7 research outputs found

    Molecular Bronchiolitis Obliterans Syndrome Risk Monitoring: A Systems-Based Approach

    Get PDF
    The combination of high throughput omics (i.e. genomics or proteomics) and machine learning offers new possibilities for clinical diagnostics and the detection of biomarkers. One disease for which no reliable prognostic marker has been found yet is bronchiolitis obliterans (BO), a clinical manifestation of chronic rejection after lung transplantation. BO is the major limiting factor for long-term survival after lung transplantation, and manifests as a chronic bronchiolar inammation accompanied by progressive sub-mucosal fibrosis leading to gradual obliteration of the bronchiolar lumen. The resulting reduction in forced expiratory volume per second (FEV 1 ) is defined as the bronchiolitis obliterans syndrome (BOS). As chronic lung transplant failure occurs more frequently than in other organ transplants, molecular markers for early BO and BOS detection are urgently required to adapt the patients immunosuppressive regimen when airway damage is minimal. To achieve this goal, gene expression in bronchial epithelial cells (microarray anaylsis) and on the proteome level in bronchoalveolar lavage fluid (BALF)(mass spectrometry profiling) were monitored. Analysis of the obtained data sets was performed using novel and established methods from the fields of machine learning and statistics. This thesis also introduces a novel clustering algorithm. In the analysis of gene expression microarrays one problem is the unsupervised discovery of stable and biologically relevant patient subgroups. To this end I developed a novel clustering algorithm. This algorithm focuses on the discovery of a set of patient clusters defined by the consistent up- and down-regulation of a subset of genes. Assessment of cluster stability is done using a bootstrap resampling scheme. This makes it possible to rank the genes in accordance with their clusterwise importance. The algorithm was applied to a publicly available B-cell lymphoma microarray data set and compared to other commonly used clustering algorithms

    Analysis of Spectral Data in Clinical Proteomics by use of Learning Vector Quantizers

    No full text
    Schleif F-M, Hammer B, Villmann T. Analysis of Spectral Data in Clinical Proteomics by use of Learning Vector Quantizers. In: Van de Werff M, Delder A, Tollenaar R, eds. Computational Intelligence in Biomedicine and Bioinformatics: Current Trends and Applications. Berlin: Springer; 2008: 141-167
    corecore