the different ejection
fraction, and the outcome, the different set of scans. Note that this is a query that is counter-to
our observed knowledge that the patients scans exhibited a specific [LVEF] As such, standard
Bayesian Inference that conditions on the observed data without any further considerations is

not able to answer this type of questions.
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8.1.1 Related works

Generating synthetic images can be performed with physics-based simulators [SHNOS,
CYLW13, MMG14, |GCCT09, BBRH12] and other techniques, like registration-based meth-
ods [LCKD™05]. However, these methods are usually very computationally expensive and do
not generate fully realistic images. With the shift into deep learning, [GAN}based techniques
have emerged. They can be based on simulated priors or other imaging modalities (MRI,
CT) [CFS20, TFY20, [TGS™21, IAASK™20, IASAL™20, [TZPG21] to condition the anatomy of
the generated images. Recently, many works explore machine learning as a tool to esti-
mate interventional conditional distributions [YJVDSIS, [KSDVIS8| [LSM™17, IAZT*21]. How-
ever, fewer works focus on the counterfactual query estimation. [PCG20), [(OS19] explore the
Abduction-Action-Prediction paradigm and use deep neural networks for the abduction step,
which is computationally very expensive. [CK20] derive a parametric mathematical model for
the estimation of one of the probabilities of causation, while [VKGL21] use [BP94] to develop
deep twin networks. The computer vision field also has a lot of interest for conditional gen-
eration problems. [WBBD20, [TLYKI8b] does conditional video generation from a video and
a discrete class. [DWX"20] uses an image and a continuous value as input to produce a new
image. [SG21), KSDVIE§| introduce causality in their generation process, to produce images
from classes. More recently [CXL™| use diffusion models and the Abduction-Action-Prediction

paradigm to generate synthetic aged cardiac images.

8.1.2 Contributions

In this chapter (1) We extend the causal inference methodology known as Deep Twin Net-

works Chapter [7] and[VKGL21] into a novel generative modelling method (D’ARTAGNAN][)

able to handle counterfactual queries. (2) We apply our framework on the synthetic Mor-
phoMNIST [CTK™19] and real-world EchoNet-Dynamic [OHG™20| datasets, exhibiting that
our method can perform well in both fully controlled environments and on real medical cases.

To the best of our knowledge, this is an entirely novel approach and task, and thus the first

'D’Artagnan is the fourth Musketeer from the French tale “The three Musketeers”.
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time such an approach is explored for medical image analysis and computer vision. Our work
differentiates itself from all other generative methods, as it combines video generation with
continuous conditional input, framed in a new causal framework that supports counterfactual
queries to produce counterfactual videos with a semi-supervised approach allowing most stan-

dard labelled datasets to be used.

8.2 Method

Deep Twin Networks The methodology we propose is based on Deep Twin Networks. The
training procedure and parametrization are borrowed from [VKGL21], who sets the foundation
for such a causal framework. Deep Twin Networks use two branches, the factual and the
counterfactual branch. We note our factual and counterfactual treatments (inputs unique to
each branch) X and X*, while the confounder (input shared between both branches) is noted
Z. We note the factual and counterfactual outcomes Y, Y* while the noise, injected midway
through the network, and shared by both branches, is noted Uy. This information flow sets Z as
the data we want to query with X and X*, to produce the outcomes Y and Y*. These variables
will be detailed on a case-specific basis in section 8.3} See Fig[8.2) for a visual representation of

the information flow.

Synthetic data Full control over the data, as with synthetic data, enables the generation of
both ground truth outcomes Y and Y* along with their corresponding inputs X, X* and Z. This
makes training the Deep Twin Network trivial in a fully supervised fashion, we demonstrate in

our first experiment.

Real-world data As we theoretically need paired data with precise labelling of their differ-
ences, applying our approach to the real-world might seem unfeasible as very few datasets are
arranged as such. To overcome this limitation and enable our framework to support most stan-
dard labeled imaging dataset, we establish the following list of requirements that our model
must possess to generate counterfactual videos for the medical domain: (1) produce a factual

and counterfactual output that will share general visual features, such as style and anatomy, (2)
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produce accurate factual and counterfactual videos with respect to the intervened upon vari-
able, and (3) the counterfactual videos must be visually indistinguishable from real ones that
possess the intervened upon features. In the following, we use the Echonet-Dynamic [OHG™20]

dataset to illustrate the method, see Section for details.

To resolve feature (1) we share the weights of the branches in the network, such that we
virtually train a single branch on two tasks in parallel. To do so, we set the input video as
our confounder Z and the labeled [[VEE] as the factual treatment X. We train the network to
match the factual outcome Y with the input video. By doing so, the model learns to retain the
style and anatomical structure of the echocardiogram in the confounder. This is presented as
Loss 1 in Figure [8.2) and mathematically defined as an L1 loss. For feature (2) we pre-train an
expert network to regress the treatment values. The expert network takes an [US] video as input
and outputs the estimated [LVEF] The expert network weights are frozen when training the
Twin model. It is used to train the counterfactual branch, for which we have no labeled data,
thus preventing supervised training. The difference between the expert network prediction
and the randomly sampled counterfactual treatment is denoted as Loss 2 in Figure [8.2] also
parameterized as an L1 loss. Finally, feature (3) calls for the well-known [GAN]framework, where
we train a neural network to discriminate between real and fake images or videos, while training
the Twin Network. This constitutes the adversarial Loss 3 in Figure that ensures that the
counterfactual branch produces realistic-looking videos. With those 3 losses, we can train the
generator (i.e. factual and counterfactual branches) to produce pairs of visually accurate and
anatomically matching videos that respect their factual and counterfactual [LVEFE treatment.
In a scenario that identifiability criteria could be derived we would not be in need of the
auxiliary losses, Loss 3 and Loss 1. However general identifiability, and in particular in high
dimensional cases, such guarantees are impossible to be given, [TP00]. Moreover, as neural
networks are infamously good at deriving short cuts and not learning the features we theorize,

we require the introduction of auxiliary losses.

To learn the noise distribution Uy, we follow |[GKCT17, VKGL21] and without loss of gen-
erality we can write Y = f(X,Z,¢9(Us,)) with Uy, ~ £ and Uy = g(Uy,), where £ is some

easy-to-sample-from distribution, such as a Gaussian or Uniform. Effectively, we cast the prob-
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Figure 8.2: The [D’ARTAGNAN| framework. The green variables are known, the orange are
sampled from distributions and the blue are generated by deep neural networks. Factual path
is in blue, counterfactual in red.

lem of determining Uy to learning the appropriate transformation from &£ to Uy. For ease of
understanding, we will be using Uy henceforth to signify our approximation g(Uy,) of the true
unobserved parameter Uy . In addition to specifying the causal structure, the following standard
assumptions are needed to correctly estimate E(Y|do(X), Z) [SLKI1S8]: (1) Ignorability: there
are no unmeasured confounders; (2) Overlap: every unit has non-zero probability of receiving

all treatments given their observed covariates.

8.3 Experimentation

Datasets To evaluate D’ARTAGNAN] we use two publicly available datasets, the synthetic

MorphoMNIST [CTK™19] and the clinical Echonet-Dynamic [OHG™20] dataset.

MorphoMNIST is a set of tools that enable fine-grained perturbations of the MNIST digits
through four morphological functions, as wells as five measurement of the digits. To train our
model, we need five elements: an original image, a (counter-)factual treatment X (X*) and a
corresponding (counter-)factual label Y (Y*). To generate this data, we take 60.000 MNIST
images I; and sample 40 perturbation vectors p; ; for the five possible perturbations, including
identity, thus generating 2.4 million images I, ;. The perturbation vectors also encode the
relative positions of the perturbations, when applicable. We measure the original images to

produce vectors m; and one-hot encode the labels into vectors [;. We decided to perform
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[4 [EE 21

Figure 8.3: Left to right: original image, G'T factual image, predicted factual image, GT coun-
terfactual image, predicted counterfactual image. Factual perturbation is Thinning, Counter-
factual perturbation are Thickening and Swelling.

the causal reasoning over a latent space, rather than image space. To do so, we train a [Vector

|Quantized-Variational AutoEncoder (VQ-VAE)| [OVK1T] to project the MorphoMNIST images

to a latent space H € R@"*®) and reconstruct them. We opt for a VQ-VAE as it has been
shown in literature to be quite powerful in terms of produced image quality, while maintaining
a smaller memory and computational footprint than normalizing flows and diffusion models.
Once trained, the weights are frozen, and we encode all the ground-truth perturbed
images I, ; into a latent embedding H; ;. Afterwards, the is used to reconstruct the

generated latent embeddings 37, Y* for qualitative evaluation purposes.

The clinical dataset Echonet-Dynamic [OHG™20] consists of 10,030 4-chamber echocardiography
videos with 112x 112 pixels resolution and various length, frame rates, image quality and cardiac
conditions. Each video contains a single pair of consecutively labelled [E5| and frames. Each
video also comes with a manually measured For our use case, all videos are greyscaled
and resampled to 64 frames, with a frame rate of 32 images per second. All videos shorter than
two seconds are discarded, and we make sure to keep the labelled frames. For the resulting
9724 videos dataset, the original split is kept, with 7227 training, 1264 validation and 1233

testing videos.

MorphoMNIST For our synthetic experiment, we define a deep twin network as in [VKGL21]
and follow the process we described in the Methods (Section[8.2). Regarding data organization,
we use the elements defined in the section above. We set our confounder Z; = [l;, m;] to contain
the one-hot encoded labels as well as the measurement of the original image. We sample
two perturbations vectors p;,, and p;, and their corresponding latent embeddings H,;,, and
Hin, where n,m € [0,40], n # m. We set our input treatments as the perturbations vectors

(X = pim, X* = p;n) and our ground-truth outcomes as the corresponding latent embeddings



8.3. Experimentation 135

Table 8.1: Metrics for MorphoMNIST (a) and EchoNet-Dynamic (b) experiments.

(a) MSE and SSIM scores. "No ordering is performed (b) [D’ARTAGNAN|LVEF and recon-

as there is no noise involved. struction metrics.
Metric Factual Counterfactual Metric | Factual Counterf.
MSE(Y,Y) 2.3030 2.4232 R2 0.87 0.51
SSIM(Z 4, L) | 0.9308 0.9308 MAE 2.79 15.7
SSIM (Lrec, Lpred) | 0.6759 0.6759 RMSE 4.45 18.4
SSIM(Iyt, Iprea) | 0.6707 0.6705 SSIM 0.82 0.79

of the perturbed images (Y = H;pm, Y* = H,;,). We sample Uy ~ [N(0,0.25) mod 1 + 1] and
disturb the output of the branches of the neural networks that combine X and X* with Z by
multiplying the outputs of both with the same Uy. With this setup, we generate factual and

counterfactual perturbed MNIST embeddings from a latent description.

We assess the quality of the results by three means: (1) Embeddings’ MSE: We sample a
quintuplet (Z, X, X*, Y, Y*) and 1000 Uy. The MSE between all Y; and Y are computed and
used to order the pairs (f/;, YZ*) in ascending order. We keep the sample with the lowest MSE
as our factual estimate and compute the MSE between Yy and Y* to get our counterfactual

MSE score. (2) SSIM: We use the Structural SIMilarity metric between the perturbed images
1

gt

=1

pi,;» the images reconstructed by the VQVAE I,.. and the images reconstructed from
the latent embedding produced by the twin network /,,.q; to get a quantitative score over the
images. (3) Images: We sample some images to qualitatively assess best and worst cases
scenarios for this framework. We show the quantitative results in Table (a), and qualitative

results in Figure [8.3]

Echonet Dynamic As stated in Section [8.2] our methodology requires an Expert Model
to predict the [LVEF] of any [US| video. To do so, we re-implement the ResNet 2+1D net-
work [TWT™1§| as it was shown to be the best option for regression in [OHG™20]. We
opt not to use transformers as they do not supersede convolutions for managing the temporal
dimension, as shown in [RVHT21]. We purposefully keep this model as small as possible in
order to minimize its memory footprint, as it will be operating together with the generator and

the frame discriminator. The expert network is trained first, and frozen while we train the rest

of D’ARTAGNAN]|
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[D’ARTAGNAN]| We implement the generator as described in Section [8.2l We define a single

deep network to represent both the factual and counterfactual paths. By doing so, we can meet
the objectives listed in Section 8.2l The branch is implemented as a modified ResNet 241D
[TWTT18] to generate videos. It takes two inputs: a continuous value and a video, where the
video determines the size of the output. For additional details, please refer to fig. [8.2] and the

code.

Discriminator We build a custom discriminator architecture using five “residual multiscale
convolutional blocks”, with kernel sizes 3, 5, 7 and appropriate padding at each step, followed
by a max-pooling layer. Using multiscale blocks enables the discriminator to look both at local
and global features. This is extremely important in [US| images because of the noise in the
data, that needs to be both ignored, for anatomical identification, and accounted for to ensure
that counterfactual [US| images look real. We test this discriminator both as a frame-based
discriminator and a video-based discriminator, by changing the 2D layers to 3D layers where
appropriate. We note that, given our architecture, the 3D version of the model requires slightly

less memory but doubles the processing power compared to the 2D model.

Training the framework At each training step, we sample an[US]video (V) and its (V).
We set our factual treatment, X = 1 and our counterfactual treatment X* ~ /(0,¢ —0.1) U
U(¢ +0.1,1). The confounder Z and the factual ground truth Y are set to the sampled video
such that Z =Y = V. We compute an L1 reconstruction loss (loss 1) between YVandY =V.
As we do not have ground truth for the counterfactual branch, we use the frame discriminator
and the expert model to train it. Both models take as input the counterfactual prediction Y
The expert model predicts an 1& that is trained to match the counterfactual input X*
with an L1 loss (loss 2). The discriminator is trained as a discriminator, with Y* as fake
samples and V' as real samples. It trains the generator with L1 loss (loss 3). The discriminator
and expert model losses are offset respectively by three and five epochs, leaving time for the
generator to learn to reconstruct V', thus maintaining the anatomy and style of the confounder.
Our experiments show that doing so increases the speed at which the network is capable of
outputting realistic-looking videos, thus speeding up the training of the discriminator that sees

accurate fake videos sooner. Once the generator and discriminator are capable of generating
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— Factual: 61%
Counterf.: 17%
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Figure 8.4: Qualitative results for [D’ARTAGNAN]| over the same confounder and noise. Left:
factual [ES| and [ED| frames. Middle: left ventricle area over time, obtained with a segmentation
network as in [OHG™20]. Dots represent where the corresponding frames were sampled. Right:
counterfactual [ES|and [ED]frames. Anatomy is preserved across videos, while the LVEF] fraction
is different.
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and discriminating realistic-looking videos, the expert network loss is activated and forces the
generator to take into account the counterfactual treatment, while the factual treatment is
enforced by the reconstruction loss. The losses are also scaled, such that the discriminator loss

has a relative weight of 3 compared to the reconstruction and expert loss.

Metrics To match our three objectives, we evaluate this new task on 1) the accuracy of the
anatomy and 2) the accuracy of the regressed . We obtain the best possible video by
sampling 100 Uy and keep the V* with gg* closest to X*. We then evaluate our metrics over
those “best” videos. The anatomical accuracy is measured with SSIM and the [LVEF] precision
is measured using R2, MAE and RMSE scores. Results are shown in Tables [8.1D] and [8.3]
We especially note, Table [8.3] where we compare our method with other non causal methods
with respect to the output video quality. We observe that a causal method produces higher
quality, in terms of SSIM, results. As such we expect that the generated LVEF would also be
more accurate in the causal methodology. Further support for the aforementioned statement
can be seen in the per frame MAE and RMSE seen in Table that is equivalent or surpasses
non causal methods. Such a result does agree with our intuition that a causal model is more
robust and has learned the true underlying meaning of LVEF rather than a simple correlation

between the metric and the frames.

Qualitative In Figure 8.4 we show video frame examples to showcase the quality of the recon-
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Image Frames | IFN | MAE | RMSE | R2 || Params (M) | FLOPs (G) | Mem (MB)
112x112 [TLYK18a] 32 - 4.22 5.56 | 0.79 31.3 162 2143.01
112x112[WBBD20] 32 - 5.32 7.23 | 0.64 346.9 - 12421.0
112x112 64 128 || 4.32 5.81 | 0.77 125.1 1280 8472.46
112x112 32 128 || 4.56 6.16 | 0.76 125.1 640 4486.52
56 x56 64 9 | 4.71 6.23 | 0.74 70.4 184 1782.74
56x 56 16 128 || 4.95 6.60 | 0.71 125.1 82 1000.66
56x 56 32 32 514 | 6.70 | 0.70 7.8 10 281.64
28 %28 32 96 5.57 | T7.17 | 0.66 70.4 24 471.91
28 %28 16 32 7.32 9.25 | 0.43 7.8 1.3 63.06

Table 8.2: Expert model metrics compared to the model size.

We compare results with

[TLYKI18a] and [WBBD2(] as baselines, although the model and sampling methods are dif-
ferent. IFN refers to the number of Initial Feature Maps in the model and defines the number
of channels in the entire network. Params (M) is the number of million parameters in the
network, FLOPs (G) is the number of billion floating point operations for a forward pass and
Mem (MB) is the memory size of a feedforward pass with batch size one.

Model SSIM | Input Condition | Output
MoCoGAN [TLYK18a] | 0.33 Image Video
ImaGINator [WBBD20] | 0.56 Image Video
D’ARTAGNAN (ours) | 0.72 Image Video

Table 8.3: Images are 64x64, Videos 32 frames, We do not have an expert model in this
experiment so we are not evaluating LVEF

structed frames, as well as how the anatomy and style are maintained.

Discussion The predicted [LVEF| has an MAE of 15.7% which is not optimal. This can
come from many factors like the use of the same dataset to train the Expert model and

D’ARTAGNAN]| the limited number of real videos, or the limited size of the networks due

to the necessity of working with three models at once. Those problems could be addressed with

hyperparameter search, larger models, as well as additional medical data. For completeness, we

compare the performance of[D’ARTAGNAN|with the literature [WBBD20), TLYK18b], and run

additional experiments with an ablated version of our model for conditional video generation,

where it achieves the best SSIM score of 0.72.
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8.4 Summary

In this chapter we introduced D”ARTAGNAN]| a Deep Twin Generative Network able to produce

counterfactual images and videos. We showcased its performance in both synthetic and real
world medical datasets and achieve visually accurate results and high quantitative scores. Our
analysis serves more to exhibit the power of counterfactuals in synthesizing medical images. We
admit that the potential actual clinical usage of this method is limited as it does not conform
to the usual clinical protocols observed. However, counterfactual inference is still underutilized
and under-explored in the field of medical imaging, as such, it is our strong belief that our work

can serve as inspiration to future clinically relevant methods.



Chapter 9

Using Causality to Train Machine

Learning Algorithms

So far we have been discussing novel approaches to perform the basic tasks of an autonomous
diagnostic system. In this chapter we will be taking a step back and investigate how to translate
our ML algorithms into the real world. More precisely we will be analyzing under a causal
perspective the requirements for extra data. Datasets are both expensive and hard to create in
medical images, as such, we need to consider the marginal improvement on our performance if
we were going to include more data. This chapter is based upon the “Is more data all you need”
paper currently under review. The author was the primary driver of this study by leading the

design and implementation of the research

9.1 Introduction

Translating deep learning methods to new applications in the clinic often start with two ques-
tions that are very difficult to answer: How much data to collect and what data aspects need
more attention than others to meet clinical performance expectations. In diagnostic settings,
performance is often characterized by a biased metric, for example an expectation towards zero

false negatives so that no signs of disease are missed but some leeway towards false positives,
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which can be mitigated with further diagnostic tests. However, this commonly leads to situa-
tions where end-users request from machine learning practitioners to make specific interventions
on well-performing models, for example to make a deep neural network more sensitive towards
one specific class of disease or to change predictions for a selected group of patients, while

keeping its sensitivity and specificity intact for other classes.

Active learning [BRK21] is one option to make such interventions on a working model but it
has been shown that the introduced bias is not necessarily beneficial and might harm a model’s
specificity [FGR20]. Furthermore, there is currently no method to estimate for how long further
(active) learning should go ahead or how many more samples of specific classes have to be
collected until the expected change can be observed. This has critical implications for practical
translation of such methods into the clinical practice since time, costs and amount of data
cannot be estimated in advance, which in turn conflicts with the need for data minimization as

recommended by General Data Protection Regulations [VVdBI17].

We believe that methods like ours should be integral parts of regulation approval processes. As
models undergo fine-tuning and retraining in the process of development and commercialization
we should maintain the same high standards of accuracy and robustness. We need hence to be

able to provide guarantees that the resulting ML models cannot degrade in performance.

Therefore, the need arises to be able to reason about the data needs of an application and decide
upon the best allocation of resources. Moving forward from the well-known active learning
paradigm we are looking at more targeted intervention scenarios and provide in this chapter a
causal approach that allows to estimate how much extra data is needed for targeted interventions
on trained deep learning models. We show on a synthetic dataset and an exemplary large

Diabetic Retinopathy (DR) medical imaging dataset how to use our approach.

Contribution: We treat the aforementioned scenarios as a counterfactual meta analysis upon
a static model. Our goal is to highlight causal analysis as a potential alternative to active
learning and showcase the powerful insights it could yield. Interestingly, we found that it is not

always advantageous to increase the size of a dataset.
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9.2 Related Work

Recent works on the field of model performance analysis have primarily been focused on deter-
mining the required number of samples to achieve. [FZTKNI12] developed a inverse power law
model to predict model performance with different data sizes. [CLST15, BNBT13| performed
empirical studies on the learning behavior of classifiers to determine sample size requirements.
None, however, of the above methods are able to determine the effect of interventions on
individual samples, which is the primary concern of this investigation. The closest work is
[YXKT21] where the authors have identified the same problem statement of consistency be-
tween re-training of algorithms as this work but opt for a re-weighting approach under the
name Focal Distillation. Causality, on the other hand, is the field of analysis of causal re-
lationships between variables. The field was expanded to computer science by the works of,
among others, J. Pearl [Pea09], however few works exist on the intersection of machine learning,
medical imaging and causal analysis. Recently, discussed as useful for medical image analy-
sis [CWG20], More commonly such approaches are found in fields like econometrics [TR15],
epidemiology [CK20] and clinical medicine|[LSM ™17, [RLJ20, [OS19]. We are borrowing inspira-
tion from these works to argue the potential advantages of causal analysis of medical imaging

machine learning algorithms.

9.3 Method

As discussed in Section there exists a wide range of possible methods that enable accurate
estimation of counterfactual quantities in real world scenarios [SLKI8| [CWG20, VKGL21]. For
the scope of this chapter we are assuming perfect knowledge and as such we revert to the
mathematical tools that counterfactual inference methods approximate. We are going to be
mainly concerned about the effect of datasets on the classification outcome of the samples.
We treat the model architecture and its hyper parameters as confounders that affect only the
outcome and are invariant between different treatments of our dataset. We intervene on the

size and composition of our dataset leaving all other parameters the same. In Figure [9.1] we
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show a sample directed acyclic graph (DAG) for the causal relationships between the variables
we take into account for our analysis. For simplicity for each counterfactual we explore only

interventions on one of the possible treatments.

Our main research question is a counterfactual one; given a sample was incorrectly classified
would this sample be correctly classified if we had trained our model with a different dataset?
Mathematically this resembles the probability of Sufficiency Ps = P(Yx_r =y | X =T",Y =

y') and can be described as:
P(Y=1,do(X =D)|Y =0,X =D, Z) (9.1)

where Y is the outcome of whether or not the sample was correctly classified; X represents the
treated dataset D and Z the confounders like the architecture of the model. Our analysis regards
the model as a black box and its underlying architecture complexity is not a constraint. We
use this question as an example for a potential causal analysis on a medical image model. We
highlight that multiple counterfactual questions can be asked, concerning for example the model
architecture or a specific feature of the data. We chose interventions on the overall statistics
of the dataset as an entry level counterfactual question with evident real world impact on ML

practice.

Model Z Uz
# Data
Class oversampled
Uy
% oversampled
Y

Figure 9.1: A DAG showing the causal relationships between the factors we are analyzing -
Yellow: Observed variables - Blue: Unobserved Variables. For simplicity we intervene on one
of the possible treatment variables during each experiment. This DAG is a general framework
of how we believe the underlying system. To be precise with Model Z we represent the model
architecture, as this is set by us a-priori and remains static, the effect of U, is non existent.
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9.4 Evaluation

9.4.1 Datasets

We use two datasets, one synthetic and one real medical imaging database. As synthetic data
we use the MorphoMNIST [CTK™ 19| dataset. This dataset provides a series of morphological
operations upon the digits of the well known MNIST dataset [LBBH98|]. Each of the generated
datasets is modified by random fractures and swellings. In order to control this perturba-
tion in our dataset throughout the experiments each sample retains the same morphological

perturbation.

Furthermore, we chose Kaggle’s Retinopathy open source dataset [Kag22] as medical imaging
dataset. We treat each of the images as a gray scale image and resize it down to 128 x 128pz. As
this is a multi-class dataset with heavy imbalance, we focus on the following labels for Diabetic

Retinopathy (DR) levels : “No DR”, “Mild” and “Moderate” cases.

9.4.2 Model architecture

As a first step we train a classifier with the full training set. The goal of this step is to determine
an architecture and set of hyper-parameters that are able to provide acceptable classification
results. Having determined such parameters we fix them for each counterfactual query as
to determine the true causal effect of our dataset interventions on the probability of correct
classification of a sample. For the synthetic case we opt for a multi-layered Perceptron while
for the medical use case a simple multi scale residual convolutional net. While in the synthetic
case we opt for a simple model and in the medical one with a significantly more complex one,

we note that this is not a parameter that imposes any constraints on our analysis.
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9.4.3 Interventions

Interventions are focused on the size and composition of each dataset. First we explore the
effect of the size of the dataset. Given that both the synthetic and medical tasks have an
abundance of data we create a series of datasets with [100, 1000, 5000, 10000] samples for the
synthetic dataset and [100, 500, 1000, 2000, 4000] samples from the medical dataset. We use
the intervened datasets to train our models and a static test dataset that includes 20% of the
full dataset. This serves as a gold standard evaluation set. Moreover, we intervene upon the
dataset by modulating the number of samples in selected classes as well as the percentage of
the base dataset by which we will increase a class. In other words given a base dataset of length
Nataser With approximate class balance and an upsampling percentage of 10% with class 2, we
will add 10% X Ngataser that has unseen samples of class 2. We explore upsampling all available

classes by one of the following percentages 0%, 5%, 10%, 20%, 30%, 50%

9.5 Results

9.5.1 Synthetic Data

First we evaluate the synthetic task. In Table we show the effect of including more
data regardless of the type of data given a base dataset. We notice for example that if we
had 5k samples and switched to a dataset with 10k incorporating randomly selected samples
that would give us only a 9% chance of correctly classifying a sample that was previously
misclassified. As a general observation we can see that the more samples are contained in
our base dataset the smaller the probability of a specific sample being correctly classified after
the intervention of including more images. A proxy to this insight can be seen in Table
where we show the average F'1 score for all classes for different sized datasets. We see that
indeed the overall improvement between 5 and 10 thousand samples is quite small. Meanwhile
in Figures and we show the probability of a sample “flipping” from being misclassified

to being correctly classified versus the class we upsample and the percentage of upsampling.



146 Chapter 9. Using Causality to Train Machine Learning Algorithms

MorphoMNIST % of flip if we upsample a class

MorphoMNIST % of flip depending on
the percentage of upsampling of a class

Prob %

T v T T T T
0 2000 4000 6000 8000 10000
# Samples in Dataset Before Treatment

T T T T T T
o] 2000 4000 6000 8000 10000
# Samples in Dataset Before Treatment

Figure 9.2: Probability of flip; Treat-

ment: Upsampling; Here we upsam- Figure 9.3: Probability of flip; Treat-
ple a chosen class (seen in legend) and ment: Upsampling percentage of base
measure the probability of correctly dataset; In this experiment we modu-
classifying a previously misclassified late the level of upsampling a digit
sample

In both cases we look at any given sample without taking into account the ground truth label
of it. It is evident from both figures that there is no single class or percentage of upsampling
that is key for this dataset — in other words, there is no category of samples that contain key

information to help the classification task, rather all classes seem to be necessary.

Table 9.1: MorphoMNIST if we change the number of samples regardless of class and per-
centage. (A) The probability of changing a misclassified sample to a correctly classified one is
shown.(B) F1 performance of different sized base datasets

(a) (b)
#Ff;iar/n%oes 100 1000 5000 10000 Fl
100 30.606%
100 0 2317% 27.18% 27.72% 1000  75.97%
1000 417% 0 17.57% 18.93% 5000  85.54%
5000 3.95% 7.22% 0 9.46% 10000 86.84%
10000 3.94% 7.20% 7.25% 0

Thus far we have increased class samples and adding more data to our base dataset without
taking into consideration the true class of the misclassified data. In the next step we look
into informed interventions where we include a larger number of samples where the majority
of them are from the class which was misclassified. In Table [0.21 we show the effects of differ-
ent dataset sizes and percentages of upsampling on the probability of a specific sample being

correctly classified after the intervention. Compared to incorporating more data randomly or
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0.05 0.1 0.2 0.3 0.5
full dataset 8.13 9.21 1149 13.86 15.72

100 1000 5000 10000
full dataset 7.71 21.18 23.35 24.48

0.05 0 11.50 14.36 17.16 19.61
100 0 29.16 30.12 30.32

0.1 999 0 14.64 17.21 19.66
1000 19.34 0 24.30 24.92

0.2 10.64 12.03 0 17.53 19.83
5000 18.70 1741 0 18.58
10000 1849 16.94 16.69 0O 0.3 11.13 12.68 15.27 O 20.02

0.5 11.86 13.27 15.87 1827 0

(a) )

Table 9.2: Informed Interventions (A) the effect of different dataset sizes (B) the effect of
different upsampling percentages

upsampling a class regardless of the misclassfied class we observe a significantly increased ef-
fect. If, conversely, we do not specify the extent we upsample the misclassified class we average
67.56% probability of correctly classifying a sample after the intervention across all possible
percentages and dataset sizes. It is evident, thus, that we can obtain a higher probability of
sufficiency if our interventions on the dataset are targeted. We further note that during this
analysis we look at the inverse probability of incorrectly classifying a sample that was correctly
determined before treatment, in all our cases this probability did not exceed 3 — 4% indicating

that our chosen interventions did not have a negative effect upon the model performance.

9.5.2 Retinopathy

We follow a similar analysis for the medical image data where we classify some of the most
abundant categories of the open source Retinopathy dataset. In Table [9.3] we show the two
most interesting results. In this real world dataset we observe that incorporating more of
the moderate DR class leads to all together better classification performance regardless of the
dataset size. On the other hand modulating the overall number of samples under an informed
sampling regime seems to be driven primarily by our informed sampling than the actual changes
in number of data. We note that increasing the datasize from 100 to 2000 by randomly sampling
from the available classes only provides a ~ 10% chance of a sample flipping. Medical imaging
datasets can offer interesting insights if looked under a causal prism. It is possible to identify

inter-dependencies of classes and features and hence able to plan the dataset acquisition and
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annotations more efficiently.

9.6 Discussion

We analyzed the effect of dataset size and composition on the probability of a specific mis-
classified sample to become correctly classified after our interventions. We have observed a
wide expected range for this causal probability. If used in practice to analyse a phenomenon
and determine the best allocation of resources, certain thresholds that make sense have to be
determined by the users. Contrary to the well-known active learning paradigm where we are
interested in the effect of an intervention on the overall metrics of our task, by assuming a
causal perspective we are able to estimate the effect of interventions or counterfactuals on an
individual sample. This ability, enables a finer grain analysis of our interventions and their
effects. For the purposes of our analysis we have assumed complete knowledge of the behavior
of our models under different data regimes. This however, is not a valid assumption in real life
model development. In such cases, the practitioner could employ a method from literature to

estimate or bound the above probability of causation.

If we do not condition on the knowledge that the sample was initially misclassified and we are
solely interested in the interventional probability if it will be correctly classified, we aim to learn
the conditional average treatment effects: E(Yx—; | Z) — E(Yx—o | Z). Examples of methods
that can estimate these include PerfectMatch [SLK1§|, DragonNet [SBV19], PropensityDropout
[AWVDS17], Treatment-agnostic representation networks (TARNET) [SJS16], Balancing Neu-
ral Networks [JSS16]. Other machine learning approaches to estimating interventional queries
made use of GANs, such as GANITE [YJVDSI18] and CausalGAN [KSDV1§|, Gaussian Pro-
cesses [WTJM20, [AvdS17], Variational Autoencoders |[LSM™17|, and representation learning

[ZBS20, [AZT*21, [YLL*18].

If, on the other hand, we wish to answer the same query in Equation (9.1) we need to
utilize methods able to handle counterfactual queries. Recent work [PCG20] proposes nor-

malizing flows and variational inference to compute counterfactual queries using abduction-
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Healthy Mild Moderate 100 s 1000 2000

Healthy 0 12.03 18.75 100 0 18.28 18.16 19.77
Mild 12.05 0 14.74 500 18.23 O 18.00 19.70
' ' 1000 18.33 18.04 O 18.79

Moderate 16.52 11.31 0
(a)

2000 18.88 18.71 17.59 O
(b)

Table 9.3: Dataset Interventions on the Retina dataset (A) the effect of different up-sampling
classes (B) the effect informed interventions and dataset sizes

action-prediction. [OS19] used the Gumbel-Max trick to estimate counterfactuals, again using
abduction-action-prediction. While this methodology satisfies generalizations of identifiabil-
ity constraints. Additional work by [CK20] devised a non-parametric method to compute the
Probability of Necessity using an influence-function-based estimator. A limitation of this ap-
proach is that a separate estimator must be derived and trained for each counterfactual query.
Finally, [VKGIL21] estimate counterfactual probabilities via means of a deep twin network while

imposing identifiability constraints in the case of binary treatments and outcomes.

Finally, we should comment on the relation of our causal methods when compared with other
“classical” ML algorithms. While other methods might be able to estimate accurately the class
of samples that would decrease the average uncertainty statistics (active learning), there are no
guarantees that the underlying causal relations have been identified. As such the same method
might not be able to correctly identify the required samples if the regime has undergone even
slight changes. Moreover, we should point out that we do not assume that performance of
the model has reached or will reach a plateau with out methods. It is commonly believed
that modern ML algorithms seem not to be reaching a plateau in performance. In summary
we position our causal framework as a low-shot active learning regime that can minimize the

number of samples needed to re-train and ameliorate the model.
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9.7 Summary

With the work detailed in this chapter we hoped to stimulate a new topic of discussion in the
ML and Medical imaging community around causal analysis and how it can help us optimize
resource allocations. Being able to quantify the per sample effect of an intervention is necessary
to better understand a given task. Besides economical constraints, the proven environmental
impact of our field [Dha20] means that we cannot opt for increasingly larger models when the
expected returns are minimal. Causally analyzing the task at hand can provide estimates of
performance vs. computational and economical resources without the need to run the experi-

ments.



Chapter 10

Conclusions

10.1 Summary of Thesis Achievements

Throughout the thesis we have been concerned with a major objective: How to build an au-
tonomous diagnostic system that is robust enough to work in new and demanding environments
as diverse as deep space exploration missions. We have looked into exploring and identifying
points of medical interest. We have developed methods to imagine how objects look like in 3D
after being observed in 2D, and recall similar information from memory. Finally we have devel-
oped a series of novel algorithms to enable the agents to causally reason about the information

they have extracted and predict future outcomes of their actions.

In Chapter [3| we lay out a case study relating to deep space exploration. We argue that as
humans venture out to Mars and the rest of the solar system we cannot rely on real time com-
munication with doctors on Earth and telemedicine as the communication delay is prohibitively
large. Moreover due to weight there are limitations on personnel and even the astronauts on
board cannot have expertise in all possible scenarios. As such we highlighted the need for a

robust, causally enabled, autonomous diagnostic system.

Chapter |4 commences the technical innovations of this thesis. We proposed a method that

allows multiple agents explore their respective environments and locate medical landmarks.
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Figure 10.1: Reminder overview of key elements of a hypothetical [Autonomous Diagnostic|
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Our rationale stems from domain knowledge that anatomical landmarks are interdependent in
their locations in space - in other words knowing where one is can help locate the others. By
sharing weights in the backbones of the ML system we are able to leverage diverse information
sources that can inform the model of the aforementioned anatomical interdependencies. We
showcased our results in two medical modalities - MRI and [US|- beating the state of the art in
RL anatomical landmark detection. While subsequent works have focused in non-RL methods
to identify anatomical landmarks, the need for guidance in finding the landmarks call for the

sequential decision making that RL offers.

Chapter |5| builds upon another required element of a truly automated diagnostic system -
3D understanding of objects. As medical images are 2D depictions of 3D objects; being able
to understand how the depicted shape behaves in the real 3D world is very important for
reasoning and challenging as its an ill-defined problem. Recognizing the multitude of possible
solutions we assume a probabilistic approach and augment the Phi-Seg model from literature
to be able to do 2D to 3D reconstruction. Besides employing 3D convolutions we also introduce
a structural reconstruction module which transforms 2D images into 3D representations that
are then fed into the 3D Phi-Seg model. Moreover we employ a fusion module that fuses the
2D DRR image’s texture and shape information with the reconstructed 3D volume. Finally we
test our method in DRR to CT reconstruction and X-Ray segmentation of human and porcine
lungs and rib cages. Since the development of this work we have seen a significant advance via
the use of Neural Radience Fields (NERF) and diffusion models which currently set the state

of the art.

While in Part [I| we were discussing how to extract information from observations and perform
various tasks like reconstruction, segmentation, localization and information retrieval; in Part [[]

we will be leveraging the extracted information and perform causally enabled reasoning tasks.

Chapter [6] showcases one potential application of causal ML in the task of future frame
prediction. In a deviation from the norm of ML methodology we combine concepts from general
relativity - the notion of the light cone - to restrict our learned pseudo-Riemannian latent space

where from we sample. Showing promising results in synthetic and real life settings we also lay
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out a methodology on how to perform causal inference under both Pearl’s SCM and Rubin’s

Potential Outcomes frameworks.

Chapter [7|develops a novel counterfactual inference technique based on Balke & Pearl’s [BP94]
Twin Networks. We combine our Deep Twin Networks with identifiability constraints for binary
outcome-treatment pairs and derive novel theoretical results in form of extending the aforemen-
tioned constrain to categorical variables - we call this constraint Counterfactual Ordering. We
exhibited experimentally the validity of our theoretical results as well as the computational

efficiency of the Deep T'win Networks.

In Chapter |8 we extended the Deep Twin Networks to medical imaging. In this scenario we
had to tackle two main causal inference challenges. High dimensional inputs create an array
of Causal Markov Equivalent models that we are not able to identify easily from observational
data. Moreover the lack of true counterfactual targets poses a significant challenge for super-
vised algorithms like ours. In order to resolve these issues we reduce the dimensionality of the
data via a[VQ-VAE] and perform the causal inference in the lower dimensional manifold. More-
over we employ an expert network to regress the LVEF]from the counterfactual outcome, as well
as a discriminator to lead the texture and image quality training. We evaluated our methods

in a synthetic task of Morpho-MNIST and a real life cardiac [US| video sequence dataset.

Finally, Chapter [9] takes a step back and investigates the use of causal reasoning in develop-
ing ML solutions. We showcase a potential application for Business Intelligence and Product
Development by assessing the probability of Necessity and the probability of Sufficiency for in-
cluding more data as it relates to improving model performance. We show that after a certain
point the marginal benefit of including more data are not justifying the cost that would incur

to the researcher or company.

10.2 Future Work

The work presented in this thesis, the author believes, opens the path for more exciting research

works. These range from a complete probabilistic field theory that exists on latent spaces to
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applications using causal inference and discovery in the medical and medical imaging domain.
I hope that with the works during this PhD that also appear in the thesis, I have inspired
and laid the ground works for future researchers to push the limits of human ingenuity and

knowledge.

Domain Expertise: As seen in many of the previous chapters the input of domain knowledge
and expertise was crucial for achieving the performance observed. Domain knowledge lever-
ages the vastness of human knowledge, intuition and ingenuity to inform the methodological
decisions. For Chapter 4] we used the insight that the anatomical landmarks we aim to locate
are part of a wider anatomy hence knowing where one is can lead us to another. More insights
like the orientation of the landmarks might be also beneficial to the task in future work. Do-
main knowledge is also crucial in Part [l in order to estimate the underlying causal graph. In
causal inference we assume that our causal model is known a-priory, while in causal discovery
we aim to derive the model from observations. In both cases, however, incorporating domain
knowledge on how the causal links might be structured or what potential spurious correlations

might exist can inform us and help avoid such systematic errors.

Scaling architectures Direct future work that concerns Chapter [6] is the scaling the archi-
tectures used. Key limitations of that work were due to the simple proof-of-concept approach
adopted. We are strongly believe that deeper convolutional or diffusion based architectures can
increase the observed performance. We note that all chapters of this thesis that concern gen-
erative methods would benefit from the incorporation of diffusion models that are the current

state of the art, but were not known at the time of writing of the original works.

Uses of Causality In Part [[I] we discussed a series of technical and theoretical methods
and results that enable causal inference in a wide variety of fields. We believe that future
works directly stemming from these advances could include the application of the Deep Twin
Networks in out-of-distribution and anomaly detection as well as the parametrization of domain
adaptation as a causal intervention. We believe that in all these cases, more in-depth analyzed
in Section [2.§ and Chapter [0 causal inference can help the community achieve significant

advances.
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Moreover looking back to Figure and the high level diagram of a hypothetical [ADS] we
see a few blocks that will be needed in any effort to build a fully functioning

IDiagnostic Systeml In this thesis we did not use any textual language based inputs. Language,

however, carries a significant amount of information be that through Electronic Health Records
or via interactions with the patients. Moreover we did not perform any anomaly detection or
biomarker measurements. Both these activities are vital in acquiring more information and
establishing a complete picture of the patients state at any given time. Moreover, a crucial
component of reasoning about potential diagnosis and treatment plans requires the ability to
predict possible and counterfactual trajectories of the patients bio-signals and outcomes. In this
way the system can eliminate both potential diagnosis and also assist the attending physician

select the appropriate treatment plan.

Finally the work of Chapter [9] can be considered as an introductory preparatory work. While
other methods provide argumentation in favor of using causality to enable robust and explain-
able ML algorithms we showcase the use of causality and causal analysis in a business intelli-
gence task. We believe that future work can include methodological contributions as causally
enabled methods to provide estimates of the amount and distributions of data in a dataset.
Moreover, we aim at working together with regulators to set out the appropriate thresholds
of confidence such that our analysis can inform regulatory procedures, ensuring that a given
model is not going to be degraded upon retraining or fine-tuning with data that abide by the

identified causal relationships.



Acronyms

A3C Asynchronous Advantage Actor Critic.

AC Anterior Commissure. [5, [50} 56} [57] [156]

ADS Autonomous Diagnostic Syste