721 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Algorithms for Triangles, Cones & Peaks

    Get PDF
    Three different geometric objects are at the center of this dissertation: triangles, cones and peaks. In computational geometry, triangles are the most basic shape for planar subdivisions. Particularly, Delaunay triangulations are a widely used for manifold applications in engineering, geographic information systems, telecommunication networks, etc. We present two novel parallel algorithms to construct the Delaunay triangulation of a given point set. Yao graphs are geometric spanners that connect each point of a given set to its nearest neighbor in each of kk cones drawn around it. They are used to aid the construction of Euclidean minimum spanning trees or in wireless networks for topology control and routing. We present the first implementation of an optimal O(nlogn)\mathcal{O}(n \log n)-time sweepline algorithm to construct Yao graphs. One metric to quantify the importance of a mountain peak is its isolation. Isolation measures the distance between a peak and the closest point of higher elevation. Computing this metric from high-resolution digital elevation models (DEMs) requires efficient algorithms. We present a novel sweep-plane algorithm that can calculate the isolation of all peaks on Earth in mere minutes

    Women Philosophers in Nineteenth-Century Britain

    Get PDF
    Many women wrote philosophy in nineteenth-century Britain, and they wrote across the full range of philosophical topics. Yet these important women thinkers have been left out of the philosophical canon and many of them are barely known today. The aim of this book is to put them back on the map. It introduces twelve women philosophers - Mary Shepherd, Harriet Martineau, Ada Lovelace, George Eliot, Frances Power Cobbe, Helena Blavatsky, Julia Wedgwood, Victoria Welby, Arabella Buckley, Annie Besant, Vernon Lee, and Constance Naden. Alison Stone looks at their views on naturalism, philosophy of mind, evolution, morality and religion, and progress in history. She shows how these women interacted and developed their philosophical views in conversation with one another, not only with their male contemporaries. The rich print and periodical culture of the period enabled these women to publish philosophy in forms accessible to a general readership, despite the restrictions women faced, such as having limited or no access to university education. Stone explains how these women became excluded from the history of philosophy because there was a cultural shift at the end of the nineteenth century towards specialised forms of philosophical writing, which depended on academic credentials that were still largely unavailable to women

    GEAR-RT: Towards Exa-Scale Moment Based Radiative Transfer For Cosmological Simulations Using Task-Based Parallelism And Dynamic Sub-Cycling with SWIFT

    Full text link
    The development and implementation of GEAR-RT, a radiative transfer solver using the M1 closure in the open source code SWIFT, is presented, and validated using standard tests for radiative transfer. GEAR-RT is modeled after RAMSES-RT (Rosdahl et al. 2013) with some key differences. Firstly, while RAMSES-RT uses Finite Volume methods and an Adaptive Mesh Refinement (AMR) strategy, GEAR-RT employs particles as discretization elements and solves the equations using a Finite Volume Particle Method (FVPM). Secondly, GEAR-RT makes use of the task-based parallelization strategy of SWIFT, which allows for optimized load balancing, increased cache efficiency, asynchronous communications, and a domain decomposition based on work rather than on data. GEAR-RT is able to perform sub-cycles of radiative transfer steps w.r.t. a single hydrodynamics step. Radiation requires much smaller time step sizes than hydrodynamics, and sub-cycling permits calculations which are not strictly necessary to be skipped. Indeed, in a test case with gravity, hydrodynamics, and radiative transfer, the sub-cycling is able to reduce the runtime of a simulation by over 90%. Allowing only a part of the involved physics to be sub-cycled is a contrived matter when task-based parallelism is involved, and is an entirely novel feature in SWIFT. Since GEAR-RT uses a FVPM, a detailed introduction into Finite Volume methods and Finite Volume Particle Methods is presented. In astrophysical literature, two FVPM methods are written about: Hopkins (2015) have implemented one in their GIZMO code, while the one mentioned in Ivanova et al. (2013) isn't used to date. In this work, I test an implementation of the Ivanova et al. (2013) version, and conclude that in its current form, it is not suitable for use with particles which are co-moving with the fluid, which in turn is an essential feature for cosmological simulations.Comment: PhD Thesi

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    Statistical learning of random probability measures

    Get PDF
    The study of random probability measures is a lively research topic that has attracted interest from different fields in recent years. In this thesis, we consider random probability measures in the context of Bayesian nonparametrics, where the law of a random probability measure is used as prior distribution, and in the context of distributional data analysis, where the goal is to perform inference given avsample from the law of a random probability measure. The contributions contained in this thesis can be subdivided according to three different topics: (i) the use of almost surely discrete repulsive random measures (i.e., whose support points are well separated) for Bayesian model-based clustering, (ii) the proposal of new laws for collections of random probability measures for Bayesian density estimation of partially exchangeable data subdivided into different groups, and (iii) the study of principal component analysis and regression models for probability distributions seen as elements of the 2-Wasserstein space. Specifically, for point (i) above we propose an efficient Markov chain Monte Carlo algorithm for posterior inference, which sidesteps the need of split-merge reversible jump moves typically associated with poor performance, we propose a model for clustering high-dimensional data by introducing a novel class of anisotropic determinantal point processes, and study the distributional properties of the repulsive measures, shedding light on important theoretical results which enable more principled prior elicitation and more efficient posterior simulation algorithms. For point (ii) above, we consider several models suitable for clustering homogeneous populations, inducing spatial dependence across groups of data, extracting the characteristic traits common to all the data-groups, and propose a novel vector autoregressive model to study of growth curves of Singaporean kids. Finally, for point (iii), we propose a novel class of projected statistical methods for distributional data analysis for measures on the real line and on the unit-circle
    corecore