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Abstract

Learning Cell States from High-Dimensional Single-Cell Data

Jacob H. Levine

Recent developments in single-cell measurement technologies have yielded dramatic increases

in throughput (measured cells per experiment) and dimensionality (measured features per

cell). In particular, the introduction of mass cytometry has made possible the simultaneous

quantification of dozens of protein species in millions of individual cells in a single experiment.

The raw data produced by such high-dimensional single-cell measurements provide unprece-

dented potential to reveal the phenotypic heterogeneity of cellular systems. In order to realize

this potential, novel computational techniques are required to extract knowledge from these

complex data.

Analysis of single-cell data is a new challenge for computational biology, as early devel-

opment in the field was tailored to technologies that sacrifice single-cell resolution, such as

DNA microarrays. The challenges for single-cell data are quite distinct and require multidi-

mensional modeling of complex population structure. Particular challenges include nonlinear

relationships between measured features and non-convex subpopulations.

This thesis integrates methods from computational geometry and network analysis to de-

velop a framework for identifying the population structure in high-dimensional single-cell data.

At the center of this framework is PhenoGraph, and algorithmic approach to defining subpop-

ulations, which when applied to healthy bone marrow data was shown to reconstruct known



immune cell types automatically without prior information. PhenoGraph demonstrated su-

perior accuracy, robustness, and efficiency, compared to other methods.

The data-driven approach becomes truly powerful when applied to less characterized sys-

tems, such as malignancies, in which the tissue diverges from its healthy population composi-

tion. Applying PhenoGraph to bone marrow samples from a cohort of acute myeloid leukemia

(AML) patients, the thesis presents several insights into the pathophysiology of AML, which

were extracted by virtue of the computational isolation of leukemic subpopulations. For ex-

ample, it is shown that leukemic subpopulations diverge from healthy bone marrow but not

without bound: Leukemic cells are apparently free to explore only a restricted phenotypic

space that mimics normal myeloid development. Further, the phenotypic composition of a

sample is associated with its cytogenetics, demonstrating a genetic influence on the population

structure of leukemic bone marrow.

The thesis goes on to show that functional heterogeneity of leukemic samples can be com-

putationally inferred from molecular perturbation data. Using a variety of methods that build

on PhenoGraph’s foundations, the thesis presents a characterization of leukemic subpopula-

tions based on an inferred stem-like signaling pattern. Through this analysis, it is shown that

surface phenotypes often fail to reflect the true underlying functional state of the subpopu-

lation, and that this functional stem-like state is in fact a powerful predictor of survival in

large, independent cohorts.

Altogether, the thesis takes the existence and importance of cellular heterogeneity as its

starting point and presents a mathematical framework and computational toolkit for analyzing

samples from this perspective. It is shown that phenotypic and functional heterogeneity are

robust characteristics of acute myeloid leukemia with clinically significant ramifications.
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Chapter 1

Introduction

1.1 Toward quantitative cell biology

We do not merely suggest the application of these new technologies to classical cell

biological questions, but rather that the fundamental approaches of systems biol-

ogy, which are unbiased, large-scale, quantitative and multivariate, are integrated

into the core of molecular cell biology in the future.

— Liberali & Pelkmans [1]

1.1.1 There are no lonely cells in biology

Cellular differentiation is fundamental to multicellular life. Indeed, phenotypic divergence and

functional specialization are so ubiquitous in multicellular populations that they are found

in colonies of unicellular organisms [2]. There is no such thing as a multicellular organism

without cellular differentiation.

The phenotypic and functional heterogeneity generated by cellular differentiation has been

traditionally considered the purview of cell and developmental biology. Perhaps for this rea-

son, progress in this area has lagged behind other branches of the biological sciences. For the

decades of the twentieth century during which molecular biology flourished, cellular hetero-

geneity may have seemed not only tangential to central questions but perhaps counterpro-

1
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Figure 1.1: β-galactosidase activity measured in bulk aliquots taken at regular intervals from
a chemostat with a fixed concentration of inducer. Reproduced from [3].

ductive. Many molecular biology laboratory techniques produce an aggregate measure for an

entire population (e.g., culture, tube, plate, specimen), collapsing any cell-to-cell variation

into a single point estimate (e.g., mean value). A concrete example is lysis, which is used

commonly to extract and purify molecular components such as DNA, RNA, or protein. Lysis

is used out of pragmatic necessity to obtain sufficient material for further analysis. By pool-

ing the contents of each individual cell, the lysate physically produces an average quantity

and renders the cellular heterogeneity of the sample inaccessible. The experimentalist who

needs lysis for his or her protocols would prefer that the cellular heterogeneity it destroys is

negligible.

On the contrary, cellular heterogeneity is far from negligible and this fact is not new,

though it may have been forgotten. Ironically, one of the clearest examples of cellular het-

erogeneity and the importance of preserving single-cell resolution comes from an early study

of the lac operon, a fundamental model system of molecular biology [4]. The lac operon

is a genetic regulatory system of the bacterium Escherichia coli that controls production

of several enzymes in response to lactose, including β-galactosidase, which enable its use as

an energy source. In their 1957 study, Novick & Weiner [3] investigated the kinetics of β-

galactosidase production in response to an inducer.1 Using a method that measures aggregate

β-galactosidase activity in vitro, enzyme production appears to rise linearly upon induction

1Specifically, the nonmetabolizable lactose analogue thiomethyl-β-D-galactoside (TMG).
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Figure 1.2: Alternative schematic depictions of distributions of β-galactosidase expression by
single E. coli cells during induction of the lac operon as studied in [3]. The vertical dotted
lines indicate the (identical) population means, measured by the aggregate enzyme activity
assay. In (b), the mean identifies a cellular state that is vanishingly rare in the distribution.

and taper off as a saturation point is reached (Figure 1.1). One might be tempted to conclude

that after induction, each cell increases enzyme production until all cells are producing at full

capacity. However, as the authors observed:

Whenever kinetic experiments are performed using bacterial cultures, the question

must be raised whether the results obtained represent the events occurring within

the individual cell or some average of a heterogeneous population. (p. 559)

They went on to show that every E. coli cell exists in one of two discrete states: induced

(producing β-galactosidase at the maximum rate) and uninduced (producing essentially no

β-galactosidase). The appearance of intermediate production rates is nothing but an artifact

of averaging over a heterogeneous distribution of cellular states by the aggregate assay. In

this case, the aggregate measurement was highly misleading, implying that the majority of

cells exist in a state that is in fact vanishingly rare (Figure 1.2).

1.1.2 A century of single-cell analysis

Novick & Weiner used the term single-cell analysis in reference to the dilution experiments

that allowed them to infer the induction state of individual cells in a parent culture. At

the time, those methods and the corresponding term were rarely used in biology (Figure

1.3). Instead, the majority of research in cell biology was conducted by microscopy, which
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Figure 1.3: Frequency of the 3-gram “single cell analysis” in the corpus of books digitized by
Google (https://books.google.com/ngrams).

inherently preserves single-cell resolution.

Microscopy

The invention of the microscope was the founding event of cell biology, usually attributed to

van Leewenhoek and Robert Hooke in the seventeenth century. In the nineteenth century,

biologists such as Theodor Schwann turned the microscope to animal tissues. At the start of

the twentieth century, the study of individual cells under the microscope was the state of the

art for biological science.

The term cell type emerged from the descriptive analyses of early microbiologists, who

began to classify cells based on a variety of features observed under the microscope including

morphology2, staining reactivity3, and functional behaviors.4 It is worth noting that a great

deal of early descriptions of cell types come from studies of the immune system, perhaps

because this system is the interface of the multicellular organism with the microbial world.

To cite an ordinary example, a 1905 edition of the Journal of the American Medical Association

2Often nuclear morphology, e.g., megakaryocytes [5]
3e.g., Ehrlich’s neutrophil granulocytes
4e.g., Metchnikoff’s phagocytes

https://books.google.com/ngrams


CHAPTER 1. INTRODUCTION 5

included an article describing the human immune response to pathogen exposure, which began

with this summary:

Cell Types—If leucocytes [sic.] consisted of but a single variety of cells, with

common functions, the study of leucocytosis would be reduced to a simple pro-

cess. It would then be sufficient simply to ascertain the degree of leucocytosis by

estimating the total number of leucocytes to a cubic millimeter of blood. It is well

known, however, that the white blood corpuscles consist of several more or less

distinct varieties. ([6])

The author went on to emphasize (and demonstrate anecdotally) that the composition of the

immune response—the proportions of the various cell types induced by the pathogen—can

indicate prognosis in human disease.

As is well known, in the mid-twentieth century biological research was dominated by

studies of the molecular components of the cell, using biochemical techniques to reveal their

properties. As mentioned previously, these biochemical techniques typically traded single-cell

resolution for experimental tractability, pooling together the molecular pieces of disintegrated

cells in order to obtain sufficient material. Hence the need later to explicitly designate “single-

cell” methods as such. In the broad history of biological sciences in the twentieth century,

single-cell analysis began at the forefront and, after receding for several decades, reemerged in

the 1970s after several methodological developments led to the era of immunophenotyping.

Immunophenotyping

The reemergence of single-cell analysis was spurred by the advent of flow cytometry in

the 1960s, an ingenious introduction of fluidics into cell biology. Flow cytometry preserves

the integrity of single cells by injecting them into a narrow laminar fluid stream, allowing

individual measurement as each cell passes serially through a detection chamber. In the late

1960s, the technology was elaborated to incorporate fluorescence optics such that the staining

intensity of a fluorescent dye could be quantified in each cell. The method was further extended

by Herzenberg et al. in the early 1970s to include electromagnetic control of the fluid stream,
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permitting the physical sorting of cells based on their measurements—a technology known as

fluorescence-activated cell sorting (FACS) [7]. FACS technology was immediately deployed

to characterize cellular heterogeneity in the immune system, using functional assays of sorted

populations to characterize cell types and obtaining the composition of peripheral blood from

the cell counts recorded by the cytometer [8]. Thus, a striking continuity exists from the work

of early microscopists to the immunologists of the 1970s, with the taxonomy of hematologic

cell types and the cellular composition of blood being constant objectives.

In order to use flow cytometry or FACS to any advantage, it is necessary that a biologically

interesting feature can be coupled to fluorescence intensity. For example, staining DNA by

bromodeoxyuridine incorporation or Hoechst dye provides a means to couple fluorescence

intensity to DNA content [9]. To uncover the diversity of cell types more comprehensively,

probes with greater specificity are required—ideally, probes that can label the distinct proteins

by which distinct cell types manifest. Precisely this capability was provided by the advent

of hybridomas in 1975 [10], which transformed the methodological possibilities for single-cell

analysis. Created by fusing antibody-producing B cells with myeloma cells, hybridomas are

essentially monoclonal antibody factories, an unlimited source of protein-specific tags that

can be chemically conjugated to detectable stains such as fluorophores. The availability of

hybridomas effectively turned the immune systems of allospecific animals into laboratory

reagents.

It was quickly appreciated that monoclonal antibodies specifically label different subsets of

cells whose functional distinctions could be demonstrated by in vitro assays following FACS.

By 1984, an international protocol for antibody nomenclature was established (using the “clus-

ter of differentiation” [CD] system), formalizing the use of antibodies as laboratory reagents

[11].

“Immunophenotyping” refers to the use of antibodies as mediators of protein-specific stain-

ing and thereby measuring the phenotypes of individual cells. An immunophenotype is usually

reported in terms of the CD nomenclature: for example, a CD3+/CD8+ cell is “positive for”

(i.e., expresses) the antigens to which CD3 and CD8 antibodies bind. From functional studies,
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Figure 1.4: Schematic depiction of some
immune cell types and CD antigens
that distinguish them. Source: https:
//commons.wikimedia.org/wiki/File:

Cluster_of_differentiation.svg

we know that a cell with this particular immunophenotype is a cytotoxic T cell. A very basic

schematic of immune cell types, highlighting characteristic CD immunophenotypes, is shown

in Figure 1.4. Note that 10 different CD markers are used to distinguish these cell types;

some markers (CD4, CD8, CD25) provide fine distinctions within a parent group defined by

other, more broadly expressed markers (CD3, CD45).

Fluorescence-based cytometry and CD reagents co-developed for three decades, dramat-

ically expanding knowledge about cellular phenotypes. As the “bank” of designated CD

reagents grew, so too did the repertoire of fluorescent tags that could be used to detect them.

As different fluorophores have different excitation and emission spectra, the use of multiple

lasers (for excitation) and filters (for detection) allowed cytometers to measure multiple CD

antigens simultaneously in single cells. By the end of the twentieth century, cytometers were

capable of measuring 11 distinct fluorophores simultaneously [12]. The addition of more and

more dimensions to the technology was driven by the recognition that each dimension reveals

another facet of phenotypic complexity, each with the potential to disclose vital information

https://commons.wikimedia.org/wiki/File:Cluster_of_differentiation.svg
https://commons.wikimedia.org/wiki/File:Cluster_of_differentiation.svg
https://commons.wikimedia.org/wiki/File:Cluster_of_differentiation.svg
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about the system under study. For example, De Rosa et al. [ibid.] showed that naive T

cells (defined by functional assays) could be weakly enriched by a single marker (CD45RA)

and were only completely purified when a combination of 5 markers was used. In general,

the number of resolvable subpopulations grows geometrically with the number of measured

dimensions.5 Obtaining fine-grained resolution of the population structure by measuring cells

in multiple simultaneous dimensions may be critical for getting an accurate “census” of a

multicellular population [13]. As mentioned above in reference to Figure 1.4, measurements

of CD4, CD8, and CD25 in addition to CD3 are critical for establishing even a coarse-grained

understanding of the T cell composition in a hematologic sample.

The availability of multiple fluorophores and the ability to mix and match them with dif-

ferent antibody probes allows the design of multivariate staining panels. Such panels spurred

massive growth in the popularity of flow cytometry and FACS for research as well as clinical

disease diagnostics and monitoring [14]. Fluorophores have been the blessing and the curse of

antibody-based protein detection: making multivariate detection possible while also setting

a restrictive upper limit on the number of proteins that can be measured simultaneously.

The characteristic wavelengths at which a given fluorophore absorbs and emits light are not

precise values but rather broad distributions over the electromagnetic spectrum (Figure 1.5a).

Loading a panel with multiple fluorophores inevitably leads to spectral overlap, which can

make it difficult or ultimately impossible to determine which fluorophore generated the light

detected at a given wavelength: the signal is confounded. The problem can be ameliorated

somewhat by compensation, a linear transformation of the data that removes the correla-

tion between fluorophores expected from spectral overlap. After proper compensation, the

number of simultaneous features that can be measured is nevertheless limited by the number

of windows in the electromagnetic spectrum where the signal from one fluorophore is greater

than the sum of emissions from the remaining fluorophores on the panel. Flow cytometry is

generally limited to ∼ 12 fluorophores in practice, with higher numbers being possible but

requiring that any given cell express a sparse subset of target proteins and that these sparse

5Provided they are not redundant, each additional dimension splits the cells into at least two additional
subpopulations.
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(a) Fluorescence spectra for 12-color FACS [13] (b) Mass spectra for 30-isotope mass cytometry [15]

Figure 1.5: Fluorescence versus mass spectra. While spectral overlap limits the number of
colors that can be used in fluorescence cytometry, mass spectra are generally non-overlapping
peaks, eliminating the “crowding” problem associated with fluorescence-based methods.

combinations be known in advance so the panel can be designed accordingly.

Mass cytometry

While 12-color fluorescence cytometry is useful, the limitation begs the question whether other

technologies can pick up where fluorescence leaves off, in terms of dimensionality. Indeed, in

recent years a technology was introduced that uses transition element isotopes (not normally

found in biological samples) as chelated antibody tags in place of fluorophores. Like fluo-

rescence cytometry, mass cytometry uses a fluid stream to feed single-cell droplets serially

into a detector. Instead of an optical detection chamber, mass cytometry uses a time-of-flight

(TOF) mass spectrometer to quantify elemental ions present in each single-cell droplet after

ionization by a 5500 Kelvin plasma [16]. This technology takes advantage of the high sensitiv-

ity of mass spectroscopy for isotopic analysis, resulting in essentially no overlap between the

mass tags. Therefore, unlike the “crowding” of fluorophores in the electromagnetic spectrum,

atomic mass tags do not run out of space (Figure 1.5b). Instead, the dimensionality of mass
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cytometry is bounded by the range of masses for which enriched stable isotopes are available

and that can be detected with comparable sensitivity: this range has extended from 30 to 45

in practice and has been forecast to reach 100 [15, 17].

While mass cytometry has at least threefold greater dimensionality than fluorescence cy-

tometry, it is worth extra emphasis to note that the absence of spectral convolution changes

the practical nature of collecting multivariate single-cell data. Designing a polychromatic

fluorescence panel can be an arduous task, requiring many stages of optimization, due to

the complex excitation and emission spectra of each fluorophore. It is recommended that

fluorescence cytometry experiments include both positive and negative controls for each ac-

quired feature. Positive controls measure each fluorophore in isolation in order to quantify

its independent spillover into each acquisition channel—such controls provide the empirical

“spillover matrix” that is used to compensate the data. Unfortunately, this is already an

imperfect control because the spillover coefficient is not constant across the dynamic range of

the instrument [18]. To account for imperfections in compensation and further spectral con-

taminations caused by dye-dye interactions and cell-dye interactions, negative controls should

also be collected, in which every marker except one is included. These fluorescence-minus-one

(FMO) controls should be generated for each marker—thus, for a D-dimensional fluorescence

panel, 2×D controls should be collected every time data are acquired. The amount of work

required to optimize a particular panel configuration is a significant barrier to panel redesign.

On top of the experimental burden, there is no established way to use the FMO controls

quantitatively—they are typically used to draw manual “positive/negative” gates as part of

a fluorescence cytometry data analysis workflow that is almost always qualitative.

On the other hand, mass cytometry not only provides increased dimensionality but also

produces data that are more appropriate for quantitative analysis. There is no equivalent of

autofluorescence and interaction between mass tags is not a significant factor in panel design.

These facts eliminate the need for marker-specific controls. Further, mass cytometry allows

the inclusion of pure-isotope beads that can be used to standardize measurements acquired

at different times [19]. Finally, the dimensionality allows for sophisticated barcoding systems
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that enable multiplexed acquisition, which further increases quantitative comparability and

reduces reagent usage [20]. Thus, mass cytometry panel (re-)design is more straightforward

and flexible compared to fluorescence cytometry. These features encourage high-throughput

production of single-cell data that are quantitative and multivariate, increasing both the need

and the potential yield of computational analysis.

Over the last century, scientific descriptions of cellular phenotype have evolved from quali-

tative descriptions to quantitative high-dimensional measurements. As the data type changes,

so too do the analytical possibilities for answering perennial questions relating to the types

and composition of multicellular populations.

1.2 Learning cell types from experiment

1.2.1 Immunophenotyping normal hematopoiesis

It had been known before the development of immunophenotyping techniques that human

bone marrow contains colony-forming cells capable of giving rise to progeny of differentiated

lineages [21, 22]. In the 1980s, it was discovered that human bone marrow progenitor cells ex-

press the membrane antigen CD34 [23]. Using 3-color FACS, it was discovered that immature

bone marrow cells begin to express markers of lineage commitment only after CD34+ cells

begin expressing another marker, CD38, implying that progenitors with a CD34+/CD38−

phenotype might represent the apex of hematopoietic development [24]. Indeed, using the

sorting capability of FACS, it was shown that CD34+/CD38− bone marrow cells are more

efficient at forming colonies in vitro and display morphological features consistent with an

undifferentiated state.

To study cell types by FACS, cells are sorted by setting rules that define ranges of values

for each dimension, dividing the population into gates jointly satisfying each rule. For ex-

ample, Figure 1.6 shows the gates used in [24] to enrich for hematopoietic stem cells (HSCs).

All FACS experiments employ a “guess and check” design: Gates must be defined at the

time of sorting (guess) and functional validation is performed after sorting (check). Thus,
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Figure 1.6: An example of FACS gates used
to identify hematopoietic stem cells in hu-
man bone marrow [24]. The box labeled
“PI” represents a region of the bivariate
space where cells are CD34+/CD38−. Cells
falling into each gate were separated by
FACS and submitted to functional analysis.

learning about cell types from FACS experiments requires that the system under study pro-

duce a predictable array of phenotypes, allowing the prospective definition of gates based on

prior knowledge. Indeed, normal bone marrow displays remarkably predictable phenotypes,

allowing prospectively defined gates to isolate the same cell type universally across individu-

als. Progress in learning about cell types from FACS experiments has relied heavily on this

predictability.

1.2.2 Immunophenotyping malignant hematopoiesis

As was the case for healthy human bone marrow, it had been known before the introduction

of immunophenotyping techniques that leukemic bone marrow also contains colony-forming

cells capable of generating differentiated progeny. Unlike the colony-forming cells of normal

marrow, however, leukemic marrow tends to form cells of a specific lineage and this can

actually be used to define the various types of leukemia. For example, acute myeloid leukemia

(AML) is marked by an overabundance of undifferentiated leukocytes (also called “blasts”)

that resemble myeloid progenitors and can produce differentiated myeloid progeny, with the

extent and type (monocytic, granulocytic) of differentiation depending on the individual case.



CHAPTER 1. INTRODUCTION 13

AML as a deregulated tissue

It has been hypothesized since at least the 1970s that AML arises from a disruption in nor-

mal myelopoiesis—a “differentiation block” causing cells which would be otherwise destined

for myeloid fates to accumulate in an undifferentiated state. Indeed, there is experimental

evidence that at least forms of AML are caused by disruption of the mechanism regulating

the passage of cells from an immature to a mature cell type. For example, some AML blasts

can be induced to differentiate into macrophages and granulocytes (both in vitro and in

vivo) by cytokines called colony-stimulating factors (CSF); following exposure to CSF these

leukemic blasts follow the same series of morphological events as observed in normal myeloid

maturation, including terminal exit from the cell cycle [25, 26]. Unlike their normal coun-

terparts, these leukemic blasts proliferate rather than die in the absence of CSF, linking the

differentiation block to enhanced proliferation.

The demonstration that all-trans-retinoic acid (ATRA) induces terminal differentiation of

acute promyelocytic leukemia (APL; a subtype of AML) and the subsequent clinical trans-

formation of APL from the most fatal to the most curable form of acute leukemia must be

regarded as one of the greatest successes in the history of translational medicine [27]. It

proves that at least one form of AML is caused by a differentiation block that, when lifted,

allows cells to stop proliferating and resume normal development. Unfortunately, the clinical

success of ATRA for APL relies on a specific fusion protein involving the ATRA receptor,

which occurs in the overwhelming majority (95%) of APL cases [28]. Thus, the clinical benefit

of ATRA is not applicable to other forms of AML, unfortunately.

A “molecular lever” to control cellular differentiation in other forms of AML has been

much more elusive. However, genetic and cancer-genomic studies have revealed a common

molecular pathway that provides mechanistic insight to normal myelopoiesis and AML patho-

genesis. Specifically, the family of transcription factors CCAAT/enchancer binding protein

(C/EBP ) have been implicated as major regulators of lineage commitment and differenti-

ation in normal hematopoiesis [29]. It has been shown in genetically engineered mice that

disruption of C/EBPα blocks the transition from common myeloid to granulocyte/monocyte
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progenitor, resulting in accumulation of myeloid blasts in the bone marrow [30]. C/EBPα

is also clearly a target of the genetic alterations that drive AML: the gene itself is mutated

in a significant number of cytogenetically-normal AML genomes, and other common genetic

abnormalities of AML—such as the AML-ETO1 fusion [t(8;21)] and FLT3-internal tandem

duplication (ITD) mutation—result in downregulated expression of C/EBPα transcript or

decreased post-translational activation of C/EBPα protein [31]. Finally, it has been shown

that another member of this gene family, C/EBPβ, is strongly activated by ATRA in APL

cells and that this activation is required for ATRA-mediated differentiation to occur [32]. A

hallmark of a true cancer driver is that different cases utilize different mechanisms to realize

the same outcome at the pathway level. It is clear that AML uses a variety of proximate

causes to prevent myeloid differentiation via inhibition of C/EBP transcription factor activity

[28].

Leukemic “cell types”: The CSC model

Perhaps because AML is a deregulated myelopoietic process, it retains much of the hierarchical

structure of normal hematopoiesis despite its malignant behavior. It has been recognized for

decades that most cases of AML are composed of phenotypically distinct subpopulations that

vary in their potential for self-renewal, proliferation, and differentiation [33–35]. Given the

similarity exhibited by AML to the structural organization of cellular potential in normal

bone marrow, it is logical to hypothesize that AML immunophenotypes reflect the functional

features of analogous subpopulations in normal bone marrow.

It was in the context of AML that the cancer stem cell (CSC) model was developed. In

1997, it was first shown in vivo that CD34+/CD38− human bone marrow cells are dramatically

enriched for HSCs, which are capable of engrafting and reestablishing the immune systems

of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice [36]. That same

year, it was reported by the same group [37] that CD34+/CD38− leukemic marrow cells

are similarly enriched for cells that engraft and propagate AML in NOD/SCID mice. This

demonstration that only a subset of leukemic cells are capable of “seeding” new malignancies
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implied that these cells are leukemic stem cells (LSCs). Though it was initially reported that

only CD34+/CD38− cells are LSCs, subsequent studies using more sensitive assays identified

CD38+ [38] and CD34− [39] LSCs, overturning the initially proposed LSC model.

While the CSC model has been questioned wholesale in some cancer types, it remains well

supported that most cases of AML do exhibit a functionally differentiated hierarchy—i.e.,

only a subset of blasts can propagate the malignancy and these cells give rise to progeny that

both possess and lack this capability [40]. Furthermore, it has been shown that estimates

of LSC frequency are correlated with chemoresistance and poor overall survival [41, 42],

corroborating not only the existince of LSCs but also their clinical significance. However, a

consistent immunophenotype that can prospectively isolate this subset of cells across patients

has not been forthcoming [43].

It should perhaps be expected that LSCs do not present the same immunophenotype across

patients. After all, most CD antibodies target membrane-bound proteins that are correlated

with—but not causal for—cellular function. Many common CSC markers, including CD34,

are primarily involved in cell adhesion6 rather than functions more closely related to stem cell

identity [44]. CD34 is certainly not necessary for HSC function in general, given that murine

HSCs are specifically negative for mCD34 [45]. That these surface markers may be used

as proxies for cellular function in normal hematopoiesis—universally, across individuals—

is a testament to the exquisite coordination of protein expression in healthy tissues. Such

coordination should not be expected in malignancy, driven as it is by deregulation.

Thus, passive monitoring of surface antigens is not sufficient to identify the important

aspects of intratumor heterogeneity. Reporters of functional potential should be preferred, as

each unique malignancy may locate functional potential in different phenotypic compartments.

The question then arises what to use as a functional reporter. One option is the xeno-

transplantation assay, which requires sorting every tumor into prespecified gates via FACS

and estimating LSC frequency via limiting dilution assays, which requires injecting tumor

cells into several mice per gate. In fact, this approach was taken by one group, whose results

6Which raises legitimate concerns about biases imparted by the xenotransplantation assay, but which is not
the main issue I wish to stress here.



CHAPTER 1. INTRODUCTION 16

will be discussed at length elsewhere [43]. Another option is to measure the quantitative

activation of proteins that participate in cellular signaling cascades, using antibodies that

specifically target phosphorylated epitopes [46]. It stands to reason that the signaling pro-

file of a cell—the activation status of its various signaling pathways—is intimately connected

with its functional potential [47].

1.2.3 Immunophenotyping in higher dimensions

It is worth considering the importance of dimensionality for learning about cell types, espe-

cially in less characterized tissues. The human proteome generates cellular diversity through

the regulated expression and modification of thousands of protein species across tissues and

developmental stages [48–50]. As mentioned previously, the reliability of low-dimensional

phenotypes such as CD34+/CD38− for defining cell states is a result of the exquisite regu-

lation of protein expression that couples these surface markers to functional state in healthy

tissues. Even cells defined by this bivariate phenotype are a heterogeneous population: Only

a fraction of CD34+/CD38− cells are HSCs (for example, [24] report that 25% of these cells

form primitive colonies in vitro). There are probably other, currently unknown, phenotypic

features (possibly not surface antigens), that if added to form a higher-dimensional phenotype

would define HSCs with greater (possibly 100%) accuracy. Similarly, adding dimensionality

to the definition of LSC enhances the possibility of producing a definition that can be applied

across individuals.

Critically, the benefit of increasing dimensionality is not simply derived from increasing

the likelihood of finding a single essential marker. On the contrary, the benefit comes from

representing cell states as high-dimensional patterns of protein expression and activation,

which are potentially robust to variation in any particular marker. In other words, it is very

rare that a discrete biological function can be attributed to an individual molecule; rather,

biological functions arise from interactions among multicomponent molecular modules whose

activities would manifest as distinct patterns in high-dimensional measurements of the cell

[51].
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Figure 1.7: The number of possible marker combinations as a function of measurement di-
mensionality.

1.3 Learning cell states from data

Computational biology was born of necessity not only to organize the very high-dimensional

measurements generated by new genome wide technologies at the start of the twenty-first

century, but to actually extract knowledge from these overabundant data. Because DNA

sequence is (typically) unchanged between individual cells within a sample, it is safe to regard

each cell as an interchangeable source of DNA molecules, a critical mass of which is required

to actually generate genomic sequence reads. Thus the earliest genomic data were generated

from lysates of multicellular populations. As genomic technologies moved to quantify gene

expression through mRNA abundance, the use of multicellular lysates became problematic.

Unlike gene sequence, gene expression may vary drastically between cells within a sample. Yet,

bulk measurement of cells through whole-sample lysis collapses this intercellular heterogeneity

into a single (average) measurement (similarly, for example, to what is depicted in Figure 1.2).

Though these bulk lysates are not ideal for understanding gene expression in heterogeneous

populations, they were technologically necessary for many years. Only very recently have

technologies emerged that provide genome wide quantification of mRNA in individual cells

at a scale that can properly reveal the full distribution of gene expression in a heterogeneous

population [52].

Simultaneously, experiments focused on preserving and exposing cellular heterogeneity
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have gradually increased their dimensionality and only recently entered the quantitative do-

main, as outlined in the previous section. In early FACS experiments, population heterogene-

ity was characterized manually by the experimentalist through exploration of bivariate scatter

plots (like the one shown in Figure 1.6). During the growth of dimensionality that occurred

over the last 30 years, manual exploration of FACS data has become intractable (Figure 1.7).

For 4-dimensional data, the experimentalist has
(

4
2

)
= 6 plots to examine. For 12-dimensional

data, there are
(

12
2

)
= 66 marker pairs to study. For 30-dimensional data, the experimentalist

now has
(

30
2

)
= 435 scatter plots to study, per sample. Even a very motivated individual

will be unable to extract the most from the data because patterns in 30-dimensional space

simply cannot be discovered by sequential examination of 2-dimensional subspaces. Thus a

computational approach is needed, not only to aid in handling the overabundant data, but to

extract knowledge that could otherwise never be discovered.

This section introduces concepts and methodological groundwork that will be useful for

performing computational analysis of single-cell data. In particular, we explore the related

concepts of dimensionality reduction and clustering, which are both relevant to the task

of modeling the underlying cell states that produce the variety of high-dimensional cellular

phenotypes measured by new technologies such as mass cytometry.

1.3.1 Terminology

Before proceeding, some terminological subtleties are worth addressing. These distinctions

bring clarity to the discussion and may provide insight for the methods to be presented in

subsequent sections.

We have already encountered the concept of cellular phenotype multiple times. A cel-

lular phenotype is simply any observable trait of a cell. “Immunophenotype” refers to the fact

that a trait has been observed by antibody labeling.7 A cellular phenotype can be an individ-

ual trait or a concatenation of traits: Any of {CD45+, granular, CD15+, CD45+/CD15+} is

a cellular phenotype. For D-dimensional cytometric data, the vector of D staining intensities

7The “immuno-” prefix is often dropped because the use of antibody labeling is so common and because it
is often clear from context, especially when the CD terminology is used.
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generated by each cell may be regarded as its phenotype: After all, this is precisely what is

known about the observable traits of that cell.

Cell state refers to something more abstract. The term has a wider scope than “phe-

notype” and has functional connotations as well. For example, mitosis is a cell state. If

cell cycle markers are measured, a number of phenotypes would reflect mitotic cells. “Cell

state” may also refer to functional potential, as multipotent describes the ability to produce

daughter cells that reach different fates. Because cell states arise in different contexts and

reflect the functional outcome of complex molecular systems, one can expect that a diverse

but restricted set of phenotypes correspond to a cell state. From a modeling perspective, cell

states are latent variables: unmeasured (or unmeasurable) attributes of the cell that can be

inferred from patterns they generate in the observable phenotypes. For an extreme example,

Novick & Weiner inferred that “lactose induction” (a cell state) is an all-or-none phenomenon,

based on the pattern of β-galactosidase activity (a phenotype).

As mentioned previously (§1.1.2), the term cell type emerged in the qualitative descrip-

tions of early microscopists. The term implies functional specialization associated with mul-

ticellular organization: examples include skin cell, muscle cell, nerve cell. Upon closer exami-

nation the term becomes slippery, as it depends on a desired resolution (e.g., nerve cell names

a wide variety of neural cell types) and implies a discretization of developmental processes

that may in fact be continuous [53]. Taking these provisos into account, “cell type” implies

significant phenotypic and functional stability over time, achieved perhaps through epigenetic

regulation [54]. The stability of a cell type might exceed the time scale of a cell state: For

example, a T cell can exist in different states (mitotic, activated) while maintaining its “iden-

tity” as a T cell. The stability of a cell type may also preclude the accessibility of certain

states: T cells cannot produce insulin. One can expect that a diverse but restricted set of

phenotypes and states correspond to a cell type.

Every cell has some (set of) phenotype(s) and exists in some (set of) state(s). Whether

every cell can be regarded as an instance of a cell type is perhaps an open question, especially

in the context of disease.
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A population is heterogeneous when it contains cells in one of several states (and/or

of multiple types). For each state, the cells in that state form a phenotypically coherent

subpopulation—i.e., the cells in that subpopulation are phenotypically more similar to each

other than they are to cells of other subpopulations. In some contexts, it may be convenient

to refer to a subpopulation phenotype. This abuse of terminology might be taken as

shorthand for “the distinctive traits shared by most cells in a subpopulation.” It may also

be used in reference to a D-dimensional vector computed on the cells of the subpopulation

and meant to represent their collective attributes, such as the average expression in each

dimension.

1.3.2 Cluster analysis

Since cytometry became a multidimensional measurement technology, it has been apparent

that subpopulations could be identified as clusters of cells with similar phenotypes. For

example, in 1991, Terstappen et al. wrote:

Multidimensional flow cytometry permits quantitative identification of distinct

cell populations in the heterogeneous blood and BM [bone marrow] aspirates. In

a multidimensional space created by simultaneous measurement of independent

parameters, cell populations with dissimilar properties emerge at different posi-

tions as clusters of cells.8

Though they did not do so, this intuition can be formalized and the task of identifying

subpopulations can be treated algorithmically.

First we consider a highly idealized scenario. First, suppose there is a “complete” mea-

surement space that includes every feature that can possibly contribute to cell state: the

abundance and activation of every protein species, the spatial location of every molecule, et

cetera. Let there be D̃ such features. Suppose there is a technology that measures each of

these D̃ features in each cell sampled from a multicellular population. Suppose that this

8Note that these authors use the term “population” in the sense of “subpopulation” as defined in §1.3.1
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multicellular population is heterogeneous, comprising exactly K cell states each present in

some fixed proportion φk,
∑K

k=1 φk = 1.

When N cells are measured, the output of the technology is a N × D̃ matrix (equivalently,

a set of N D̃-dimensional vectors). If the biological system is noiseless, then each cell state

is present as bφkNe identical cells. If the measurement technology is also noiseless, then the

N × D̃ matrix can be equivalently represented by K sets, each containing bφkNe identical

D̃-dimensional vectors. In this case, the sets of identical vectors trivially identify the K cell

states.

Of course, reality is barely a crude approximation to this hypothetical. Despite the sub-

stantial advances outlined above (§1.1.2), we have not reached the asymptotic “complete”

measurement space. In an incomplete measurement space, there is always the possibility that

an unmeasured variable defines distinct cell states that will be irresolvable in the data. On the

other hand, the number of potentially resolvable cell states increases with each added dimen-

sion, suggesting that it should always be valuable to seek new cell states in data of increasing

dimensionality. Further, due to the modular organization of the cell’s physical and regulatory

systems [55, 56], it is reasonable to expect many dimensions of the complete measurement

space to be redundant and therefore that the intrinsic dimensionality of the cell is less than

D̃ (see §1.3.3).

The hypothetical postulates regarding noise are even further from reality. Stochasticity

is inherent in molecular systems [57], an inevitable result of fluctuations in transcription and

translation that cells have evolved to buffer and exploit in order to control transitions between

states [58, 59]. Thus, cell states should not be expected to generate sets of identical vectors

in real data, even in the absence of measurement noise. Instead, cell states will generate

densities: regions of the measurement space containing a high frequency of similar but

nonidentical vectors. A population composed of K states would generate K different (but

possibly overlapping) densities.

Thus, one may take a statistical view and model the heterogeneous population as a mixture

of densities (also known as a mixture model). This approach has been tried by a number of
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groups for flow cytometry data and will be further discussed in the next chapter (§2.1.1).

Given the foregoing exposition, one might suppose that a mixture of densities would work

quite well to model heterogeneous populations; however, these models suffer from overly rigid

assumptions and computational instability in high dimensions.

A simpler method, which is closely related to mixture models and provides a paradigmatic

example of cluster analysis, is k -means [60]. It is worthwhile to examine k -means in some detail

because it exemplifies how one might formalize the intuitive concept of a cluster. Essentially,

a cluster is a subset of data points that are mutually more similar to each other than they are

to the other data points. A clustering solution assigns all data points to exactly one cluster

such that the overall intra-cluster similarity is maximized. k -means defines both an objective

function that formalizes this idea and an algorithm for optimizing it. The objective function,

called the within-cluster sum of squares (WCSS), is given by:

arg min
C

K∑
k=1

∑
x∈Ck

‖x− µk‖2 (1.1)

where C = {C1, C2, . . . , CK} is a partition of the data X = {x1,x2, . . . ,xN} into K disjoint

clusters and µk is the mean of the data in cluster k, |Ck|−1
∑

x∈Ck x. One can see that (1.1)

formally encodes the notion that a good clustering solution should maximize intra-cluster

similarity: It does so by minimizing the squared Euclidean distance between the cluster’s

centroid and every point it contains. As discussed in the next chapter (§2.1.1), the form of

(1.1) imposes a particular structure on the clusters that may not be desirable in general.

A k -means clustering solution is an arrangement of C that minimizes (1.1). The algorithm

for minimizing (1.1) is a special case of the expectation-maximization algorithm and consists in

iterative updates of C and µk. The procedure is guaranteed to converge to a local minimum;

however, even in simple cases there are numerous local minima that yield poor clustering

results [61, 62]. The problem of finding the global minimum of (1.1) is NP-hard [63]—i.e., it

is computationally intractable9 and therefore heuristics (such as the expectation-maximization

9More precisely, finding the global minimum of (1.1) is in the class of problems believed not to be solvable
in polynomial time (NP) and therefore requires computational resources that scale exponentially with the size
of the data. This prohibitive scaling renders such problems computationally intractable.
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algorithm) must be used in practice to obtain approximate10 solutions. This difficulty is not

specific to k -means; in general, formulations of cluster analysis are NP-complete at best.

Thus, finding “good” clustering solutions necessarily involves designing good heuristics.

Another paradigmatic clustering technique that has been widely used (especially in bioin-

formatics [64]) is hierarchical linkage. Unlike k -means, the approach is entirely heuristic and

provides no global objective function. Briefly, the algorithm begins with every data point

in its own cluster and merges the two most similar points into a new cluster; merging is

repeated hierarchically until the entire data set is merged into a single cluster. Hierarchical

linkage does not explicitly produce a clustering solution but rather a sequence of binary merge

decisions—i.e., a tree. The tree must be post-processed by some heuristic or other (often “by

eye”) in order to extract clusters.

Innumerable variants of these paradigms have been developed over the years. One reason

for this proliferation is probably that—by virtue of the computational complexity—the need

for heuristics introduces domain dependencies. Though no machine learning technique ought

to be used “out of the box” without testing assumptions and integrating domain knowledge,

this proviso is perhaps nowhere more important than in cluster analysis. A clustering method

designed precisely to cope with the various demands of high-throughput high-dimensional

single-cell data is the subject of Chapter 2.

1.3.3 Manifold learning

The irony of high-dimensional data analysis is that while we want to measure as many si-

multaneous variables as possible, we ultimately want to discard as many of these as possible.

More precisely, we seek to reduce them in an information-preserving manner. There are two

reasons: one motivated by the data, the other by the analysis.

From an analytical perspective, each dimension is very costly in terms of the ability

to evaluate structure in the data. There are several ways to demonstrate mathematically

the so-called curse of dimensionality (see, for example, [65] and references therein). The

common theme is that the volume of the measurement space increases exponentially with the

10or exact but not guaranteed to be globally optimal
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Figure 1.8: The joint distribution of two Gaussian variables x and y. In the left panel,
the variables are completely independent. In the middle panel, the variables are moderately
correlated. In the right panel, the variables are perfectly correlated. As the correlation
brings the data onto a lower-dimensional manifold, the sparsity of the measurement space
also increases.

dimensionality; therefore one would require an exponential increase in the number of data

points to maintain a constant sampling rate.11 In other words, high-dimensional spaces are

unavoidably sparse and sparsity is bad for inference.

Compressing linear dependencies

Fortunately, when there are dependencies between the measured variables, the intrinsic

dimensionality is less than the measured dimensionality. A simple example involving two

Gaussian variables, x and y, is shown in Figure 1.8. When the two variables are completely

independent, x provides no information about y and therefore both are required to determine

a point’s location: the data are truly two-dimensional. When the two Gaussian variables are

perfectly correlated (i.e., completely dependent), x provides all information about y (and vice

versa). In this case, the two-variable system has an intrinsic dimensionality of one, apparent

from the restriction of the data to a linear subspace of the (x, y) coordinate system—i.e., a

line. In other words, though the data are embedded in the two-dimensional space R2, they

11For example, suppose that 1,000 data points are sufficient to estimate a distribution in a square (i.e., two-
dimensional hypercube) with constant edge length r. To achieve the same sampling rate in a 20-dimensional
hypercube with the same edge length requires ∼ 108 data points.
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Figure 1.9: PCA extracts uncorrelated latent variables (x̂1 and x̂2, middle panel) from cor-
related variables (x and y, left panel) by applying a rotation. The first principal component,
x̂1, accounts for 90% of the covariance of x and y.

can be re-parameterized by R, the real line.

In the unrealistic case of perfect correlation, the dimensionality can be reduced simply by

dropping one of the variables. In reality, variables display imperfect dependencies, reflecting

either noise or true differences in the variables or both. For example, in the middle panel of

Figure 1.8, neither x nor y would be the best substitute for the other. Instead, the redun-

dancy of these variables should be handled by combining them. This is the approach taken by

latent variable models such as principal component analysis (PCA). The simplest dimension

reduction method, PCA assumes that the observed variables are generated by a linear trans-

formation of (a smaller number of) latent variables and seeks to recover these latent variables

by reverse engineering the linear transformation. In the case of the moderately correlated

Gaussian variables of Figure 1.8, this amounts to a simple rotation such that the first latent

variable (“component”) accounts for 90% of the variance in the data. Projecting the data

into the linear subspace spanned by this single component effectively reduces the dimension

to one (Figure 1.9).

A well-known weakness of PCA is that it can compress only linear dependencies. As

shown in Figure 1.10, rotation and rescaling do nothing to reduce the dimensionality of x and

y when their dependence is nonlinear. Both latent variables x̂1 and x̂2 are needed: Projecting

the data onto the first component x̂1 destroys the structure of the data, despite the fact that
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Figure 1.10: PCA is unable to reduce the nonlinear dependency between x and y. Points are
colored by their order on the line. Rotation and rescaling (middle panel) and projection onto
the first component (right panel) corrupt the structure of the data.

Figure 1.11: Nonlinear relationships between proteins in normal human bone marrow. Cells
are colored by manual gating according to known stages of neutrophilic differentiation. Yellow
and green subpopulations represent the earliest stages of maturation. From [66].

the intrinsic dimensionality of this structure is clearly one.

Compressing nonlinear dependencies

It should come as no surprise that the relationships between variables in single-cell data are

generally not linear (Figure 1.11). The catalog of known biological mechanisms is full of in-

teractions, cascades, feedbacks, and thresholds—all of which generate nonlinear relationships

between the cell’s molecular components. Previous work in our group has shown that linear

dimensionality reduction techniques such as PCA fail to capture phenotypic heterogeneity

while nonlinear methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE) [67]
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are very effective for cytometry data [68].

There are a number of reasons that t-SNE is successful for visualizing single-cell data.

Perhaps the most important reason, and the one most relevant for this dissertation, is that

t-SNE is a distance-preserving method. This class of method is inspired by concepts from

mathematical topology. A central concept in topology is that one can make a distinction be-

tween the structure of an object and its representation in space. An object can be stretched,

twisted, or deformed without fundamentally altering its structure—what matters is the con-

nectivity of points on that object. Technically, this topological object is called a manifold,

which is regarded in distinction to its spatial embedding. Figure 1.12 illustrates the dis-

tinction between a manifold and its spatial embedding. Intuitively, an important feature of

manifolds is that their structure is locally Euclidean. For example, the surface of the Earth

is a two-dimensional manifold (a sphere embedded in physical space R3) that is “flat” on

small scales [65]. The geodesic distance12 between two points in the same city is roughly

Euclidean in R3, which is not true for two points on different continents. In Figure 1.12, the

Euclidean distance between any pair of adjacent (i.e., similarly colored) points is virtually

unchanged across the three spatial embeddings. Conversely, the Euclidean distance between

non-adjacent points can change quite drastically between different spatial embeddings.

With these insights in mind, we can propose that the manifold is the true object of

interest and that the spatial embedding is a necessary but ultimately dispensable way to

learn its structure. Distance-preserving methods begin with the proposition that the data are

generated on a manifold but are embedded in the measurement space RD by an unknown and

generally nonlinear mapping. From this, we can use the corollary that data points which are

adjacent in the embedding space are probably generated by adjacent points on the manifold.

In other words, “any manifold can be fully described by pairwise distances” [65, p. 69]. Given

the set of points in RD and their pairwise distances, the goal of manifold learning is to

reconstruct the manifold by finding a model that is simpler than the data (e.g., of lower

dimensionality) that preserves pairwise distances.

12Literally, the shortest arc between two points on the Earth’s surface, this term may also refer more generally
to the shortest path on any manifold.
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(a) (b) (c)

Figure 1.12: Different spatial embeddings of the same topological manifold. The real line R1

is (trivially) a 1-dimensional topological manifold. Colors represent the intrinsic ordering of
points on the manifold. (a) A subset of the real line is shown embedded in a metric space of
the same dimensionality (the vertical axis contains no information). (b) The same manifold
is shown embedded in R2 as a disconnected circle. (c) The same manifold is shown embedded
in R2 as a disconnected figure eight. Both (b) and (c), but not (a), are nonlinear embeddings
of the manifold in R2.

1.3.4 The phenotypic manifold

Multicellular populations are generated by the articulated processes of division and differ-

entiation. Because daughter cells will generally be very similar to their mother cells, the

phenotypic heterogeneity of the population is established by incremental divergences. These

incremental divergences create restricted paths through the space of possible phenotypes. As

cells are constrained to follow these restricted paths, cellular phenotypes lie on a subspace

of the full high-dimensional phenotypic space. We take the view that this subspace can be

regarded as a topological object, which we call the phenotypic manifold (Figure 1.13). As

such, it may (and does) have a nonlinear embedding in the measurement space. The task of

learning cell states can be translated to the task of learning about the phenotypic manifold.

Modeling the phenotypic manifold is a conceptually motivated approach, rooted in an un-

derstanding of the generative mechanism of cellular populations. As the subsequent chapters

aim to show, it is also an analytically powerful approach, yielding results that are superior to

comparable methods and leading to new insights about cell states in complex tissues.

1.4 Dissertation outline

This dissertation is about two things:
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(a) (b)

Figure 1.13: Schematic depiction of a “phenotypic manifold.” (a) Phenotypic heterogeneity is
generated as cells traverse an “epigenetic landscape,” conceptualized originally by Waddington
[69] and subsequently repurposed by others in the context of modern biology [70]. As cells
(spheres) divide and differentiate, the space of possible phenotypes is structured by regions of
relative stability, represented by grooves in the landscape. The manifold depicted here exists
in two dimensions representing lineage and development, respectively. (b) Cells generated on
the manifold depicted in (a) and measured by a 3-dimensional single-cell technology produces
a nonlinear embedding of the manifold in R3.

(1) Computational techniques for learning cell states from high-dimensional single-cell data

(2) Insights into normal and malignant hematopoiesis obtained from (1)

Chapters 2 and 3 concern different aspects of item (1). Chapter 2 addresses the fundamen-

tal task of subpopulation discovery: Given nothing but single-cell measurements, what are

the distinct cell states reflected in the data? Using the concepts developed above, I detail

an algorithmic solution to this problem and demonstrate its superior performance to other

methods.

Chapter 3 extends the work of Chapter 2 to a more structured setting. Given partial

knowledge about a sample, can this knowledge be extended to categorize the remaining,

unknown portion of the sample?

In Chapters 4 & 5, the methods developed in Chapters 2 & 3, respectively, are applied

to mass cytometry data collected from primary human bone marrow of a cohort of leukemia

patients and healthy donors. Chapter 4 deals with fundamental questions regarding the
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phenotypic composition of these samples, as revealed by the data-driven method introduced

in Chapter 2. Chapter 5 drills into the functional states associated with these subpopulations

and applies a suite of computational techniques—including the content of Chapter 3—to

generate and corroborate inferences about these functional states. Taken together, Chapters

4 & 5 indicate that the immunophenotypes of leukemic blasts often belie their functional state,

the latter of which can be learned by computational techniques and correlate with survival.

Finally, Chapter 6 places the work in a broader context, summarizing what has been

established in the previous chapters and suggesting future directions for learning cell states

from high-dimensional single-cell data.



Chapter 2

Extracting cell states from graphs

of phenotypes

Complex tissues are composed of biologically meaningful subpopulations that are phenotyp-

ically coherent despite the intrinsic variability that makes each cell unique. A fundamental

challenge in quantitative analysis of single-cell data is to establish the major cell states present,

enabling an efficient and meaningful profile of the tissue.

Bone marrow is a common model system for such studies due to the rich diversity of

immune cells found therein, not to mention experimental tractability (e.g., dissociation of cells

into suspension). The wide range of cell types present in bone marrow has been established

by decades of experimental research, which has produced a taxonomy of functionally distinct

lineages (lymphoid and myeloid at the broadest level) and developmentally related progenitors.

While normal immune cells are typically binned into predefined “landmark” cell subsets,

this strategy is unsuitable for less predictable or under-studied tissues such as cancer, where

new phenotypes have been shown to occur [66]. Thus a data-driven, unsupervised approach

is needed that takes single-cell measurements as input and returns a grouping of cells into

distinct subpopulations—i.e., clusters.

31
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2.1 Related Work

Dimensionality reduction techniques such as t-distributed stochastic neighbor embedding (t-

SNE) [67, 68] help visualize the data but do not explicitly partition samples into distinct

subpopulations. Moreover, while a two- (or three-) dimensional projection is necessary for vi-

sualization, this amount of dimension reduction is not intrinsically desirable. Subpopulations

that are not visually separable in an optimal two-dimensional projection may in fact be distinct

in high-dimensional space, were this requirement to be relaxed. Therefore, clustering methods

which do not seek reduced dimensionality but rather operate in the full-dimensional space may

distinguish subpopulations that appear indistinct even in an optimal two-dimensional projec-

tion.

Several methods have been proposed for clustering single-cell measurements into discrete

phenotypic subpopulations. A thorough comparison of available methods was conducted by

the “FlowCAP consortium” in 2013 [71]. We evaluated the best-performing methods from

this contest, as well as standard clustering methods, and found that they did not perform

well for mass cytometry data. Details of this comparison are discussed below in Section 2.3.

2.1.1 Parametric vs. Nonparametric methods

Clustering methods can be organized into two broad classes.

Parametric methods assume that the data are generated by a mixture of parametric

densities, in which case a clustering solution is obtained by finding parameter values that

maximize the probability of the data. This class of methods, of which the Gaussian mixture

model is the best known (both in general and among cytometry experts [72]), have conceptual

appeal but tend to perform poorly on real data. The parametric densities impose strong as-

sumptions about cluster shape (e.g., ellipsoid, convex, symmetric) which become increasingly

unlikely (and difficult to verify) in high-dimensional space. Attempts to reduce the severity

of these assumptions within the parametric framework do so at prohibitive cost in terms of

tractability and scalability [73]. Even supposing that a parametric model correctly specifies

the underlying distribution, parameter estimation is not robust to noise [74], a pervasive fea-
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ture of any real-world data set. The parametric approach seems particularly undesirable when

one further considers that the measurement space of a single-cell data set generally presents

a nonlinear embedding of the true underlying phenotypes [68].

Nonparametric methods eliminate the assumptions of statistical models by avoiding

these models altogether. Being defined by what they are not (i.e., parametric methods), this

class is more heterogeneous. Typically, nonparametric methods define some objective function

that expresses a ‘good’ clustering solution and seek an assignment of data instances to clusters

such that this function is optimized. k -means is a paradigmatic example. Here, the objective

function (WCSS; Sec. 1.3.2) induces a centroidal Voronoi tessellation (Figure 2.1) in which

clusters are not necessarily ellipsoid or symmetric but are always convex. While weaker than

the other two assumptions, convexity is still a strong assumption about cluster shape—again,

especially in the context of a nonlinear embedding. As a problem, the convexity assumption

can be side-stepped by specifying a large k, since any non-convex set can be broken into

smaller convex subsets. A number of methods developed specifically for cytometry data use

k -means (or similar) to produce a starting point with a large number of small convex sets and

then apply various heuristics to build clusters from these elements by merging [75, 76]. The

trouble with such heuristics is that, lacking principled motivation, they are often unstable and

exhibit sensitivity to small changes in the data, giving inconsistent results even under small

perturbations such as resampling (§2.3).

Spectral methods are a distinctive subclass of nonparametric clustering methods. Sam-

SPECTRAL [77] is one such method developed for cytometry data. Rather than operate

on the data directly, these methods operate on a matrix of pairwise similarities and in so

doing are more closely related to manifold learning (§1.3.3). As such, spectral methods more

successfully handle arbitrary shapes resulting from nonlinear embedding. The downside of

spectral methods is that they can scale very poorly with the number of data points and become

prohibitively expensive in terms of computation. For instance, in [77] the authors estimate

that a standard spectral method, with O(N3) running time and O(N2) memory requirement,

would take 2 years and require 5 terabytes of memory to process a 300,000-cell data set. To
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Figure 2.1: Example of a Voronoi tessellation in two dimensions, reproduced from [65]. The
“+” symbols represent cluster centroids and the red lines identify the Voronoi regions induced
by their locations.

address this problem, SamSPECTRAL deploys a heuristic down-sampling scheme that throws

away data until a ‘representative’ set of 1500−3000 cells (0.5−1% of a 300,000-cell data set!)

is established and clusters are determined from operations on this set.

2.2 PhenoGraph: unsupervised subpopulation discovery

For the new era of high-throughput, high-dimensional single-cell biology, a method is needed

that can robustly identify subpopulations ab initio. Such a method ideally possesses the

following properties:

• Scales favorably with data size (N) and dimensionality (D)

• Handles nonlinear embedding and arbitrary cluster shapes

• Finds clustering solutions that are robust to user-specified input and random resampling

In this section I present a graph-based method that satisfies these requirements.

At the outset, single-cell measurements can be regarded as points in the D-dimensional

space of non-negative real numbers, RD≥0, where D is the number of biological features

measured in the experiment. A sample of N cells can be represented by the N × D ma-

trix X = [x1,x2, . . . ,xN ]. Unsupervised subpopulation discovery is tantamount to clus-
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tering the rows of X, i.e., defining a partition of the N cells into K < N disjoint sets

C = {C1, C2, . . . , CK}.

Due to complex dependencies between the measured covariates, one can expect that the

D-dimensional measurements xi correspond to locations on a lower-dimensional topological

space, P, which we call the phenotypic manifold (§1.3.3). The embedding of P in RD≥0 is not

linear in general.

To learn the phenotypic structure of the sample, we should prefer to handle P rather than

X. For one, the lower dimensionality of P mitigates the analytical difficulties associated with

high-dimensional spaces. More importantly, from a theoretical perspective, the distribution

of points on P reveals the important cell states in the sample. To see this, consider each

individual cell as a dynamical system that is able to traverse P by the coordinated changes

in expression that produce the phenotypic and functional heterogeneity of the population.

Cells that reach robust cell states—defined by their dynamic stability—will tend to stay in

that region of the phenotypic manifold for prolonged durations. Thus, when the population

is sampled, the dense regions of P identify the robust cell states.

We are not able to measure P but we can estimate it from X. A discrete approximation

of P can be constructed by mapping each point in X to a vertex in a graph. Formally, the

graph G = (V,E) is an ordered pair in which V is a set of N vertices connected to each other

by edges in the set E.1 If the edges in E only identify short distances—i.e., only the most

similar points are directly connected—G becomes a discrete approximation of P [65, p. 100].

Thus the work of identifying cell states can be broken into two tasks: 1) constructing G

that approximates P, and 2) analyzing the structure of G to identify dense regions.

2.2.1 Representing phenotypes in a graph

Previous work in our group leveraged the graph representation of a phenotypic manifold to

learn developmental trajectories in B cell lymphopoeisis [53]. In that setting, the task was

not density estimation but rather dimension reduction (to a one-dimensional developmental

1Please note some terminological equivalences that can be found in the literature: {graph ⇔ network ; vertex
⇔ node; edge ⇔ arc ⇔ link }
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axis). In the present setting, the task is clustering and this should motivate the way in which

the graph is constructed. Indeed, G is a dramatically different representation of X and the

quality of the mapping f : X→ G determines how closely G approximates P.

How does one convert a set of multidimensional coordinate vectors to a graph? The

bijective mapping of cells to vertices is straightforward: xi → vi,∀i ∈ {1, . . . , N}. The

question is really how to design the set of edges such that paths through the graph represent

available paths through P—not more and not less. If the graph contains too many edges,

distant regions of P become connected by short circuits and the graph loses its advantages

over the original measurement space. The problem of short circuits is seriously exacerbated

by the presence of noise in the measurements, another challenge that must be addressed by

the graph construction procedure. If the graph contains too few edges, it can fracture into

spuriously disconnected components and information is lost about the structure and density

of points on P. Finally, edges can be binary (present or absent) or they can be weighted, in

which case the weight reflects the strength of the connection between the vertices on either

side of it. The question therefore arises whether edges should have weights and if so how

those values are determined.

As a starting point, there are two simple strategies for converting coordinate data to a

graph: the ε-rule and the k-rule. Both are motivated by the definition of manifold as a

topological space that is locally Euclidean (§1.3.3). This leads to the concept of neighborhood:

at each point x there is a neighborhood of local points V(x) for which the Euclidean metric

is a valid distance metric. If we knew the neighborhood of each point, graph construction

would be trivial: specify edges such that each vertex is connected exactly to its neighborhood.

Instead, we guess by selecting each point’s “nearest neighbors.” By the ε-rule, points falling

within a D-dimensional hypersphere of radius ε are identified as neighbors, Vε(x). By the k-

rule, the k nearest points are identified as neighbors, Vk(x). Both rules require specification of

a parameter that controls the neighborhood size and a distance metric that defines proximity.

The ε-rule is closer in spirit to the motivating concepts of manifold and neighborhood.

However, in practice it is very difficult to select an appropriate value for ε, especially when
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the significance of interpoint distances can vary across different regions of the measurement

space [78], as may very well be true in single-cell data. Selecting an appropriate ε requires a

depth of knowledge about the structure of the data that presupposes the very task for which

graph construction is intended. The k-rule, on the other hand, may lack the conceptual appeal

but is more effective in practice. The procedure adapts to different scales by ranking distances

at each point. The number of neighbors is an intuitive quantity to select compared to the

radius of a D-dimensional hypersphere and provides more direct control over the sparsity of

the graph, which is important for practical applications. However, the k-rule has important

limitations that are relevant for graph clustering. While the k-rule overcomes the variable-

scale problem, it does so at the expense of ignoring differences in local density: every point

selects k neighbors regardless of whether it is at the center of a dense cluster or outlying in a

sparse region.

This problem can be addressed by considering a weighted graph. In a binary graph, the

degree of vertex vi, deg(vi), denotes the number of edges in the graph that involve vi, and

this quantity can be understood as a measure of density at each vertex. This means that the

degree of every vertex in a binary k-neighbor graph is at least k (note that deg(vi) > k when

∃j : xi ∈ Vk(xj) ∧ xj /∈ Vk(xi)). The definition of degree can be generalized for weighted

graphs. Let w : i ∼ j → R≥0 be a weight function that assigns a non-negative weight

to each edge i ∼ j ∈ E and let W denote the N × N weight matrix comprising elements

Wij = w(i ∼ j). Note that for a binary graph w(i ∼ j) = 1, ∀ i ∼ j ∈ E. In general, we can

define the vertex degree:

deg(vi) =
∑
j

Wij (2.1)

which, in the case of a binary graph, equals the number of incident edges on vi. For a

weighted graph, deg(v) becomes a more flexible measure of density at each vertex, provided

that edge weights scale with local density. If a weight function satisfies that condition, the

graph combines the desirable properties of the ε-rule and the k-rule.

To define a weight function that scales with local density, consider the relationship be-

tween the density of a region and the k-neighborhoods in that region. Specifically, when two
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points are located in the same dense region, they tend to have neighbors in common—their

neighborhoods will overlap, Vk(xi) ∩ Vk(xj) 6= ∅. On the other hand, if two proximal points

are involved in separate density structures, their neighborhoods will tend to be disjoint. Let

Jk(xi,xj) =
|Vk(xi) ∩ Vk(xj)|
|Vk(xi) ∪ Vk(xj)|

(2.2)

denote the Jaccard coefficient between the k-neighborhoods of cell i and cell j.2 The Jaccard

coefficient quantifies the similarity between two sets and is bounded in the closed interval [0, 1],

reaching the upper and lower bounds when the two sets are identical or disjoint, respectively.

In quantifying the overlap of Vk(xi) and Vk(xj), Eq. (2.2) reflects whether i and j participate

in the same density structure (Figure 2.2). As a corollary, when a point is central to such a

structure, it will have overlapping neighborhoods with a large number of points and the total

edge weight involving that point, deg(v), will be large. Thus Eq. (2.2) provides the desired

scaling with point-wise density (Figure 2.3).

Thus, we define the Jaccard graph as a weighted k-neighbor graph in which edge weights

are given by Eq. (2.2), the Jaccard coefficient between k-neighborhoods. This graph requires

specification of the parameter k, which provides an “initial” estimate of neighborhood size.

As we have seen, the weight function relaxes the influence of k by incorporating the local

data distribution to tune the effective density at each point. As a result of this tuning, the

properties of the graph are robust to the choice of k, as demonstrated in a subsequent section

(§2.3). Importantly, this weighting procedure distinguishes between two very different types

of rare observations: outliers due to noise and genuine rare cell types. While both may occur

at a similar frequency in the data (0.5%, for example), because outliers are generated by

noise, they have few shared neighbors with other points and their overall influence in the

graph is dampened. Conversely, the co-occurrence of genuine rare cells in close phenotypic

proximity results in highly overlapping neighborhoods, which translates to a set of strongly

interconnected vertices, signifying the presence of a robust cell type. Overall, the Jaccard

2It is interesting in the context of this section that the name given by Jaccard for this quantity was le
coefficient de communauté [79].
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(a) (b) (c)

Figure 2.2: The Jaccard coefficient between k-neighborhoods provides a similarity measure
that reflects the structure of data density. (a) Two densities separated by a sparse region.
The red, green, and blue points are mutually equidistant (in the Euclidean sense). (b) The
open shapes label the k-neighborhoods of the three equidistant points by corresponding color
(k = 25). The magnitude of the Jaccard coefficient between each pair of neighborhoods is
represented by the width of the line connecting each colored point. Note that the lines would
have equal width if similarity were quantified by the Euclidean metric alone. (c) A second
point within the bottom-right density illustrates the relative insignificance for the blue point
of the small neighborhood overlaps it shares with the red and green points.

Figure 2.3: The same sample data as in
Figure 2.2. The Jaccard weight is calcu-
lated between all k-neighborhoods (k =
25) and the vertex degree at each point
i (
∑

j Wij) is represented by color. Points
that are central to dense regions have the
largest degree.
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graph uses consensus between the perspectives of each point to penalize spurious edges and

to strengthen well-supported ones.

2.2.2 Community detection in a graph of phenotypes

Once a graph, G, has been constructed, identifying subpopulations can be cast as a search for

highly interconnected subgraphs of G. To this end we borrow from social network research,

which has developed powerful algorithms to partition large networks into communities [80].

In our setting, communities represent an accumulation of phenotypically similar cells that

likely reflects biologically meaningful phenotypic stability, thus revealing stable cellular states

in the population. Partitioning the graph into these communities produces a dissection of the

population into phenotypically coherent subpopulations.

A simple yet powerful measure on the community structure of a graph is the modular-

ity. For a (weighted) graph and a set of community assignments C = {C1, C2, . . . , CK}, the

modularity is:

Q(W, C) =
1

m

∑
ij

[
Wij −

deg(vi) deg(vj)

m

]
δ(ci, cj) (2.3)

where Wij is the edge weight between vertices i and j, ci ∈ {1, . . . ,K} is the community

assignment of vertex i, the Kronecker delta function δ(u, v) = 1 if u = v and 0 otherwise,

and m =
∑

ij Wij is the total weight in the graph and serves as a normalization factor [81].

The modularity quantifies the total intra-community edge weight beyond what is expected by

chance from the number of edges and the degree distribution. The modularity is 0 when the

partition C is random, and reaches a maximum of 1 when edges exclusively connect vertices

in the same community, i.e., when C identifies K disconnected components.

Given some proposed community assignments C, Eq. 2.3 can be used as a quality measure

on the partition. Alternatively, Eq. 2.3 can be used as an objective function that is maximized

in the search for a good partition. In this respect, it is interesting to note that Eq. 2.3 is

somewhat similar to Eq. 1.1, the k-means objective function. Given an assignment of points

to discrete classes, both provide a quality measure based on the “tightness” of the points in

each class. Modularity has other desirable properties, not least of which is taking into account
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an expected value of tightness for random partitions.

Note that while much of the theory and algorithmic development regarding modular-

ity have been pursued and applied in social network analysis, it is actually a more general

quantity. Equation 2.3 is formally equivalent to the Hamiltonian of the Potts model of statis-

tical mechanics; as such, it is a natural quantity describing the “correctness” (in an energy-

minimization sense) of an assignment of interacting elements to a number of discrete states

[82].

Finding a set of community assignments that maximize Eq. 2.3 is a combinatorial op-

timization problem for which exact solutions are computationally intractable but for which

good heuristic approximations have been developed. In particular, the Louvain method [83]

has become popular due to its efficiency on large graphs (up to hundreds of millions of ver-

tices). The Louvain method is hierarchical and agglomerative. At the beginning of the first

iteration every vertex is placed in its own cluster. At each iteration, all vertices are scanned

and each vertex vi is added to the community of its neighbor vj that yields the greatest

increase in modularity, ∆Q. If there is no vj such that ∆Q > 0, vi is left in its current

community. The process is repeated hierarchically (representing bottom-level communities as

vertices in the next iteration, etc.) until no further increase in Q is obtained. An appealing

property of the Louvain method is that eventually moving to a new hierarchical level does

not increase Q, suggesting that a “natural” resolution has been reached. Because the same

objective function is used throughout, the top level of the hierarchy is guaranteed to have a

higher modularity score than a level below and the communities specified at the top level can

be taken as the clustering solution. Thus, the number of clusters is determined in parallel

with the communities themselves and reflect a level of detail that is optimal with respect to

the modularity.

PhenoGraph

Combining the concepts discussed above, we developed PhenoGraph, an algorithmic approach

to defining subpopulations in single-cell data. PhenoGraph begins by converting single-cell
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measurements to a graph of phenotypes. The Jaccard graph is used, which incorporates crucial

information about the data density by way of edge weights. These weights are instrumental in

defining strongly interconnected communities of phenotypes according to the modularity score

(Eq. 2.3). The Louvain method is used to find a partition of the graph into communities

that maximize the modularity. Because the output of the Louvain method depends on a

random initialization, PhenoGraph runs multiple random restarts in order to avoid poor

local maxima and ensure a high-quality solution. Pseudocode for PhenoGraph is presented

in Algorithm 1. Two open-source software implementations of PhenoGraph are currently

available: a standalone Python version3 and as part of the Matlab single-cell analysis toolbox

cyt developed in our lab.4

Algorithm 1 PhenoGraph Clustering

In: Single-cell measurements X = [x1, . . . ,xN ], neighborhood size k, r random restarts
Out: Subpopulation assignments C
procedure Graph Construction(X, k)

for all i ∈ {1, . . . , N} do
for all j ∈ Vk(xi) do

Wij ← Jk(xi,xj)
end for

end for
return W

end procedure
procedure Graph Clustering(W)

Qmax ← 0
t← 0
while t < r do
Ct ← Louvain(W)
Qt ← Q(W, Ct)
if Qt > Qmax then
C ← Ct
Qmax ← Qt

end if
t← t+ 1

end while
return C

end procedure

3https://github.com/jacoblevine/PhenoGraph
4http://www.c2b2.columbia.edu/danapeerlab/html/phenograph.html

https://github.com/jacoblevine/PhenoGraph
http://www.c2b2.columbia.edu/danapeerlab/html/phenograph.html
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While the number of random restarts of the Louvain subroutine can be considered an

input parameter to PhenoGraph, in practice we found that each restart tends to produce

results highly similar to the others, such that good results are found within a small number

of solutions. For example, the standard deviation of modularity scores obtained from 100

random restarts on test data (§2.3) was extremely small (8.75 × 10−4). Once the graph has

been constructed the computational cost of random restarts is small and this parameter can

be fixed at some moderately large value (e.g., 50), or other heuristics can be used to determine

that a solution is not a poor local maximum.

2.3 Validation with normal bone marrow data

Healthy human bone marrow, which is rich in distinct and well-characterized immunological

cell types, presents an opportunity to evaluate the performance of computational methods for

subpopulation discovery. In particular, two questions are of interest:

1. Do clustering solutions recapitulate ab initio the immunological subsets that are known

from decades of research?

2. Does PhenoGraph perform favorable in comparison to other methods?

To address these questions, three validation data sets were assembled, comprising mass cytom-

etry measurements of bone marrow mononuclear cells (BMMCs) from three healthy donors.

Validation Data Set 1 (VDS1) was a publicly available mass cytometry data set [17]

(http://reports.cytobank.org/1/v1) of healthy adult BMMCs. It consisted of 167,044

cells collected from a healthy human donor (“Marrow 1” in [17]), which had been manually

assigned to 24 cell types by standard immunological gating techniques in the original pub-

lication. The gating strategy for manual assignment was based on the 13 surface markers

measured in this data: CD45, CD45RA, CD19, CD11b, CD4, CD8, CD34, CD20, CD33,

CD123, CD38, CD90, CD3. These 13 markers were also used for all computational analyses.

Manual gating assigned 49% of the cells to a known cell type while the remaining cells were

not assigned to any known cell type.

http://reports.cytobank.org/1/v1
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Figure 2.4: 30,000 random cells from VDS1 with manual cell type assignments, visualized
with t-SNE. Cells are colored by cell type assignments established by manual gating (left
panel) or subpopulations detected by PhenoGraph (right panel).

Validation Data Sets 2 & 3 were newly collected mass cytometry measurements of 32

surface markers on BMMCs from two healthy adult donors. Measurements from these samples

were manually gated into 14 cell types based on 19 markers measured in this data: CD3,

CD4, CD7, CD8, CD15, CD16, CD19, CD20, CD34, CD38, CD41, CD44, CD45, CD61,

CD64, CD123, CD11c, CD235a/b, HLA-DR (note that manual gating becomes extraordinarily

difficult even at this dimensionality). The full 32 marker-panel was used for all computational

analyses of these data. (Data are available for download at http://cytobank.org/nolanlab/

reports).

Before a systematic evaluation, it is instructive to visualize the performance of Pheno-

Graph and other methods on healthy bone marrow. For this purpose, we assembled a curated

sample of 30,000 cells from VDS1 that included only cells that were assigned to a known cell

type by the manual gating strategy. PhenoGraph was run on this sample to obtain a data-

driven approximation to the manually-defined cell types. Figure 2.4 shows the PhenoGraph

assignments in direct comparison to the manual assignments, visualized by t-SNE. Note that

neither t-SNE nor PhenoGraph use the manual assignments in any way. Also note that both

t-SNE and PhenoGraph are run directly on the data matrix and that PhenoGraph does not

use any information from t-SNE.

http://cytobank.org/nolanlab/reports
http://cytobank.org/nolanlab/reports
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A qualitative analysis of Figure 2.4 reveals that PhenoGraph correctly identifies clusters

corresponding to most major healthy cell types including naive and mature CD4+ T cells,

naive and mature CD8+ T cells, natural killer (NK) cells, CD11b+ and CD11b− monocytes,

pre-B cells, plasmacytoid dendritic cells (pDCs), megakaryocytes and erythroblasts. It found

a single cluster of early B cells, grouping together the manually assigned Pre-B I and Pre-B

II populations. It found two mature B-cell clusters, splitting the B-cell population into two—

based on low and mid expression of CD123—in a manner that appears corroborated by the

structure of the t-SNE map.

2.3.1 Quality measures

To quantify the agreement of clustering solutions with the manual assignments, we used two

alternative quality measures: the mean F -measure and the normalized mutual information

(NMI). The mean F -measure was used in the recent FlowCAP competition and we used this

procedure as described in their publication for the sake of consistency [71].

For each “ground truth” subpopulation γi in the benchmark data and a cluster cj returned

by the algorithm, Precision (Prij) quantifies the proportion of cj that identifies γi, Recall

(Reij) quantifies the proportion of γi that is identified by cj , and the F -measure is defined as

the harmonic mean of these quantities:

F (γi, cj) =
2 · Prij · Reij
Prij + Reij

(2.4)

The F -measure quantifies the accuracy of a binary classification, but can be extended to

M classes Γ = {γ1, . . . , γM} by taking the weighted average:

Fmean(Γ, C) =
∑
γi∈Γ

|γi|
N

max
cj∈C

F (γi, cj) (2.5)

where |γi|/N is the proportion of the validation data in subpopulation γi and C = {c1, . . . , cK}

is the clustering solution being evaluated. The mean F -measure is bounded by the interval

[0, 1] with 1 representing a clustering solution that perfectly matches the ground truth (in
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this case, the manually-defined subpopulations).

To avoid any possible biases inherent in the mean F -measure, we also used the normalized

mutual information (NMI), another popular clustering quality measure. This score treats the

true cluster assignments and the output of the algorithm each as discrete random variables

and quantifies their statistical redundancy, which reflects the clustering accuracy (note that a

perfect clustering result and the true labels are completely redundant—they contain exactly

the same information). This redundancy is captured by the mutual information:

I(Γ; C) =
∑
γ∈Γ

∑
c∈C

P (γ, c) log
( P (γ, c)

P (γ)P (c)

)
(2.6)

which is non-negative but otherwise unbounded. The normalized variant

NMI(Γ, C) =
I(Γ; C)√
H(Γ)H(C)

(2.7)

where H(·) is the Shannon entropy, reaches a maximum of 1 when C ≡ Γ.

2.3.2 PhenoGraph outperforms leading methods

Besides the quality of the clustering solution itself, there are other desirable properties to be

evaluated. These are:

Robustness. The method should produce similar results under small perturbations of the

data such as random resampling

Automation. The method should not require too many user-defined parameters and should

produce similar results under small perturbations of their values

Scalability. The method should be able to process large, high-dimensional samples in a

reasonable amount of time

Note that automation can be viewed as another form of robustness, i.e. robustness to user

input.
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I evaluated PhenoGraph on all these criteria together with the three best-performing

open-source methods tested by the FlowCAP consortium: FLOCK [76], flowMeans [75],

and SamSPECTRAL [77]. Additionally, two commonly used “general purpose” clustering

methods were included: the Gaussian mixture model and hierarchical linkage. PhenoGraph

quantifiably outperformed all competing methods, as detailed below.

For all comparisons the following implementations were used: FLOCK 2.0 (FlowCAP-I

version) implemented in C; flowMeans 1.18.0 (Bioconductor version 3.0) implemented in R;

SamSPECTRAL 1.20.0 (Bioconductor version 3.0) implemented in R. While FLOCK and

flowMeans have no user-defined input, SamSPECTRAL requires tuning of two parameters,

sigma (σ) and separation factor (sf ), which were tuned as recommended in the user guide for

that software. For hierarchical linkage clustering and Gaussian mixture models, the Matlab

R2013b implementations were used. In principle, those methods are not comparable because

they require specification by the user of the number of subpopulations. In our testing, we

provided this number to these methods (which is of course known for the validation data),

though this did not result in an impressive performance from either method.

Integrated quality and robustness analysis

Cluster solution quality and robustness were evaluated simultaneously in the following man-

ner. From each validation data set, we generated 50 random subsamples of 20,000 cells each.

Each method was run on each subsample and the mean F -measure and NMI were computed

on each individual output. This procedure generated distributions of quality measures for

each method. Ideally, these distributions should have a high center (indicating high aver-

age solution quality) and small variance (indicating robustness to random resampling). The

distributions of mean F -measure for the VDS1 subsamples are shown in Figure 2.5.

I also used the random subsamples to evaluate PhenoGraph’s robustness to the user-

defined parameter k. Clustering solutions were generated by PhenoGraph for each subsample

at four values of k spanning a four-fold range. As shown in Figure 2.5, the value of k has

essentially no impact on the quality of the solution or the sensitivity to random resampling.
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Figure 2.5: Distributions of mean F -measure obtained for each method on 50 random sub-
samples from VDS1.

This type of analysis could not be performed for FLOCK or flowMeans because those

methods are completely automated—they take no input parameters. SamSPECTRAL takes

two input parameters that require careful tuning. Instead of testing the quadratic number of

possible pairs for the two parameters, these were selected as recommended in the user guide

for that software.

All results using NMI were virtually identical and are omitted for space, but can be found

in the supplementary material of [84].

From this analysis, it can be concluded that PhenoGraph outperforms all competing meth-

ods in terms of solution quality and robustness.

Analysis of scalability

As before, the input data matrix is N × D. It is desirable that a method scale well with

increases in both N and D.

PhenoGraph exhibits superior scaling with dimensionality D
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The FlowCAP consortium tested performance on flow cytometry data only; methods

that performed well there were probably not designed for the higher dimensionality of mass

cytometry data. The 32-dimensional data of Validation Data Sets 2 & 3 makes this clear. As in

the previous analysis, we generated 50 subsamples from VDS2 and VDS3 to generate quality

measure distributions for each method. The results are presented in Figure 2.6. FLOCK

was unable to run on these data sets because it assumes that the number of observations

is vastly greater than the number of dimensions to the the extent that a 20,000-cell test

set contained “’too few” observations for 32-parameter data. SamSPECTRAL was able to

run, but with poor results and poor computational efficiency; flowMeans produced better

results than SamSPECTRAL but at an enormous cost in terms of run time. Furthermore,

the performance of flowMeans was highly unstable, sometimes producing good results and

sometimes failing completely due to numerical underflow. Out of 100 runs, flowMeans failed

to produce any result on 59 occasions. On the other hand, PhenoGraph continued to exhibit

high quality, robust results and fast run times.

PhenoGraph exhibits superior scaling with number of observations N

Finally, we tested the scaling behavior as the data matrix contains increasing numbers

of observations. Testing was conducted on 32-parameter data sampled from VDS2. At each

sample size, N ∈ {20, 40, 60, 80, 100} × 103, 5 random samples were generated. The small

number of samples was motivated by the mounting inefficiency of flowMeans and SamSPEC-

TRAL, which scale exponentially with N (Figure 2.7). PhenoGraph displays roughly linear

scaling with N .

All performance comparisons were conducted on a 2.6 GHz Intel Core i7 with 16GB of

RAM. At 80,000 cells, average run time was 105 minutes for SamSPECTRAL, 254 minutes

for flowMeans, and 5 minutes for PhenoGraph. In the time it takes flowMeans to process

80,000 cells, PhenoGraph can process 106 cells.
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Figure 2.6: NMI, mean F -measure, and run time distributions for 50 random subsamples of
20,000 cells each from VDS 2 & 3.
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Figure 2.7: Systematic comparison of run time as a function of sample size. PhenoGraph (run
here with k = 30) displays significantly superior computational efficiency and scales roughly
linearly with the number of cells. Lines trace mean run time for 5 random samples at each
sample size and error bars display the standard error.
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2.4 Summary

In this chapter, we considered the fundamental problem of identifying cellular subpopulations

in single-cell data. The particular features of single-cell data should be considered in designing

an algorithmic solution to the problem. We used the conept of the phenotypic manifold

(§1.3.4) to motivate our graph-based method, PhenoGraph. PhenoGraph uses a graph of

single-cell phenotypes to approximate the phenotypic manifold and translates the task of

density detection to the problem of modularity optimization in this graph.

Healthy human bone marrow contains a diversity of cell types well known through decades

of research. Thus, single-cell measurements of bone marrow cells provide a good benchmark

data set, where manual gate assignments provide an approximate gold standard. Using several

such benchmark data sets, we showed that PhenoGraph is superior to other comparable

methods in terms of all relevant metrics: PhenoGraph is computationally efficient and able to

run on very large data sets without subsampling; PhenoGraph produces high quality results

that closely resemble manual cell type assignments obtained through decades of experimental

studies; PhenoGraph is robust, producing highly similar irrespective of the exact subsample

of data points used and the exact setting of its single user-defined parameter.

The ability to reconstruct ab initio the known cell types of a well-characterized tissue is

an important demonstration of the method’s reliability. Ultimately, the data-driven approach

becomes truly powerful when applied to less characterized systems, where we do not presume

to know the subpopulation structure in advance. The quality of PhenoGraph’s performance

in the benchmark data translates to confidence in the biological significance of subpopula-

tions it identifies in samples of unknown structure. In Chapter 4, PhenoGraph is used to

identify subpopulations in leukemic marrow, where the subpopulation structure remains an

open question.



Chapter 3

Classifying cells with random walks

Central to PhenoGraph is its underlying graph structure, constructed by representing data

points as vertices connected by edges that capture their phenotypic and structural similari-

ties. By partitioning this graph into maximum-modularity communities, we obtain a success-

ful phenotypic dissection of the sample into subpopulations representing robust cell states.

Theoretically, the reason for PhenoGraph’s success is that the graph G is a good approxi-

mation to the phenotypic manifold P. If so, then G should be useful for other tasks related

to learning about P. In this chapter, we consider the case where there is partial knowledge

about the data and we want to extend this knowledge to uncharacterized cells. For example,

we might construct a data set by concatenating measurements of known cell types together

with a sample from some disease state. We could then ask, for each cell in the disease sample,

what healthy cell type is it most similar to?

Another interesting application is recovering cells that are missed by manual gating strate-

gies. Unlike data-driven approaches, manual gating labels only a portion of cells in a sample—

those falling squarely within boundaries manually drawn in sequential bivariate subspaces of

the data. As mentioned in Section 2.3, despite the fact that the authors of [17] were able

to define 24 cell types from 13 dimensions by manual gating, 51% of cells “fell through the

cracks” and were not assigned to any cell type. In this case, manual assignments can be

considered as partial labels providing “seed” information about cell types. Computationally

53
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extending the manual assignments to the unlabeled cells may not only prevent the loss of so

much data, but may also reveal unappreciated phenotypic features of these cell types when

they are identified in this more data-driven manner.

3.1 Problem formulation

Formally, consider a data set X = [x1, . . . ,xN ] in which L < N points are assigned to one of

M distinct classes. Without loss of generality, the assigned points are the first L rows of X

and their assignments are given by the vector y = [y1, . . . , yL], which assigns each of the first

L samples in X to one of M distinct classes. The inference task is to compute assignments

for the unlabeled points, y′ = [yL+1, . . . , yN ]. Because the task is to assign unlabeled points

to classes specified in y, this is a classification problem. As such, the labeled points are called

the training data and the unlabeled points are called the test data.

In machine learning, this style of classification is called semi-supervised or transductive

learning. It differs from supervised or inductive learning in that both the training and test

data are given up front. Thus the inference procedure is permitted to use not only the features

of the training data but also the structure of the entire data set to generate classifications.

This is a powerful advantage indeed, largely for the same reasons that motivate the use of a

graph for manifold learning. When assessing whether an unlabeled point is similar to a set of

labeled points, their respective locations on a low-dimensional manifold should be at least if

not more informative than metric distances in high-dimensional space.

3.2 PhenoGraph Transductive Learning

The extension of PhenoGraph to the transductive case can be thought of as a refinement

of the k-nearest neighbors classifier, a classical and very simple non-parametric supervised

learning technique. In that method, for each unlabeled point xi, the k nearest labeled points

are identified and xi is classified as the majority class among those k labeled points. This

approach is vulnerable to many pitfalls. For example, small changes in k can easily tip the
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balance of the majority from one class to another, except in the simplest cases. Because it

is inductive rather than transductive, this method treats each unlabeled point independently,

rather than transferring information between the unlabeled points as classifications accrue.

Reformulating the problem as a transductive learning task allows relaxation of the strict value

k to a more “distributed” vote that takes into account the larger-scale structure of the data.

Intuitively, each point i is allowed to be influenced by labeled vertices beyond its immediate

neighborhood, connected to i through multiple edges in the graph. The classification becomes

a weighted vote, averaged over the entire graph. The weights are derived from a probabilistic

interpretation of the graph connectivity using random walks. A random walk is a path through

the graph where, at each vertex i, the next vertex is selected probabilistically from the set of

i’s neighbors, V(vi). The proximity of two vertices can be computed as the probability of a

random walk passing through both—which, because it averages over all possible walks—is a

powerful and robust measure of vertex similarity that takes into account the entire structure

of the graph. Discussed below, this framework provides the mathematical foundation to

allow a set of partial vertex labels to “diffuse” through the graph onto the unlabeled vertices,

producing transductive classifications.

To extend PhenoGraph to the transductive case, we begin with the same graph con-

struction procedure as before, using the Jaccard coefficient between k-neighborhoods as edge

weights. The graph is constructed using all data and without reference to the labels. At this

point, the graph is dappled with labeled vertices which act as landmarks for regions of the

graph associated with the various classes (Figure 3.1).

Exploiting the connection between random walks on graphs and discrete potential theory

[85], the probability of cell i being assigned each class m can be calculated by solving a system

of linear equations representing the electric potential at each unlabeled node when voltage is

alternatively applied to the vertices of each labeled class [86]. Each unlabeled node is then

assigned to the class that it reaches first with highest probability.

Given a partially labeled data set (X,y), compute the Jaccard graph as described in Sec-

tion 2.2.1. From the weight matrix W and its degree matrix D = diag(deg(v1), . . . ,deg(vN )),
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Figure 3.1: Schematic depiction of PhenoGraph Tranductive Learning. The graph is built
without consideration of the class labels (bold colors) and each unlabeled vertex is classified
(light colors) according to the class that is most likely reached first by a random walk in the
graph.

the graph Laplacian is defined:

L = D −W (3.1)

Note that each vertex is either labeled or unlabeled and therefore must be in one of two sets,

VL (labeled vertices) and VU (unlabeled verticies), VL ∪ VU = V and VL ∩ VU = ∅. Thus L

can be arranged as a composition of submatrices corresponding to VL and VU as follows:

L =

LL B

BT LU

 (3.2)

The graph Laplacian is used to compute the probability that random walks originating at

verticies in VU first arrive at particular classes in VL. These probabilities can be calculated

through the solution of a system of sparse linear equations (see [86] for complete derivation).

Specifically,

LUP = −BTQ (3.3)
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where Q is a L ×M binary matrix representing the class of each vertex in VL and P is a

(N − L) ×M matrix containing the desired probabilities for every vertex in VU . In other

words, each row j of P is a M -dimensional probability vector (
∑M

m=1 Pjm = 1) expressing the

probability that a random walk departing from vertex j arrives first at a vertex in class m.

Therefore, the matrix P is the quantity of interest, as it provides a probabilistic assignment

of each point to each class (similar to the “responsibilities” of parametric mixture models).

Every unlabeled data point can be assigned to the most probable class

yj = arg max
m

Pjm (3.4)

or the assignments can be chosen more elaborately. For example, the entropy H(Pj) provides

a direct measure of the uncertainty of assigning j to any class; this can be used to rank and

filter assignments to control the quality of the inference.

Psuedocode summarizing PhenoGraph Transductive Learning (PTL) is given in Algorithm

2.

Algorithm 2 PhenoGraph Transductive Learning (PTL)

In: Single-cell measurements X = [x1, . . . ,xN ], partial labeling y = [y1, . . . , yL], neighbor-
hood size k
Out: Completed labeling y′ = [yL+1, . . . , yN ], matrix of assignment probabilities P
procedure Graph Construction(X, k)

for all i ∈ {1, . . . , N} do
for all j ∈ Vk(xi) do

Wij ← Jk(xi,xj)
end for

end for
end procedure
procedure Transduction(W,y)

Compute Eq. 3.1 and Eq. 3.2
Solve Eq. 3.3 for P
return P

end procedure
Option: y′ 3 yj ← arg maxm Pjm
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Figure 3.2: Entropy distribution of random walk probabilities for unlabeled cells. High val-
ues indicate classification uncertainty. The vertical dashed line indicates the filter used to
eliminate cells with high classification uncertainty.

3.3 Using random walks to recover cells missed by manual

gating

To demonstrate the capabilities of PTL, we revisit Validation Data Set 1 (§2.3), comprising

> 100, 000 healthy bone marrow cells with 13 surface marker dimensions and partial labels

obtained by manual gating, which cover 49% of cells. PTL was run with k = 30 to obtain

P and the entropy H(Pj) was used to filter the classifications (Figure 3.2). This resulted

in the recovery of 83% of the unlabeled data, increasing the total number of labeled cells

by 86%. The number of recovered cells per cell type is shown in Table 3.1. For many cell

types, the recovered cells outnumber the manually gated cells, reflecting not only the power of

this approach but also the power of defining cell types in multiple dimensions simultaneously

rather than sequentially.

For example, the number of common myeloid progenitors (CMPs) was doubled by algo-

rithm. The marker distributions for the inferred CMPs are very similar to the manually-

defined cells (Figure 3.3). The most notable difference is modestly elevated expression of

CD4, though still at levels less than what would be considered “CD4+” for a T cell. Since

robust CD4 expression is a lineage marker for T helper cells, most gating strategies for pro-

genitors include a “CD4−” gate early in the sequence and these cells are lost as a result. The
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Manual Gating Recovered

CD11b− Monocyte 912 2134
CD11bhigh Monocyte 6779 19036
CD11bmid Monocyte 1278 1699
CMP 253 258
Erythroblast 12030 5327
GMP 73 1
HSC 261 96
Immature B 502 68
MEP 194 438
MPP 152 17
Mature CD38low B 7796 3930
Mature CD38mid B 608 482
Mature CD4+ T 13964 6083
Mature CD8+ T 7821 5171
Megakaryocyte 3684 786
Myelocyte 3025 3204
NK 3864 6355
Naive CD4+ T 6987 7054
Naive CD8+ T 9564 5010
Plasma cell 468 575
Plasmacytoid DC 293 478
Platelet 5 0
Pre-B I 240 105
Pre-B II 994 558

Table 3.1: Number of cells recovered from manual gating by PhenoGraph transduction, listed
by cell type.
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Figure 3.3: Gated (blue) and inferred (green) CMPs show similar marker distributions.

distribution of the other 12 markers, however, corroborates that these cells are CMPs.

Another interesting example are the NK cells, where the inferred number of cells more

than doubles what was gated manually. Again, the marker distributions are very similar

between the gated and the inferred NK cells with one notable exception: about half of the

inferred NK cells express CD8 at a moderate intensity (i.e., less than CD8+ T cells; Figure

3.4). In fact, it has been previously reported that about half of human NK cells do express

CD8 at this moderate intensity [87]. While the manual gating strategy in [17, Fig. S5] defined

NK cells as CD8−, transductive learning by PhenoGraph recovered both CD8+ and CD8−

NK cells. Given that some of the inferred NK cells express moderate levels of CD3, it is worth

noting that the CD8+ inferred NK cells are indeed CD3− and are therefore not a side effect

of misclassified cytotoxic T cells (Figure 3.5). The small number of CD3mid cells included

among the inferred NK cells are CD4−/CD8− and many express CD90 (data not shown); it

is difficult to establish their identity with the limited markers available in this particular data

set.

3.4 Summary

In this chapter, I introduced an extension of PhenoGraph that uses the same underlying

graph structure to perform a different kind of inference task—namely, transductive learning.
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Figure 3.4: Gated (blue) and inferred (green) NK cells show similar marker distributions with
the notable exception of CD8.

Figure 3.5: Scatter plot showing all inferred NK cells. The CD8+ inferred NK cells are CD3−.
The dashed gray vertical and horizontal lines show average CD3 expression among all gated
T cells and average CD8 expression among gated CD8+ T cells, respectively. Color represents
the local density at each point.
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A simple performance evaluation using manually gated normal bone marrow suggests that

the method successfully finds correct classifications for unlabeled data when labeled examples

are available. In the next chapter, this tool will find further use as a means to characterize

disease states.



Chapter 4

Data-driven phenotypic dissection

of acute myeloid leukemia

A critical area of application for the data-driven methods discussed so far is human disease

and especially cancer biology. Though tumors have sometimes been conceptualized as simple

agglomerations of malignant cells, a parallel body of research treats cancer as a diseased tissue

[88]. If tumor cells or more broadly the tumor microenvironment—comprising neoplastic cells,

tumor infiltrating leukocytes, activated stromal cells—form a complex population with func-

tional differentiation, then the structure of this population may be critical for understanding

and controlling the disease.

In fact, research increasingly supports the proposition that intratumor heterogeneity is

functionally and clinically significant [89]. Recent evidence implies that the pathobiology of

cancer results from the actions and interactions of diverse subpopulations within the tumor.

Because tumors defy the regulatory mechanisms that bring healthy tissues into such unifor-

mity across individuals, it is difficult to know prospectively what the subpopulation structure

of a tumor might be like. To uncover the unknown subpopulation structure of malignancies,

it is therefore critical to obtain measurements that preserve single-cell resolution and capture

as many simultaneous dimensions as possible. The high dimensionality can be exploited by

data-driven techniques which, as shown in the previous chapters, can identify ab initio the

63



CHAPTER 4. DATA-DRIVEN PHENOTYPIC DISSECTION OF AML 64

diversity of cellular states in the population.

4.1 Acute myeloid leukemia

Intratumor heterogeneity is pervasive in acute myeloid leukemia (AML), an aggressive liquid

tumor of the bone marrow characterized by overwhelming abundance of poorly differentiated

myeloid cells (“blasts”). Arising from the disruption of regulated myeloid differentiation [90],

AML results in a disordered developmental hierarchy wherein leukemic stem cells (LSCs) are

capable of re-establishing the disease in immunodeficient mice [37]. LSCs were first thought

to display the same CD34+/CD38− cellular phenotype as normal hematopoietic stem cells

(HSCs). Subsequent studies demonstrated a disconnect between the surface phenotype and

the functional state of LSCs, with both CD38+ [38] and CD34− [39] LSCs having been re-

ported. While almost all cases of AML do exhibit a differentiated hierarchy (i.e., LSCs are

typically only a subset of blasts), no surface marker phenotype has been identified that con-

sistently indicates LSCs across patients [43].

Recognizing this disconnect between functionally primitive cells (e.g., tumor-initiating,

“stem-like”) and their surface phenotypes, we designed experiments to simultaneously assay

surface protein expression and regulatory signaling in millions of individual cells from pri-

mary AML samples. While the functional state of the cell is not directly measurable (§1.3.1),

we reasoned that it may be more reliably inferred from intracellular signaling as opposed to

membrane-bound protein expression. The simultaneous measurement of surface and intracel-

lular features was enabled by the expanded dimensionality of mass cytometry (§4.2). Cells

were measured both before and after several ex vivo molecular perturbations, which elicit

intracellular responses that reflect the broader signaling network beyond what can be inferred

from the unperturbed state [46]. Computational integration of these signaling responses fur-

ther expanded the dimensionality of the data (§5.1.1).
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4.2 High-dimensional single-cell profiling of an AML cohort

We used mass cytometry to obtain single-cell proteomic profiles of cryopreserved bone marrow

aspirates from pediatric AML patients obtained at diagnosis (n = 16) and from healthy

adult donors (n = 5). We performed preliminary analysis to select 16 highly informative

surface markers that efficiently captured the intra- and intertumor heterogeneity in our cohort

(§A.2.2). We added 14 antibody probes against intracellular phosphorylation, thus allowing

simultaneous measurement of surface phenotype and signaling behavior in single cells. Each

sample was subjected ex vivo to a battery of short-term molecular perturbations (cytokines

and chemical inhibitors; see Appendix for details) to elicit functionally relevant signaling

responses [17, 46]. The complete data set contained over 15 million single cells from 21

individuals measured in 31 simultaneous protein dimensions following exposure to one of 17

conditions (Table 4.1). A summary of the experimental design and first-stage analysis is

provided in Figure 4.1.

4.3 PhenoGraph reveals a “landscape” of leukemic states

While healthy bone marrow is known to contain well-separated subpopulations (§2.3), it was

questionable to what extent this would be true in the AML samples. We explored this question

in previous work [68], where we found evidence that leukemias contain heterogeneous states

that are more overlapping than what is observed in healthy marrow. These observations were

corroborated by the additional 5 healthy and 16 leukemic samples investigated in the present

study.

All healthy samples presented highly distinct and reproducible cell types, identifiable

through their known marker combinations. Each leukemia also presented a diversity of phe-

notypes defined by distinct combinations of surface marker expression. For example, Figure

4.2 shows bone marrow cells from a single representative leukemia patient (SJ03) mapped into

two dimensions by t-SNE. The resulting phenotypic landscape is diffuse compared to normal

bone marrow, yet it is characterized by regions of distinct expression patterns.
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Figure 4.1: Profiling normal and malignant surface and signaling phenotypes by mass cytom-
etry. (A) Mass cytometry profiling of an AML cohort with healthy controls. (B) PhenoGraph
was used to identify the subpopulations in each sample individually. This panel shows the
graph built from 500 randomly selected cells of healthy donor H1. Each vertex is colored
by CD34 expression of its corresponding cell (right). CD34+ hematopoietic stem and pro-
genitor cells (HSPCs) form a densely interconnected subgraph and are assigned to a single
subpopulation by community detection (middle). (C) Each subpopulation is a multifaceted
data object containing surface marker distributions as well as perturbed intracellular signal-
ing. Shown here, the HSPCs identified by PhenoGraph in donor H1 (red histograms) had a
CD34+/CD45low phenotype relative to the other cells in the sample (gray histograms). Each
PhenoGraph subpopulation contained cells from all perturbations, permitting analysis of 224
signaling responses as shown in the heat map on the right.
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Surface Markers Signaling Markers Molecular Perturbations

CD19 PLCγ2 (pY759) Basal (i.e. PBS only)
CD11b 4EBP1 (pT37/46) AICAR
CD34 AMPK (pT172) BEZ-235
CD123 STAT3 (pY705) Flt3L (Flt-3 ligand)
CD45 S6 (pS235/pS236) G-CSF (granulocyte CSF)
CD33 CREB (pS133) GM-CSF (granulocyte-monocyte CSF)
CD47 STAT5 (pY694) IFNα (interferon α A/D)
CD7 c-CBL (pY700) IFNγ (interferon γ)
CD15 STAT1 (pY701) IL-10 (interleukin-10)
CD44 ZAP70/SYK (pY319/pY352) IL-27 (interleukin-27)
CD38 AKT (pS473) IL-3 (interleukin-3)
CD3 RB (pS807/pS811) IL-6 (interleukin-6)
CD117 ERK1/2 (p44/42) (pT202/pY204 ) PMA/Ionomycin
HLA-DR P38 (pT180/ pY182) PVO4 (pervanadate)
CD41 SCF (stem cell factor)
CD64 TNFα (tumor necrosis factor α)

TPO (thrombopoietin)

Table 4.1: Markers and perturbations used for single-cell profiling. All signaling mark-
ers target phosphorylated epitopes at the amino acid residues specified in parenthe-
ses. CSF: colony stimulating factor; AICAR (5-Aminoimidazole-4-carboxamide 1-beta-D-
ribofuranoside): pharmaceutical AMP-dependent protein kinase inhibitor; BEZ-235: phar-
maceutical phosphoinositide 3-kinase inhibitor; PMA (phorbol 12-myristate 13-acetate): to-
gether with ionomycin induces cytokine production in many cell types. Further details can
be found in Table A.1 below and in the supporting materials of [84].
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Figure 4.2: t-SNE map of bone marrow cells from patient SJ03. Each point represents a single
cell, colored according to its measured expression of the indicated marker. All 16 available
surface markers were used to generate the map; 3 are chosen as examples.

As mentioned previously (§2.1), reduction to two dimensions is required for visualization

but is not necessarily optimal for identifying subpopulations in the original high-dimensional

space. PhenoGraph, which circumvents the strong requirement of a two-dimensional projec-

tion, identified multiple subpopulations characterized by substantial phenotypic differences in

the leukemia samples. Figure 4.3 shows clusters identified by PhenoGraph in sample SJ03

as colored labels on the t-SNE map of Figure 4.2. It is interesting to note that the Pheno-

Graph clusters accentuate subtle structures in the map that may not be obvious at first

glance. A PhenoGraph cluster may comprise phenotypic “pockets” from disconnected regions

of the map—such as Cluster 12 in Figure 4.3—that may reflect suboptimal splits as t-SNE

searches for the highly compressed two-dimensional projection. In the case of Cluster 12,

these two pockets are kept together by PhenoGraph because they are characterized by CD117

expression, as can be observed in Figure 4.2. An overview of subpopulations identified by

PhenoGraph in patient SJ03 is given in heat map form in Figure 4.4. In addition to some

non-myeloid cell types, there are clearly different leukemic phenotypes in this patient, defined

particularly by distinct combinations of CD34, CD117, HLA-DR, and CD64.

To analyze the full cohort, PhenoGraph was run on each sample individually, using each

cell’s 16-dimensional surface marker profile to define phenotypes. This yielded an average

of 28 subpopulations per sample (ranging between 17 and 48), totaling 616 subpopulations
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Figure 4.3: Clusters found by PhenoGraph in patient SJ03, displayed as colored labels on the
t-SNE map shown in Figure 4.2. The clusters split the map into coherent structures that are
not always immediately obvious upon inspection of the two-dimensional map.
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Figure 4.4: Clusters found by PhenoGraph in patient SJ03, displayed as a heat map. In this
visual, clusters are separated by gray vertical lines and they are ordered from left to right by
decreasing cell count. Expression values are sorted within each row and within each cluster to
facilitate visualization of the intra-cluster marker distributions. Expression intensities have
been rescaled as a ratio of the maximum “normal” expression intensity, determined from the
5 healthy samples.

across the entire cohort. Subpopulation size varied by orders of magnitude, from 7 × 102

to 2 × 105 cells (or .06% to 20% of a sample). For each sample, data were pooled from all

perturbations before clustering, enabling characterization of subpopulation-specific signaling

patterns (§5.1.1). Each resulting subpopulation was a multifaceted data object, containing

information about surface phenotypes, as well as the response of each signaling marker to

each molecular perturbation (Figure 4.1).

4.3.1 Patterns of intra- and intertumor heterogeneity

Each leukemia presented a diversity of surface phenotypes that seemed to share some sim-

ilarities and differences across patients. We therefore sought an integrative overview that

could enable direct comparison of all subpopulations simultaneously and reveal larger trends

in the cohort. Toward this end, we used t-SNE, which has been so successful in revealing

the “phenotypic landscape” of single cells. The difference here, of course, is that the objects

being mapped are not single cells but clusters of cells. To generate a map for the entire

cohort, we obtained subpopulation phenotypes by taking the 16-dimensional centroid of the

surface markers of each subpopulation. The landscape generated from the subpopulation
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phenotypes provided an intuitive and comprehensive overview of the major phenotypic trends

of the cohort and also revealed the extent of intra- and inter-tumoral heterogeneity (Figure

4.5). Subpopulations from healthy and leukemic samples were mapped simultaneously so the

healthy cell types could act as “landmarks” to aid interpretation of the leukemic subpopula-

tions. Normal lymphoid cell types were excluded from the landscape to focus on primitive

and myeloid phenotypes, “zooming in” on the myeloid lineages relevant to AML.

The AML cohort landscape organized the subpopulations into regions of phenotypic sim-

ilarity, distinguished by particular marker combinations. Inspecting the structure of this

landscape, we found that the vertical axis largely mimicked trends in normal myeloid devel-

opment with primitive markers expressed toward the top and more mature markers toward

the bottom. Healthy CD34+/CD38mid hematopoietic stem and progenitor cells (HSPCs) pro-

vided the most primitive landmark, located at the top of the landscape. AML subpopulations

in this region displayed surface profiles that resembled the HSPC phenotype. At the bot-

tom of the landscape, the CD11b+ healthy monocytes served as a landmark for differentiated

myeloid cells, representing full maturation not observed in the leukemic samples. Between

these two poles, other developing myeloid antigens—CD38, CD117, CD123, CD33—peaked

and subsided, thus the vertical axis of the landscape resembled normal myeloid development

(Figure 4.6). The adherence of AML phenotypes to this axis suggests that myeloid develop-

mental programs continue to influence the phenotypic diversity of leukemic cells even after

malignant transformation. The patterns of intratumor heterogeneity support this view, as

most patients contained a mixture of “primitive” and “mature” surface phenotypes (Figure

4.7).

4.3.2 Metaclusters highlight inter-patient similarity

Despite the widespread phenotypic diversity observed within patients, the cohort landscape re-

vealed a surprising conformity when comparing AML subpopulations across different patients.

Multiple patients occupied each region of the landscape and no patient presented a substan-

tially unique phenotype, suggesting that subpopulations could be matched across patients,
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Figure 4.5: Landscape of subpopulation phenotypes generated by t-SNE. Each subpopulation
is represented by a single point, scaled to represent its sample proportion and colored by
patient identity (main panel). Normal bone marrow cell types (H1–H5; blue) provide land-
marks for interpreting the phenotypes of the leukemic bone marrow samples (SJ01-SJ16). In
the additional panels each subpopulation is colored by its median expression of the indicated
surface marker.
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Figure 4.6: Gaussian weighted smoothing of subpopulation marker intensity displayed as a
function of the second (i.e., vertical) dimension of the t-SNE map. The axis mimics myeloid
development from left to right, reflected in the fall of CD34 expression, the transient rise of
expression of CD38, CD117 and CD123, and finally the rise of CD64 and CD11b expression.
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Figure 4.7: Subpopulations of each patient visualized separately in the landscape of Figure
4.5. Many patients are split between the top and bottom half of the landscape, which corre-
sponds to primitive and mature-like surface phenotypes (Figure 4.6), suggestive of persisting
developmental processes in most leukemic samples.
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cohort-wide. To examine these cohort-level phenotypes further, we pursued a metaclustering

approach in which subpopulations from each patient were grouped by a secondary clustering

analysis [73]. Defining subpopulation phenotypes as before, we used PhenoGraph to group

the subpopulations into metaclusters (MCs; Figure 4.8 A). Specifically, all 425 AML-derived

subpopulations were analyzed together, leaving out the healthy-derived subpopulations to

avoid bias toward normal phenotypes. PhenoGraph was run with the parameter k = 15,

reflecting the smaller sample size compared to the initial single-cell data.

With 16 patients, the cohort is relatively small and we therefore conducted robustness

analysis to determine whether the MCs were biased by the inclusion of any particular pa-

tient(s). The stability of the metacluster results to perturbations of the cohort was assessed

by subsampling the patients and recomputing the metacluster assignments. Specifically, we

produced 16 leave-one-out and 120 leave-two-out data sets in which all subpopulations from

patient {i | 1 ≥ i ≥ 16} (and {j | 1 ≥ j ≥ 16 ∧ j 6= i} in the case of leave-two-out) were

removed. Metacluster assignments were computed for each subsample as described in the pre-

vious paragraph (k = 15). Each subsample metacluster result was compared to the full-data

MC assignments of the same populations (those retained in the subsample), using normalized

mutual information (NMI; Eq. 2.7) to quantify similarity of the assignments. For reference,

NMI was also computed for 16 random restarts of PhenoGraph using the full cohort data.

While each random restart produced nearly identical results (mean NMI = 0.94), the repro-

ducibility of the metacluster assignments was only modestly diminished by the leave-one-out

and leave-two-out tests, both obtaining average NMI scores of 0.9 with very little variance

(Figure 4.8 B).

The full-data metaclustering solution identified 14 MCs that represent the major cohort-

wide phenotypes. Each MC had a mixed patient composition, containing subpopulations

from at least 2 patients and a median of 11 patients (Figure 4.9A). The average surface

marker patterns of some MCs resembled normal cell types and to varying extents (Figure

4.9B). For example, the CD19+/HLA-DR+ phenotype of MC12 matched the phenotype of

mature B cells, and indeed AML patients are expected to have normal B cells. Other MCs
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Figure 4.8: Metaclustering defines cohort-wide AML phenotypes. (A) PhenoGraph metaclus-
ters split the AML landscape into major phenotypes, each containing subpopulations from
multiple patients. (B) Reproducibility of PhenoGraph metaclusters as assessed by cross-
validation.
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had marker profiles that resembled progenitors in different ways. To more formally evaluate

the relationship between MCs and healthy cell types, cells from the healthy samples (H1–H5)

were systematically matched to MC marker profiles using linear discriminant analysis [91].

In this setting, each MC is given a multivariate normal density in 16-dimensional space with

a shared covariance matrix, using the maximum likelihood estimates from the AML data.

We can formally evaluate the posterior probability that each healthy cell and each MC are

generated by the same source:

P
(
MC = k | x = xi

)
=

fk(xi)πk∑L
`=1 f`(xi)π`

(4.1)

fk(x) = N
(
x | µk,Σk) (4.2)

for each healthy cell xi, where N (·) is the multivariate normal density, µk is the mean surface

marker expression for subpopulations in MC k, Σk = Σ ∀k is the shared covariance matrix,

and πk = 1/14∀k is a uniform prior over the 14 MCs.

The posterior probability (Eq. 4.1) was evaluated for each cell in the healthy samples

(∼ 3× 106 cells) using the classify function implemented in the Matlab R2013b Statistics

Toolbox. A high posterior probability for MC k indicates that cell xi falls within the pheno-

typic boundaries estimated from the observed expression of subpopulations in MC k. Cells

that were an extremely good fit1 to one MC were considered healthy cognate cells for that

MC.

Using this technique, 71–81% of each healthy sample was sufficiently similar to one MC to

be identified as a healthy cognate. Approximately 40% of each healthy sample was assigned

to MC14, consistent with the phenotype and frequency of T cells in normal bone marrow

aspirates [92]. The proportion of each sample (healthy and AML) assigned to each MC was

used to define a score that distinguished healthy from leukemic phenotypes. Specifically, for

N cells from healthy donors and M cells from AML patients, with δ(ci = k) = 1 when cell i

1i.e., P (MC = k | x = xi) > 0.99
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is associated with MC k, the score

sk =
1
N

∑N
i=1 δ(ci = k)

1
M

∑J
j=1 δ(cj = k)

(4.3)

quantifies whether cells associated with MC k were more frequently observed in healthy sam-

ples than in leukemic samples. MCs for which sk > 1 were more abundant in healthy samples

relative to leukemic samples and these included MC 5, 8, 9, 10, 11, 12, and 14. Examination

of the expression patterns in these MCs revealed interpretable normal cell types: Immature B

cells (MC5), myeloid dendritic cells (MC8), erythroblasts (MC9), granulocytes (MC10), NK

cells (MC11), mature B cells (MC12), T cells (MC14). While large numbers of healthy cells

were assigned to MC13 (∼ 14% of normal marrow cells), these were outnumbered substan-

tially by counts of MC13 cells in the leukemic samples. Given the monocytic phenotype of

MC13, this is consistent with the histopathology of AML.

For the remaining MCs (1–4, 6, 7, 13), the score sk < 1 identified phenotypes that were

overrepresented in AML, indicating malignant expansions. Intriguingly, rare healthy cognate

cells were identified in each normal marrow for each of these MCs, suggesting that leukemic

phenotypes do not depart radically from cells that occur in normal hematopoiesis. The malig-

nant MCs displayed phenotypes that resembled primitive and progenitor phenotypes with a

myeloid bias. While each malignant phenotype comprised multiple patients, only MC13 con-

tained subpopulations from every patient. Occupancy in MC13 varied substantially between

patients (0.8%–77%), consistent with a model of AML as a block in myeloid differentiation

with variable severity [90].

Samples were evaluated quantitatively in terms of their proportional occupancies of the 14

MCs (Figure 4.9 C). As expected, the 5 healthy samples were similar to each other and distinct

from AML. Interestingly, MC occupancies organized the AML samples into subgroups that

were significantly correlated with other molecular biomarkers. For example, patients with core

binding factor translocation [t(8;21) or inv(16)] had large numbers of cells in MC4 and MC13,

placing them in a group enriched for this clinical annotation (P = 0.0014, hypergeometric

test). Patients with nucleophosmin mutations displayed a different phenotypic distribution—
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occupancy of MC2, MC7 and MC13—forming another distinct patient group (P = 0.0083).

Finally, the 3 patients characterized by large occupancies of MC1 were all cytogenetically

normal (P = 0.018). Taken together, each leukemia, although unique, appears to be formed

from a limited palette of possible phenotypes. Remarkably, the specific composition and

relative proportion of MCs was determined in part by genetic background, demonstrating a

genetic influence on the distribution of phenotypes observed in each patient.

4.4 Discussion

Tissues are complex populations of cells residing in phenotypically and functionally diverse

states. A key challenge is to dissect the high-dimensional structure of these complex popula-

tions into components that can be studied individually and collectively. In AML, where the

relationship between phenotypic and functional heterogeneity has been elusive, we used mass

cytometry to profile both surface and signaling features simultaneously in millions of leukemic

cells.

Using graphs of cellular phenotypes, PhenoGraph dissected each leukemic marrow into

discrete subpopulations that displayed distinctive immunophenotypic as well as functional

profiles. Representing each sample as a composition of subpopulations enabled a comprehen-

sive view of the phenotypic landscape of the entire cohort. The landscape resembled normal

myeloid development, but with aberrations resulting from malignant accumulation of cells

and neoplastic divergence from normal phenotypes. Surprisingly, the landscape of AML im-

munophenotypes was restricted to a limited variety of expression patterns. These patterns

occurred across different AML genetic subtypes, yet genetics had a detectable influence on

the phenotypic composition of each patient. These observations suggest the persistence of

developmental mechanisms that control the available repertoire of phenotypes even in the

context of genetic dysregulation associated with cancer.
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Figure 4.9: Metacluster (MC) analysis of the cohort’s phenotypic composition. (A) The
stacked bars indicate the contribution made by each patient to each MC. The blue segments
represent the proportion of healthy samples assigned to each MC by linear discriminant anal-
ysis, as described in the main text. (B) Average surface marker expression of each MC. Colors
represent expression intensity as in Figure 4.5 and elsewhere. Columns are matched with the
stacked bars of (A). (C) Intrapatient heterogeneity is represented by one horizontal bar for
each sample, in which segment lengths reflect the sample’s proportional composition. Segment
colors correspond to the MC descriptions in the legend below. Square boxes on the far right
indicate molecular biomarkers that were significantly correlated with patient composition.



Chapter 5

Data-driven functional profiling of

leukemic subpopulations

5.1 Signaling phenotypes reflect subpopulation function

Surface markers have become standard tools for clinical diagnosis and monitoring of blood

neoplasia [93]. In normal bone marrow, cell surface markers identify stem and progenitor cell

populations with distinct lineage potential and intracellular signaling behaviors [17]. However,

in AML, no surface marker phenotype has been established that consistently distinguishes the

more primitive blasts universally across patients (§1.2.2; [38, 39, 43]).

We hypothesized that intracellular signaling might be a better surrogate of the underlying

functional potential and therefore the mass cytometry panel included 14 intracellular signal-

ing markers, selected to represent pathways known to be functionally and clinically relevant

in AML—including JAK/STAT, PI3K/AKT and MAPK. Following previous work in AML

[46, 47], we supposed that not only the basal (unperturbed) activation of these pathways

matters, but also their potentiation upon exposure to biologically relevant stimuli. Cells were

therefore collected under one of 16 short-term molecular perturbations (Table 4.1), which—

at 15 minutes—trigger intracellular signaling cascades without causing significant changes to

surface marker expression.
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Because these perturbations did not alter surface marker expression and because only

surface markers were used to compute the PhenoGraph subpopulations, each subpopulation

contained cells from all perturbations. It was therefore possible to compute the effect of each

perturbation on each intracellular signaling molecule within each individual subpopulation.

With 14 intracellular markers and 16 perturbations, this allowed the computation of 224

signaling responses per subpopulation (described below, §5.1.1).

Each of these 224 signaling responses reveals a different facet of the underlying network

that controls cellular function. For each subpopulation, a concatenation of these responses

can be interpreted as a quantitative, high-dimensional signaling phenotype that represents

functional state. This phenotype is necessarily computed at the subpopulation level, meaning

it reflects the behavior of cells that display similar surface marker expression in a given patient.

However, the signaling phenotype itself contains only information about perturbation response

and therefore provides a measure of subpopulation function that is independent of surface

marker expression. We were therefore able to use the surface and signaling phenotypes as two

alternative characterizations of each subpopulation, enabling direct comparison of these two

kinds of phenotype.

5.1.1 Computing signaling phenotypes from molecular perturbation data

It has been shown in diverse biological systems that cellular response to environmental cues

is a stochastic process and that population-level changes induced by stimulation are often

mixtures of discrete single-cell responses [3, 94, 95]. In such cases, a shift in the population

average is secondary to a change in the underlying distribution of cellular and molecular

states. When data are available that record the states of individual cells, methods that

compare distributions rather than point estimates will be more sensitive and more accurate.

A simple approach to quantify signaling response would be to subtract the average in-

tensity of a phosphoprotein under stimulation from its average in the basal state. However,

this approach has key shortcomings. First, averaging collapses the rich, single-cell data into

a single point estimate and discards any variation in the response. For example, it is often
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observed that surface markers enrich but do not purify functionally relevant subpopulations.

In such cases, a functionally important response may change the shape of a distribution while

having a minimal effect on the average. Another limitation of average difference is that it

provides no measure of significance. Sample sizes inevitably vary and influence the reliability

of signaling response estimates—e.g., small samples can easily exaggerate the magnitude of a

response by random fluctuation. To address these concerns, we developed SARA (Statistical

Analysis of Response Amplitude), represented schematically in Figure 5.1.

Figure 5.1: Schematic depiction of
SARA.

SARA examines the entire single-cell distribu-

tion of phosphoprotein intensities to detect meaning-

ful changes between two conditions. Each phospho-

marker φ is treated as a random variable whose distri-

bution depends on two other observed variables: clus-

ter membership C and environmental condition Z. We

are interested in comparing two distributions:

Pb(φ | Z = b, C = c) (5.1)

Ps(φ | Z = s, C = c) (5.2)

where b denotes measurement in the unstimulated

(“basal”) condition and s denotes measurement under

a stimulated condition. In all cases, we compare basal

and stimulated distributions within the same cluster.

The quantity of interest for comparing the two distri-

butions is the cost converting one to the other, known equivalently as the Earth Mover or

Mallow’s distance [96] and for the one-dimensional case is the L1 norm between the empirical

cumulative distribution functions Fb and Fs:

EMD =
∑

Φ

∣∣Fb(φ)− Fs(φ)
∣∣ (5.3)
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where Φ is a fine grid over the support of P (φ).

Because the quantities F (φ) are empirical distributions, they are vulnerable to sampling

error. Therefore, a measure of statistical significance for the EMD is introduced, based on

permutations. A null distribution is built by computing EMD for a large number (5000 in

practice) of permutations of Z. The null distribution captures the differences between Pb

and Ps due to sampling imbalances between the basal and stimulated conditions, taking into

account the shape of P (φ). The p-value is computed as the proportion of the null distribution

greater than or equal to the true EMD. Rather than impose a significance threshold, the p-

value is integrated into the final SARA score as an inverse weight that dampens the magnitude

of less significant responses.

Finally, while EMD is strictly nonnegative, stimulation response should be a signed quan-

tity reflecting induction or inhibition with respect to the basal condition. The sign is incor-

porated by comparing the centers of Pb and Ps. Random noise may cause spurious changes

in sign when the stimulation has an insignificant effect, in which case the significance penalty

will cause these values to be distributed near 0. There are cases for which incorporation of

direction is not appropriate (for example, a significant, evenly diverging response), but this

case was never observed in practice.

The final score given by SARA is

score = sgn
(
E[φs]− E[φb]

)
· (1− p) · EMD (5.4)

where E[·] is the expected value of a random variable.

To facilitate comparability across samples and signaling phenotypes, SARA scores were

converted to z-scores. The dynamic range of SARA scores varied substantially between con-

ditions. For example, the chemical perturbation pervanadate produced much more dramatic

responses than biological stimulations such as IL-3. Additionally, subtle sample-specific biases

in these dynamic ranges were noted before normalization, likely due to inevitable differences

in handling of primary human samples from day to day. Therefore, the SARA scores were

standardized within each sample and condition. Thus, each value in the signaling phenotype
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represents the relative magnitude of the response within the context of the given sample and

condition. Supporting the use of standardization, we expect that most conditions do not af-

fect every phospho-marker in every subpopulation; and indeed, SARA scores induced by each

condition had a single peak near zero. Thus, the use of z-scores enhances interpretability by

aligning the mean response with zero and highlighting the most significant responses

Figure 5.2: SARA generated 14 ×
16 = 224 signaling phenotypes for
each subpopulation across the cohort.

In summary, SARA was used to define signaling

phenotypes that, by hypothesis, could be treated as

functional analogues to surface marker subpopulation

phenotypes. SARA produced a quantitative signal-

ing response for each phosphoprotein marker under

each of the 16 stimulation conditions, resulting in a

224-dimensional signaling phenotype for each subpop-

ulation. Together, PhenoGraph and SARA distilled

high-dimensional data for 15 million cells into a single

matrix of subpopulations and their signaling pheno-

types, revealing a rich variety of signaling potential

across subpopulations (Figure 5.2).

5.1.2 Signaling phenotypes are decoupled from surface markers in leukemia

Within the healthy samples, surface and signaling phenotypes were tightly coupled, consistent

with previous reports [17, 97]. Hierarchical clustering of a curated set of progenitor- and

lineage-associated signaling features produced a complete separation of primitive (CD34+) and

mature (CD34−) cell types among the healthy samples (Figure 5.3; P = 2.0×10−52, Student’s

t test). In the leukemic samples, the same procedure produced a similar stratification of

signaling phenotypes, including a set of subpopulations that recapitulate the signaling profile

of healthy primitive cells. However, this stratification of primitive (PS) and mature (MS)

signaling had no association with CD34 expression (P = 0.83, Student’s t test; Fig. 4D).

Decoupling of surface and signaling phenotypes in the leukemic samples is consistent with
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evidence that surface markers are unreliable proxies of cellular function in AML [38, 39,

43, 97]. We therefore sought to use signaling phenotypes rather than surface phenotypes as

alternative proxies for functional state.

5.2 Transductive inference of leukemic maturity

PhenoGraph and SARA yielded two alternative representations for each subpopulation: a

16-dimensional surface phenotype, and a 224-dimensional signaling phenotype (Figure 5.4).

We asked if there was a characteristic signaling phenotype of undifferentiated healthy cells

that could act as a high-dimensional generalization of the CD34/CD38 surface phenotype,

which more faithfully captures the functional aspect of the primitive state.

Harnessing the tight coupling between surface and signaling in the healthy system, we

grounded our analysis in a characterization of healthy subpopulations. To explicitly define

the healthy cell types in the data, we used PhenoGraph to metacluster the surface phenotypes

of the 191 subpopulations from the five healthy samples, analogously to way AML MCs were

defined, as described above (§4.3.2). The analysis produced 20 healthy metaclusters (HMCs),

which generally displayed recognizable surface marker phenotypes corresponding to known cell

types, such as monocytes (HMC1) and HSPCs (HMC9). The explicit cell type assignments

enabled identification of signaling responses that were significantly associated with cell type.

Specifically, the HMC assignments formed a categorical variable that could be used to stratify

each signaling response in order to assess significance by analysis of variance (ANOVA).

A large number of signaling responses were strongly associated with cell type. Many of

these were induction responses specific to undifferentated cells, including G-CSF→pSTAT3

(Q = 6.4 × 10−42) and SCF→pAKT (Q = 1.0 × 10−9), as previously reported [97]. The 25

most significant type-associated signaling responses are given in Table 5.1. These responses

together with the surface phenotypes of the same subpopulations are shown for 4 selected cell

types in Figure 5.5.

We then asked whether signaling responses were entirely sufficient to distinguish healthy

cell types, rendering the surface phenotypes dispensable for characterizing the subpopulations.
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Figure 5.3: Surface and signaling phenotypes are decoupled in AML, compared to normal bone
marrow. Left Panel: Linkage sorting of 4 developmentally-relevant signaling responses in
the healthy samples identified patterns of primitive signaling (PS) and mature signaling (MS)
correlated with expression of CD34 and CD45, in the healthy samples. Linkage sorting of
the same signaling responses in the AML samples identified a cluster of subpopulations that
recapitulated the primitive signaling pattern, but displayed no consistent surface phenotype.
Colors as in Figure 5.4 and elsewhere. Right Panel: Box plots comparing CD34 expression
between PS and MS groups, stratified by disease status. CD34 expression was significantly
associated with primitive signaling only in the healthy samples.

Figure 5.4: Each subpopulation has two alternative phenotypes: one reflecting surface marker
expression, the other reflecting the configuration of the intracellular signaling network.
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Signaling Response FDR Q ANOVA P

G-CSF→pSTAT3 6.40E-42 7.93E-44
IL-3→pSTAT3 2.13E-30 5.28E-32
IL-3→pSTAT5 1.88E-27 6.98E-29
PVO4→pZap70-Syk 4.49E-26 2.23E-27
PVO4→pP38 9.06E-23 5.62E-24
G-CSF→pSTAT5 1.11E-20 8.24E-22
PVO4→pErk1-2 1.28E-20 1.11E-21
GM-CSF→pSTAT5 3.13E-20 3.10E-21
PVO4→pSTAT5 1.10E-19 1.23E-20
PVO4→pPLCg2 1.12E-17 1.38E-18
PVO4→pSTAT3 3.37E-16 4.60E-17
PVO4→pS6 1.90E-15 2.82E-16
GM-CSF→pSTAT3 3.36E-13 5.42E-14
GM-CSF→pCREB 1.47E-12 2.54E-13
PMA/iono→pP38 3.47E-12 6.45E-13
PVO4→pAKT 1.00E-11 1.99E-12
GM-CSF→pS6 4.62E-11 9.75E-12
FLT3L→pAKT 8.47E-10 1.89E-10
SCF→pAKT 1.04E-09 2.44E-10
PVO4→pc-Cbl 1.60E-08 3.96E-09
IL-3→pS6 2.32E-08 6.03E-09
IL-10→pSTAT3 3.01E-08 8.21E-09
GM-CSF→pErk1-2 4.47E-08 1.28E-08
PVO4→pCREB 1.22E-07 3.62E-08
G-CSF→pCREB 1.31E-07 4.05E-08

Table 5.1: The 25 signaling repsonses most significantly associated with healthy cell type, as
determined by ANOVA. Q-values were computed using the procedure introduced by [98] and
implemented in the MATLAB R2013b Bioinformatics Toolbox.
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Figure 5.5: Four representative healthy cell types, identified by the HMC analysis. Each row
(across left and right panels) represents each cell type in each healthy sample. The left panels
display surface marker expression (which was used to name these groups). The right panels
displays SARA scores for signaling responses, in descending order of significance from left to
right as determined by ANOVA.

To test this idea, we used PhenoGraph Transductive Learning (PTL; §3.2) to classify sub-

populations based on either their surface or their signaling phenotypes. First, we conducted

testing on the 191 healthy subpopulations to see if PTL could successfully recover “held out”

cell type labels (i.e., the HMC assignments) using a graph derived from surface phenotypes.

Performance was evaluated using the cross-validated correct classification rate (CVCCR) as

follows:

1. Build a single graph of 191 vertices using k = 15

2. Providing cell type labels for 4 of 5 healthy samples to PTL, classify the cell types for
each vertex in the held-out sample

3. Compute the correct classification rate (CCR): the percentage of cells in the held-out
sample for which PTL recovers the correct HMC label

4. Repeat (1–3), each time withholding a different healthy sample; average CCR over the
repetitions to obtain the CVCCR

Considering that the graph which generated the HMC assignments is virtually identical1 to

1In this case the graphs are not absolutely identical because a weighted Euclidean distance was used, see
the next paragraph.
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the graph used by PTL, one should expect very good performance from the surface phenotype

graph and indeed the CVCCR was 99.42%. Such ideal performance might not be expected

when, instead of surface phenotypes, PTL is given the signaling phenotypes. However, per-

formance was quite good in that case, with CVCCR = 94%. Examining the results, we found

that the classification errors involved distinguishing mature lymphoid cell types for which

characteristic signaling phenotypes had not been measured. Focusing instead on the more

significant task of distinguishing immature (i.e., HSPCs, HMC9) from mature cell types, we

found that the signaling phenotypes were equivalently powerful to the surface phenotypes

(CVCCR = 99.85%).

Before proceeding, a technical note. With 224 signaling responses, the space of signaling

phenotypes is quite high-dimensional indeed and full of redundancies (which are there by

construction: every dimension reflects the same phosphoprotein as 14 other dimensions and

the same condition as 16 other dimensions [Figure 5.4]). To maximize the usefulness of the

signaling phenotypes, we used a feature reweighting strategy. Each feature (i.e., signaling

response) was reweighted by its importance for distinguishing healthy cell types, as quantified

by the ANOVA p-values discussed earlier in this section. Specifically, for subpopulations x

and y with D-dimensional phenotypes, the weighted Euclidean distance

dw(x,y) =

√√√√ D∑
d=1

− log (pd)(xd − yx)2 (5.5)

was used to define the k-neighbors for the first step of graph construction. In other words,

the k-neighbor graphs were constructed in a space that emphasized the features that were

important for distinguishing cell types in the healthy samples. In the interest of comparing

performance between the surface and signaling phenotypes, the same reweighting strategy

was applied to both surface and signaling phenotypes for PTL.

Considering that signaling phenotypes were sufficient to distinguish healthy primitive cells,

we hypothesized that the functional state of AML subpopulations could be inferred by direct

analysis of their signaling phenotypes. Using the 191 healthy subpopulations as training
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Figure 5.6: Each AML subpopulation was given two alternative classifications, one according
to its surface phenotype and one according to its signaling phenotype.

data, we ran PTL on the full data set to infer maturity for each AML subpopulation (e.g.,

HSPC-like or monocyte-like). Because there were two alternative phenotypic profiles for each

subpopulation, we performed two separate classifications—once using surface phenotypes and

once using signaling phenotypes (Figure 5.6).

5.2.1 Inferred functional maturity diverges from surface phenotypes in

AML

The classifiers identified primitive subpopulations within each patient sample, reflecting the

heterogeneous nature of the samples. At the cohort level, each classifier labeled ∼ 25% of

subpopulations as primitive, but only 16% were identified as primitive by both classifiers

simultaneously (Figure 5.7). In many cases (32/99), subpopulations with primitive surface

marker phenotypes exhibited signaling that resembled mature cells. Conversely, many sub-

populations displayed primitive signaling in the absence of primitive surface marker expression

(51/118).

We denote cells labeled primitive by the surface phenotype classifier as Surface-Defined

Primitive Cells (SDPCs) and cells labeled primitive by the signaling classifier as Inferred

Functionally Primitive Cell (IFPC). For each patient, the sample proportion assigned to



CHAPTER 5. DATA-DRIVEN FUNCTIONAL PROFILING 92

Figure 5.7: Results of the surface and sig-
naling based classifications on the t-SNE
map of Figure 4.5

Figure 5.8: Frequencies of primitive cells
in each patient as determined by the two
alternative definitions.
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Figure 5.9: The data-driven estimates of primitive cells based on surface marker profiles
(%SDPC) is highly correlated with an independent estimate based on a standard immunophe-
notypic procedure for blast enumeration. This indicates that PhenoGraph clustering and
transductive learning are highly accurate while also implying that CD34 and CD45 effectively
summarize the maturity-related information of surface marker profiles.

each of these labels produced two alternative measures of maturity (%SDPC or %IFPC;

Figure 5.8). This is similar to summarizing the degree of maturation by the enumeration

of CD34+/CD45low blasts, a practice often used in the clinical diagnosis and classification

of leukemias [93]. Indeed, we found that %SDPC was highly correlated with this standard

manual gating procedure, which was performed independently (Figure 5.9; Pearson’s r =

0.96, P = 4.4×10−9). Conversely, %SDPC was only weakly correlated with %IFPC (Pearson’s

r = 0.5;P = 0.05), demonstrating that these two metrics are not redundant in AML. Instead,

examination of signaling phenotypes in AML often revealed a different degree of maturation

than was indicated by the surface phenotype. We noted that the degree of discordance between

IFPC and SDPC assignments was not constant across patients, indicating that the tendency

of IFPCs to express canonical LSC markers was itself a variable patient feature. For example,

the IFPCs in patient SJ05 were well represented by the CD34+/CD38mid phenotype (Figure

5.10, left column). In other cases, IFPCs were found exclusively in the CD34− fraction, even

when CD34+ blasts were abundant (e.g., SJ16).

Differences in signaling patterns between primitive and mature leukemic subpopulations

reveal the responses most important for these classifications. To quantify the importance
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Figure 5.10: Detailed surface and signaling phenotypes of IFPC subpopulations in 4 repre-
sentative samples. Biaxial dot plots (left) show the CD34/CD38 phenotype of IFPCs (red)
in each sample. IFPCs displayed the canonical CD34/CD38 phenotype of primitive cells in
only a subset of samples, here best exemplified by SJ05. The central panels show the place-
ment of IFPCs on the cohort landscape (Figure 4.5; IFPCs in green, non-IFPCs in maroon,
H1–H5 in gray). On the right, heat maps display the signaling and surface phenotypes of all
non-lymphoid subpopulations of each sample, stratified by IFPC classification (indicated by
green and maroon bars). Signaling responses are ordered as in Figure 5.5. Signaling responses
marked in bold with vertical lines were especially distinctive of IFPCs.
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of each signaling response, we used canonical variates analysis (CVA), a multi-class, multi-

dimensional generalization of Fisher’s linear discriminant [99]. CVA is similar to principal

components analysis (PCA) in that it seeks a linear projection of the high-dimensional data

into a low-dimensional space, but whereas PCA is unsupervised, CVA uses class labels to

find a projection that maximizes the separability of these classes in the target space. This

method allows visualization of the linear separability of the classes in low-dimensional space

and simultaneously identify the features that are important for obtaining that separability by

examining the projection matrix.

In this case, the input data were the 224-dimensional signaling phenotypes and the class

labels were binarized into IFPC and non-IFPC. CVA revealed that the linear separability of

these classes could be maximally preserved in a single dimension (Figure 5.11). The signaling

responses most important for class separability were identified as the entries of the projection

matrix with the largest (absolute) magnitudes. In this way, CVA performs feature selec-

tion implicitly. Re-running CVA with small numbers of top-ranking features produced nearly

equivalent separability. We found that that the majority of discriminative power could be at-

tributed to 5 responses: G-CSF→pSTAT3, SCF→pAKT, G-CSF→pSTAT5, FLT3L→pAKT,

and IL-10→pSTAT3. Primitive subpopulations displayed strong activation in the first four

of these responses, which have all been previously implicated in the biology of HSPCs [97,

100, 101] and in the pathobiology of AML [46, 102, 103]. Additionally, attenuation of the

IL-10→pSTAT3 response—a response exhibited by mature immune cells [104]—was also a

distinctive feature of IFPCs.

Evaluating the ability of surface markers to identify IFPCs, it was clear that no surface

phenotype could be applied universally across patients. CD34 was often an important label for

IFPCs, but only in a subset of cases. CD34 marked both primitive and mature subpopulations

in patient SJ03, where HLA-DR was a more specific marker of IFPCs (P = 0.0007 vs. P =

0.003, Student’s t test). In SJ05, where CD34 expression was tightly associated with IFPCs

(P = 7.4× 10−8), the multidimensional surface measurements revealed that CD123 was also

an important marker (P = 4.4 × 10−6), whereas CD123 did not identify IFPCs in SJ03.
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Figure 5.11: Canonical variates analysis identifies the signaling features that most effectively
separate IFPCs from non-IFPCs. Left Panel: IFPCs and non-IFPCs can be almost per-
fectly separated using the first canonical variate. Right Panel: Almost the same separability
is achieved when only the top 5 features are used to compute the projection.

Patient SJ11 lacked CD34 expression almost entirely, as expected for this nucleophosmin-

mutated case [39]. In this patient, IFPCs were distinctly labeled by elevated expression of

CD47 (P = 7.1 × 10−6) and CD123 (P = 3.4 × 10−5). Surprisingly, we found that CD34

expression can be strongly anti-correlated with primitive signaling, as in patient SJ16, where

CD34 expression was higher in mature cells (P = 0.0027) and IFPCs were marked instead by

elevated expression of CD117 (P = 0.0026).

5.3 Signaling phenotype identifies clinically prognostic gene

expression signature

Ultimately, intratumor heterogeneity is import insofar as functionally distinct subpopulations

influence clinical outcomes, especially patient survival [42]. While our mass cytometry cohort

was too small for survival analysis, genome-wide expression arrays for 15 of our 16 patients

were available from a previous study ([105] and §A.4), providing a link to larger cohorts for

which gene expression and survival data were available. Because our samples displayed a wide

range of IFPC frequencies (Figure 5.8), we reasoned that this variance could be exploited to
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identify genes whose expression covaried with these frequencies by in silico expression decon-

volution [106]. As IFPC frequency varies across samples, genes expressed specifically by these

cells should be detectably more or less abundant in the bulk gene expression measurements,

thereby providing an estimate of %IFPC in independent samples from the level of this gene

signature, measured in bulk.

5.3.1 Gene expression deconvolution

We developed a deconvolution method based on linear regression and cross-validation. The

basic assumption of in silico deconvolution is that a subpopulation of interest expresses certain

genes at constant rates; therefore changes in bulk expression measurements of these genes will

track with changes in subpopulation size. This can be formulated as the general linear model

Y = Xβ + ε (5.6)

where Y is a N ×G matrix of G mean-centered gene expression values, X is a N ×1 vector of

subpopulation frequencies (e.g., %IFPC) for N samples, and β is a 1×G vector of regression

coefficients. β can be obtained from the least squares solution and represents, for each gene,

its estimated “expression level” in the subpopulation.

Because gene expression data are noisy and our data contained arrays for only 15 pa-

tients, we developed a cross-validation scheme to reduce overfitting and spurious associations.

Specifically, we used leave-two-out cross-validation: The patients were split into 105 unique

combinations of 13 from 15 and β was solved for each of these 13-patient data subsets. For

each solution of β, genes were assigned to percentile bins. Genes were added to the signature

if they were placed in the top percentile more often than any other bin and had a standard

deviation across data subsets of less than 5 percent. The entire strategy was performed to

identify two subpopulation-associated gene signatures: an IFPC-associated set of 49 genes and

a SDPC-associated set of 42 genes (Table 5.2).2 To characterize these signatures, we queried

214 genes appeared in both signatures. These may be interesting in their own right but form too small of
a group to analyze and were generally excluded for comparisons of the other signatures.
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IFPC SDPC Both

PROM1 CD34 B4GALT6
RRAGD GIT2 CD69
GPHN ITM2C EMP1
CPA3 PMAIP1 GNG7
FOSB PTGER4 IL1RAP
ATF3 EHD3 JUP
CD96 MIR4448 KIT
IL8 MRC1 LOC282997
ATP1B1 HGF LTBP3
SIK1 CD200 PDGFC
TPBG MAN1A1 PIK3C2B
PTGS2 XPA SORL1
NR4A2 BAALC SPRY2
SLC2A5 NRXN2 TNFRSF21
ZSCAN5A DHRS3
CLMN CLEC2B
GNA15 MDFIC
FCHO1 PELI2
GPR125 ANPEP
DDIT4 GAB2
AKR1C3 HIST1H2BH
SPINK2 PMP22
RUFY3 MN1
LENEP DAGLA
CTNNBIP1 NCAPH2
KCNJ8 APOL2
CLDN6 9-Sep
LHX6 GATM
CST7 EGFL7
CLIP2 AGTPBP1
ENPP2 PTOV1
CLN6 WASF1
FOCAD SEC31B
LZTFL1 TGFB1I1
MEGF6 FLNB
NFIL3 DAPK1
MEX3C DEPTOR
SEMA6D NARFL
ENTPD6 ZCCHC14
GLS SIDT1
DUSP10 CLIC4
IGFBP2 FCGRT
ADA
ITPR2
PLXNC1
SOCS2
ANKRD28
DNMT3B
SMAD1

Table 5.2: Gene signatures obtained from microarray deconvolution.
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Figure 5.12: The mean expression of the gene signatures identified by deconvolution are
strongly correlated with the subpopulation frequencies they are supposed to represent. This
is a necessary condition to use the signature means as proxies in other samples.

the Molecular Signatures Database [107] for annotations significantly overlapping with each.

The SDPC signature—which contained CD34 as its top-ranking gene—was highly enriched

for gene sets associated specifically with CD34+ AML (e.g., cases with the AML-ETO1 fusion

[108], Q = 7.4×10−11). Alternatively, the most significant annotation for the IFPC signature

was a set of genes upregulated in CD133+ hematopoietic stem cells [109] (Q = 5.5 × 10−8).

CD133 marks healthy stem cells that are possibly more primitive than CD34+ HSCs [110] and

has been linked to cancer stem cells in multiple cancer types [111, 112]. The mean expression

of each signature was highly correlated with its corresponding subpopulation frequency (Fig-

ure 5.12), indicating that the signature mean was an appropriate proxy for these frequencies

in independent clinical cohorts for which single-cell measurements were not available.

5.3.2 Survival analysis

The signatures were tested in two independent cohorts of adult AML for which both gene

expression and survival data were available for a total of 242 patients [113]. For Kaplan-

Meier analysis and log-rank statistics, each patient was assigned to one of two groups based

on whether its signature score (i.e., the mean expression of genes in the signature of interest)

was above or below the cohort median.
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While the SDPC signature was associated with survival in one cohort, this was not repli-

cated in the other. Alternatively, the IFPC signature was predictive of poor survival in both

cohorts (Figure 5.13). Combining the patients into one large cohort, the IFPC signature was

highly predictive of poor survival (P = 4.8×10−6, Hazard Ratio [HR] = 3.4), while the SDPC

signature formed a less significant predictor (P = 0.005, HR = 1.6). To test these signatures

against each other, we placed them together in a bivariate Cox regression model. In this

setting, the IFPC signature retained its predictive power (P = 8.2× 10−5, HR = 3.0), while

the SDPC signature became completely uninformative for survival (P = 0.29, HR = 1.2).

We also examined the relationship between the IFPC signature and three signatures re-

ported by [43], which were also developed to capture primitive gene expression programs in

AML. For each Eppert signature, we found that the reported correlations with survival in

the data of [113] were reproducible. To assess the prognostic value of the IFPC signature

when these other signatures were known, we tested three bivariate Cox regression models in

which each of the Eppert signatures was used as a predictor alongside the IFPC signature.

The IFPC signature proved to be a stronger predictor of survival than any of the Eppert

signatures. In each model, the IFPC signature retained significance (P < 0.005), while each

Eppert signature became statistically insignificant (P > 0.07). In a multivariate Cox regres-

sion model containing all signatures (IFPC, SDPC and the Eppert signatures), only the IFPC

signature retained significance (P = 0.012, HR = 2.4).

5.4 Discussion

In Chapter 4, we saw that the surface marker phenotypes of leukemic cells are restricted to

a limited set of patterns that somewhat resemble myeloid development. This resemblance

suggests that the functional maturity of leukemic cells might be reflected in their surface

marker expression patterns. In this chapter, we have shown that the apparent maturity

suggested by surface marker expression often belies a different functional state as reflected

in the underlying behavior of the cells’ signaling networks. Whereas surface and signaling

phenotypes displayed tight coregulation in normal bone marrow, this coregulation was broken
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Figure 5.13: IFPC frequency identifies a gene expression signature that predicts clinical out-
come. (A) IFPC gene signature identified by deconvolution of bulk expression data. The heat
map displays expression of each gene in bulk measurements. Rows are alphabetically ordered;
columns are ordered by the mean expression of the genes in the signature. (B) The mean of
the IFPC signature forms a clinically significant prognostic indicator of overall survival in 2
independent cohorts of adult AML [113]. Patients were stratified for Kaplan-Meier analysis
by whether their IFPC expression score was below or above the cohort median.
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in AML. The substantial decoupling of surface and signaling phenotypes in the leukemic cells

renders the surface markers typically used in diagnostics unreliable proxies of cellular state

and function in AML.

Using PhenoGraph Transductive Learning (Chapter 3), we identified leukemic subpopu-

lations that displayed signaling phenotypes similar to the immature hematopoietic stem and

progenitor cells (HSPCs) of normal bone marrow. This provided a data-driven classification

of functionally primitive leukemic subpopulations irrespective of their surface phenotypes. We

found that these inferred functionally primitive cells (IFPCs) displayed signaling responses

consistent with known properties of immature hematopoietic cells, such as phosphorylation

of STAT3 on exposure to G-CSF [97].

The IFPC phenotype was found to occur in most AML samples at varying frequencies

and with variable surface phenotypes, often with low or absent CD34 expression. While

no universal surface phenotype captured IFPCs across patients, within each patient IFPCs

displayed homogeneous expression in certain markers—markers whose importance was neither

universal nor unique. Our results suggest that a subset of leukemic cells maintains a conserved,

progenitor-like signaling program that phenocopies the regulatory state of normal HSPCs,

regardless of surface marker expression and underlying genetic mutations.

Deconvolution analysis of microarray data identified a gene expression signature associated

with the IFPC phenotype that can serve as a proxy for the frequency of this phenotype

in a given sample. This gene expression signature was enriched for annotations related to

primitive hematopoietic cells and included genes—such as PROM1, SOCS2, and CD96 —–

that have been previously associated with healthy and/or leukemic stem cells [114, 115].

Importantly, this gene expression signature predicted survival in independent AML patient

cohorts, suggesting that this signaling-based definition describes a clinically relevant cellular

phenotype.

It was previously demonstrated [43] that functional characterization by physical sorting

and xenotransplantation could be used to identify genes correlated with patient survival. Our

analysis is conceptually related, but instead of differential expression between sorted cells, we
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used in silico deconvolution to identify genes, based on the measured cellular frequencies of

the IFPC phenotype. Ultimately, both approaches seek to identify primitive cells by means

that emphasize functional over surface phenotypes, and to test whether the predominance of

primitive cells–—approximated by expression of a gene signature—–is associated with poor

survival.

The signaling-based definition of primitive cells warrants further investigation as it may

indicate pathways that influence the maturation of leukemic cells and could be leveraged

therapeutically to block survival or direct differentiation. More broadly, this molecular inter-

rogation approach could be used to characterize primitive cells in any cancer where a cognate

healthy primitive cell type is available to serve as a reference point.



Chapter 6

Perspectives and conclusions

6.1 Dissertation summary

Single-cell analysis has resumed the spotlight in biological science owing to technological de-

velopments that allow these primary units of the organism to be measured with high enough

dimensionality that their true phenotypic and functional diversity is revealed. In particular,

this dissertation has explored the diversity of cell states revealed by mass cytometry. Mass

cytometry is capable of measuring dozens of protein features per cell, including phosphoryla-

tion of intracellular signaling molecules, and allows barcoded multiplexing of cells measured

under different molecular perturbations. This experimental design produces complex data

that benefit from computational methods, which integrate and extract knowledge from them.

Experimental approaches to immunophenotyping have hit an analytical ceiling because

they rely on the predictability of the underlying system that cannot always be assumed—

especially in disease states such as cancer, where molecular deregulation can cause different

cell states to emerge from patient to patient. In leukemia, a particularly important cell

state—the leukemic stem cell—has been shown to exist in most patients, yet it is known

to display different immunophenotypes in different patients. This presents a challenge that

experimental approaches which require prospective gate definitions, like FACS, are ill-equipped

to deal with. In this dissertation, data-driven computational approaches present a fruitful

alternative direction. By assuming less about the cancer samples, more can be learned.

104
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To take a data-driven approach, we begin by modeling each sample as a composition

of subpopulations. Subpopulations are defined algorithmically, based on quantitative high-

dimensional measurements, rather than prospective gating based on assumptions from knowl-

edge of normal hematopoiesis. The algorithm is motivated by a theoretical construct rep-

resenting the process that generates a multicellular population—the phenotypic manifold.

Taking insights from topology, we develop an approximation of the phenotypic manifold that

is based on a graph. The graph models the cellular population by modeling connectivity

between cells, which reflect phenotypic similarity. Reasoning that stable cellular states will

result in regions of high local density, we equate densely interconnected subgraphs with bi-

ologically meaningful subpopulations. Borrowing from network analysis, we use the concept

of modularity to partition the graph into densely interconnected subgraphs, revealing the

biologically meaningful subpopulations. This method was given the designation PhenoGraph

(Chapter 2).

Applying PhenoGraph to an AML cohort established that each patient’s leukemic blasts

occupied multiple phenotypic states. Surprisingly, these states fell into a restricted set of

expression patterns that resembled myeloid development. As the number of dimensions in-

creases, the number of possible marker combinations increases geometrically—if the markers

are independent. Instead we found that the number of leukemic states was less than the mod-

est number of patients in our cohort, suggesting that strong constraints on the phenotypic

landscape of AML blasts persist after disease initiation. Interestingly, the distribution of each

patient into these limited expression patterns was significantly associated with some genomic

biomarkers, indicating a genetic influence on the subpopulation structure of leukemia.

A majority of leukemias contained blast subpopulations that resembled less and more

differentiated myeloid cell types, suggesting a developmental continuum present in each pa-

tient. This is consistent with other evidence that AML is a disease caused by dysfunctional

myelopoiesis. However, while many of the blast subpopulations displayed immunophenotypes

resembling normal hematopoeitic stem and progenitor cells (HSPCs), it is also known that

leukemic stem cells do not always display this phenotype. We therefore undertook an inde-
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pendent functional characterization of each subpopulation based on molecular perturbation

data.

Most functional assays, such as colony formation or xenotransplantation, require prospec-

tive isolation of cells by FACS prior to functional characterization. We took an alterna-

tive, in silico approach to functional characterization, which was compatible with the high-

dimensional, data-driven method used for identifying subpopulations. To functionally charac-

terize each subpopulation, we made use of the short-term molecular perturbations, which—at

the order of 15 minutes—trigger intracellular signaling cascades without causing significant

changes to surface marker expression. Therefore, because subpopulations were defined using

only surface markers, each subpopulation contained cells exposed to one of 17 distinct envi-

ronmental conditions. Making the assumption that the responsiveness of signaling cascades

to these biologically relevant perturbations (e.g., G-CSF) reflects the regulatory state of the

intracellular machinery that controls cell function, we took these perturbation data as a start-

ing point for functional characterization. Quantifying the change in phosphorylation of each

signaling protein caused by each perturbation resulted in 14 (intracellular markers) × 16 (17

- 1 for the basal condition) = 224 signaling responses per subpopulation. Thus, in addition to

its 16-dimensional surface marker profile, each subpopulation had a 224-dimensional signaling

profile that reflects the regulatory state of cells it contains.

To interpret these two sets of phenotypes, we integrated knowledge from normal hematopoiesis.

All analyses described above were also applied to our 5 normal bone marrow controls. As

expected, each normal bone marrow was partitioned into virtually identical compositions of

distinct subpopulations, reflecting the regulatory precision and predictability of healthy tis-

sues. It was straightforward to interpret the healthy subpopulations and identify them as

various lymphoid, myeloid, or progenitor cell types. These labels made it possible to set

up a transductive learning problem (Chapter 3) in order to categorize the leukemic subpop-

ulations according to their phenotypic or functional relatedness to the healthy cell types.

This approach allowed inference from features of healthy progenitors to features of leukemic

subpopulations in the high-dimensional measurement spaces of either surface or signaling
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phenotypes—a quantitative extension of previous attempts to infer leukemic maturity from

the expression of one or two markers (CD34 and CD38).

As expected, transductive learning from surface phenotypes yielded results very similar

to manual gating based on CD34. On the other hand, transductive learning from signaling

phenotypes yielded results that sometimes varied substantially from the predictions based

on surface phenotypes. Leukemic subpopulations that look like HPSCs on the surface do

not always display HSPC-like signaling, and leukemic subpopulations that display HSPC-like

signaling do not always look like HSPCs on the surface. Whereas the percentage of cells

with a surface marker profile resembling HSPCs (%SDPC, surface-defined primitive cells)

yields a more “conventional” characterization of leukemic maturity (similar to %CD34+),

the percent displaying HSPC-like signaling (%IFPC, inferred functionally primitive cells)

provided an alternative estimate of the frequency of functionally undifferentiated cells. In

other words, these characterizations might be taken as alternative estimates of the severity of

the differentiation block for each patient.

It has been previously shown that the estimated frequency of immature leukemic blasts

is correlated with clinical variates such as overall survival. We therefore undertook similar

analyses to test whether %IFPC or %SDPC were significantly associated with survival. Be-

cause the primary mass cytometry cohort was too small for survival analysis, we developed a

bridge to test these features in larger cohorts. Because bulk gene expression (i.e., microarray)

data were available for the samples in the primary cohort, we were able to extract sets of

genes, via in silico gene expression deconvolution, that were highly correlated with either

%IFPC or %SDPC across the primary cohort. Gene set enrichment analysis supported the

hypothesis that these genes were actually expressed in the IFPC or SDPC states. We there-

fore hypothesized that other patients with high frequencies of IFPCs or SDPCs should have

detectably higher expression in these respective gene sets if their marrow is also subjected

to bulk expression measurement. Using two independent cohorts, we found that the IFPC

signature in particular was significantly predictive of overall survival in AML patients.

The analyses presented here represent a large-scale, data-driven, quantitative and mul-
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tivariate study of cellular phenotypes in healthy and diseased tissues. In possessing these

qualities, the work can be considered an answer to the call for a new brand of quantitative

cell biology that utilizes the advantages of computational inference [1]. We have demonstrated

the power of data-driven techniques for identifying diverse cell states and learning about their

features. In particular, we have shown that the phenotypic composition of human acute

myeloid leukemias is diverse but restricted to a palette of progenitor- and myeloid-like phe-

notypes whose frequencies are influenced by genetic background. Our data-driven analysis of

subpopulation function demonstrates that phenotypic diversity can indicate functional diver-

sity but in ways that are unpredictable across patients, a finding that has broader implications

for studies of cancer stem cells and intra-tumor heterogeneity.

6.2 Contributions of this work

Computational biology was initially inspired by the emergence of genome wide measurement

technologies. As those technologies are emerging at single-cell resolution, other methods which

measure protein expression at single-cell resolution have reached sufficiently high dimension-

ality that they can need computational methods, too.

Phenotypic heterogeneity in cancer is a popular research topic, and rightly so. To our

knowledge, few efforts have been made to approach this problem from a computational per-

spective, yet the subject is ripe for the benefits this brings. Precisely because cancer is

unpredictable, efforts to understand phenotypic heterogeneity using the apparatus of con-

ventional immunophenotyping have been stifled by inconclusive results. On the other hand,

computational methods that can discover the known population structure of normal tissues

such as bone marrow ab initio are ideal for studying the composition of tumor samples as

they can recapitulate the efforts of decades of experimental research in the context of a single

sample. Thus, the potential uniqueness of a cancer sample is met by an approach that is

indifferent to that feature which is so problematic for prospective approaches.

The idea of identifying subpopulations computationally in single-cell data is not itself

novel, but rather suggests itself naturally to many who have worked with this type of data.
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A number of methods have been developed to this end, especially in recent years. Unfor-

tunately, we found that these methods did not deliver quality results at the scale of mass

cytometry data, in terms of both cell count and dimensionality. We believe it is vital to

accommodate current and future scaling up of single-cell measurements and to do so without

sacrificing quality. With the concurrent aims of scale and quality in mind, we developed a

novel approach that extracts subpopulation structure using a graph-based representation of

phenotypes. The use of the graph is conceptually motivated and handles features of single-cell

data that thwart other methods, such as non-linear relationships between protein expression

and subpopulations that form arbitrary non-convex shapes in high-dimensional space. The

graph-based implementation also provides access to computationally efficient techniques which

can accommodate very large samples without resorting to subsampling, which substantially

improves the robustness of the results.

The work presented here does not simply aim to show that phenotypic heterogeneity exists,

but rather takes it as a starting point for several further analyses. To our knowledge, no

previous work presents a quantitative comparison of intratumor heterogeneity across multiple

cancer samples. The resulting cohort landscape simultaneously demonstrates not only that

intratumor heterogeneity is widespread, but how the subpopulations of different individuals

relate to each other. The landscape shows that patients can differ both in the phenotypes

that occur and in the frequencies with which they occur. The complementary metacluster

analysis showed that these frequencies are influenced by the patient’s genetic background.

This demonstrates that a genetic lesion need not produce a single malignant phenotype but

may cause a particular distribution of phenotypes, highlighting the interplay between genetic

and epigenetic mechanisms in generating intratumor heterogeneity.

The computational analysis of subpopulation function provided new insights to the contro-

versial relationship between phenotypic and functional heterogeneity. The in silico functional

estimates were computed for each of ∼ 30 subpopulations per leukemic sample, represent-

ing an order of magnitude higher resolution than can be achieved by FACS gating, which

furthermore suffers from the prospective gating requirement as mentioned several times pre-
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viously. At this level of resolution, it was clear that functionally primitive subpopulations

often but far from universally express CD34. Similarly, many CD34+ subpopulations did

not display a functional profile similar to HSPCs. Even at 16 dimensions, no universal pat-

tern of surface marker expression identified functionally primitive subpopulations. On the

other hand, the signaling profile itself presented a high-dimensional pattern that more closely

reflects the maturation of leukemic subpopulations, supported by the gene expression and

survival analyses. The discriminative power of these signaling patterns could largely be at-

tributed to 5 features: G-CSF→pSTAT3, SCF→pAKT, G-CSF→pSTAT5, FLT3L→pAKT,

and IL-10→pSTAT3. Compared to the various observed surface marker patterns, a definition

of functional maturity based on these signaling features is more universal across patients.

From a methodological perspective, PhenoGraph is a novel technique for learning cell

states from data, which displays unprecedented accuracy and computational efficiency. Its

accuracy is attributable to its representation of cellular phenotypes as a graph that approxi-

mates an underlying phenotypic manifold. By operating on neighborhoods instead of distances

themselves, the Jaccard graph encodes the connectivity between points together with their

local density, which enhances edges within continuous structures and penalizes edges that

span sparse or noisy regions. The quality of PhenoGraph’s results can also be attributed to

the selection of modularity as an appropriate objective function for density detection in the

Jaccard graph. The efficiency can be attributed to parallelization of nearest-neighbor com-

putations as well as to the availability of modularity optimization routines that are designed

for large-scale social network analysis.

In this dissertation, PhenoGraph was introduced together with a demonstration of its

utility for investigating the pathophysiology of a particular cancer—acute myeloid leukemia.

PhenoGraph is general and scalable both in terms of dimensionality and sample size, making

it suitable in a wide range of settings for which single-cell population structure is of inter-

est, including other cancers or healthy tissues, and for use with other emerging single-cell

technologies such as single-cell RNA-seq. Many such cases are presented by the tumor mi-

croenvironment, including drug-resistant tumor subpopulations, infiltrating immune cells, and
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reactive stromal components. PhenoGraph is also applicable to healthy tissues, within which

a large diversity of cell types remains uncharted.

6.3 Future directions

PhenoGraph addresses probably the most fundamental question posed by single-cell data:

What are the subpopulations present in the sample? In this dissertation, PhenoGraph an-

swered this question in the context of normal and malignant bone marrow. PhenoGraph

requires only the simplest experimental design: Measure cells. Given nothing but these mea-

surements, PhenoGraph extracts groups of phenotypically coherent subpopulations. Because

PhenoGraph does not consider additional “metadata”—such as condition or time point—it

(and in fact any clustering method) is an unsupervised learning technique. On the other hand,

the PhenoGraph Transductive Learning (PTL) algorithm takes a more structured data set,

in which metadata are available—in the form of class labels—for a subset of measurements.

An algorithm like PTL, which extends information from known to unknown observations, is

a semi-supervised learning technique. PhenoGraph and PTL use the same underlying data

model—a graph of phenotypes—yet they operate on that model differently in order to answer

different kinds of questions.

Indeed, the graph-based representation of phenotypes is a powerful and flexible approach

to single-cell data, which can be deployed in different ways to target different experimental

questions. For example, in previous work our group used graphs to model cellular differ-

entiation as a continuum of transitional states, a method called Wanderlust [53]. While

PhenoGraph analyzes the density structure of the graph, Wanderlust and PTL consider a

dynamic process on the graph: a random walk.

As we saw in Chapter 3, graphs possess a deep connection to probabilistic potential theory

and, as we explore presently, to the general mathematical framework of Markov chains. The

graphs used in Wanderlust, PhenoGraph, and PTL are only a simple matrix operation away

from explicitly representing a Markov chain. When this connection is made, powerful analytic

tools developed for Markov chains become available for the analysis of single-cell data.
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Consider the weight matrix W, discussed in Chapters 2 & 3 (e.g., §2.2.1), in which the

entry Wij represents the phenotypic similarity between cells i and j. Drawing again on the

phenotypic manifold concept (§1.3.4), we might assume that phenotypic similarity implies a

dynamical relationship—specifically, if cell j is similar to cell i it is likely that j is derived from

i or was recently in a state identical to i. This relationship can be formalized as a transition

probability:

P (Xt+1 = j | Xt = i) (6.1)

where X is a random variable representing the phenotype of the cell at an arbitrary time t.1

Intuitively, if i and j are phenotypically very similar, then there is a strong dynamic coupling

between them: A cell in state i is likely to move to j and the transition probability (Eq. 6.1)

is high.

It is reasonable to assume that transition probabilities obey the first-order Markov prop-

erty, i.e., that transitions depend only on the current state, not on a previous state k:

P (Xt+1 = j | Xt = i) = P (Xt+1 = j | Xt = i,Xt−1 = k) (6.2)

and so on for states prior to k.

All entries of W are strictly nonnegative. If the rows of W are normalized such that they

sum to 1, then each row wi can be interpreted as a vector expressing the probability (Eq.

6.2) that a cell with phenotype Xi at time t moves to phenotype Xj at t+ 1, for all j. Thus,

the right stochastic matrix:

M = D−1W (6.3)

with D = diag(deg(v1), . . . ,deg(vN )) (as in §3.2) is easily obtained from the weight matrix of

the graph and can be subjected to numerical techniques in order to learn about the underlying

cellular system.

The power of the Markov chain formalism can be illustrated with a simple example. While

1Here, “time” is an index of the discrete dynamical process, not a measured value as in a time course
experiment.
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PhenoGraph is designed to identify cells that are most similar, an alternative experimental

design may seek to identify cells that are most different from each other. For example, suppose

two samples are collected before and after a treatment, and the objective is to identify cells

that are induced by the treatment—in other words, phenotypes that are specific to the post-

treatment sample. This question can be answered in the Markov chain framework using a

quantity known as the hitting time, Hij , the expected number of steps a random walker

starting at i takes before reaching j, averaged over all possible random walks emanating

from i. Let A denote the set of pre-treatment cells and B the set of post-treatment cells.

Consider one cell, β ∈ B and the hitting times from all other cells to β. If β is unlike most

pre-treatment cells then it will take a long time for random walks beginning at a ∈ A to

reach β—the hitting times from A will be large compared to the hitting times from B. Thus

the divergence between the two hitting time distributions, HAβ and HBβ , would quantify the

specificity of β to the post-treatment sample. As hitting times can be computed from spectral

analysis of M (Eq. 6.3) [116], placing the problem in the context of Markov chains provides

a mathematical framework for extending the graph-based representation of phenotypes to

answer new questions.

The approaches presented in this dissertation, which build and operate on graphs of phe-

notypes, can be seen as particular instances of this more general framework. The recognition

of this framework is important as it provides foundations from which other extensions and

specializations can be derived, suggesting a way forward for future projects in computational

cell biology.
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Appendix

A.1 Patient samples

Twenty (20) deidentified diagnosis bone marrow mononuclear cell (BMMC) specimens, se-

lected to span a variety of different AML subtypes, were obtained from the tissue bank at

St. Jude Children’s Hospital (Memphis, TN). These samples had been analyzed for genome-

wide gene expression and copy number alteration, as well as mutation status in a small set

of putative oncogenes [105]. Sixteen (16) samples were included in the final pediatric AML

cohort: Three samples were excluded due to insufficient cell number and one was excluded

because signal from internal standard beads (see §A.3, below) did not pass quality control

(QC) thresholds. The final pediatric AML cohort was 50% male with a mean age of 10.4

years. The final cohort reflected much of the interpatient heterogeneity observed in pediatric

AML, and included samples with t(8;21) chromosomal translocations, inv(16) inversion, MLL

rearrangements, as well as cytogenetically normal samples. Samples were classified by the

French-American-British (FAB) system as M1, M2, M4, or M5, and thus reflected a broad

range of histopathological categories. For all healthy adult controls, deidentified cryopreserved

healthy BMMC samples were purchased from AllCells, Inc. (Emeryville, CA). The healthy

adult cohort for signaling studies (n = 5, sample IDs: H1–H5) ranged in age from 19–28 years

with a mean of 23.4 years. Nine deidentified adult AML BMMC specimens were obtained

from Princess Margaret Hospital (Toronto, ON) and included in surface marker selection ex-

periments only. All human samples were obtained with informed consent in compliance with

IRB-approved protocols.
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A.2 Design of hybrid antibody panel

A.2.1 Antibodies

Purified monoclonal antibodies were obtained from commercial vendors and labeled with

stable metal isotopes using the MAXPARTM X8 chelating polymer kit (Fluidigm Corporation,

South San Francisco, CA) following the manufacturer’s instructions (Table A.1). Anti-cleaved

caspase-3 was measured but was omitted from downstream analysis because we instead relied

on cisplatin viability staining to exclude dead cells [117]. The final data set included a total

of 30 antibodies against 14 intracellular targets and 16 cell-surface targets.

A.2.2 A minimal set of surface markers to capture AML heterogeneity

We sought an efficient surface marker panel of approximately 16 markers to achieve segregation

of the main subsets in the AML samples, thus freeing 15 analysis channels for simultaneous

measurement of intracellular epitopes. To address this, we performed an initial surface-only

phenotyping experiment on a panel of 32 AML samples (9 adult and 23 pediatric, including

the 16 pediatric AML samples included in the final cohort). Each sample was stained with

two overlapping surface marker panels of 31 antibodies each (42 unique antibodies in total,

(Table A.2). We designed a simple feature-scoring algorithm based on principal component

analysis (PCA) to identify the non-redundant markers in each patient while capturing the

overall diversity across the patients. It consisted of the following steps:

1. Events were gated to remove doublets (DNAhigh/event lengthhigh) and non-nucleated

cells or debris (CD45−/DNAlow)

2. PCA was performed on single-cell data from each patient individually

3. A non-redundancy score (NRS) was calculated as follows. For each marker M in

each patient p,

NRS(Mp) =

C∑
c=1

|coeff(c)| × λ(c) (A.4)

where coeff(c) is the coefficient of marker M in component c and λ(c) is the eigenvalue
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Label Target Clone (Vendor) Staining conc.

141 Pr PLCg2 (pY759) K86-689.37 (BD) 1
142 Nd CD19 HIB19 (BD) 2
143 Nd 4EBP1 (pT37/46) 236B4 (CST) 3
144 Nd CD11b ICRF44 (BL) 4
145 Nd AMPK (pT172) 40H9 (CST) 3
146 Nd STAT3 (pY705) 4 (BD) 2
147 Sm S6 (pS235/pS236) N7-548 (BD) 1
148 Nd CD34 8G12 (BD) 2
149 Sm CREB (pS133) 87G3 (CST) 1
150 Nd STAT5 (pY694) 47 (BD) 2
151 Eu CD123 9F5 (BD) 1.5
152 Sm c-CBL (pY700) 47/c-Cbl (BD) 1
153 Eu STAT1 (pY701) 4a (BD) 1
154 Sm CD45 HI30 (BL) 2
156 Gd ZAP70/SYK (pY319/pY352) 17a (BD) 0.75
158 Gd CD33 WM53 (BL) 1
159 Tb AKT (pS473) D9E (CST) 2
160 Gd CD47 B6H12 (BD) 0.75
162 Dy CD7 M-T701 (BD) 0.5
164 Dy CD15 W6D3 (BL) 0.5
165 Ho RB (pS807/pS811) J112-906 (BD) 0.4
166 Er CD44 G44-26 (BD) 0.15
167 Er CD38 HIT2 (BL) 1
168 Er ERK1/2 (p44/42) (pT202/pY204 ) 20A (BD) 1
169 Tm P38 (pT180/ pY182) 36/p38 (BD) 0.5
170 Er CD3 UCHT1 (BL) 0.75
171 Yb CD117 104D2 (BL) 0.5
172 Yb Caspase-3 (active) C92-605 (BD) 0.5
174 Yb HLA-DR L243 (BL) 1
175 Lu CD41 HIP8 (BL) 0.2
176 Yb CD64 10.1 (BL) 2

Table A.1: Mass cytometry staining panel used for main experiments. BL: Biolegend; BD:
BD Bioscences; CST: Cell Signaling Technologies. Staining concentration is given in µg/mL.



APPENDIX . 125

of component c. The score considers the first C principal components, in descending

order of λ(c).

The NRS was calculated for each of the 42 surface markers in the 36 bone marrow samples

using the first 3 principal components (Table A.2). The 16 top-scoring markers were selected

for carrying forward to future experiments, with the exception of CD2 and CD11c, which

were manually excluded on the basis that they are expressed on mature lymphocytes and

monocytes, respectively, and therefore not likely to be essential for discriminating AML blast

subsets. Two surface markers were manually selected for inclusion in future experiments,

despite the fact that they did not appear in the top 16 scores—CD117 and CD19. These

were selected based on the following rationale: CD117 is a hematopoietic progenitor marker,

and CD19 is a marker of B cells, which were otherwise difficult to identify using only the

top-scoring markers. The final set of 16 markers carried forward for future experiments was:

CD3, CD7, CD11b, CD15, CD19, CD33, CD34, CD38, CD41, CD44, CD45, CD64, CD47,

CD117, CD123, and HLA-DR.

A.3 Mass cytometry data collection and preprocessing

The protocols for surface and intracellular antibody staining, ex vivo molecular stimulation,

and cell barcoding are described elsewhere [20, 84].

Mass cytometry data were acquired on the CyTOFTM mass cytometer as previously de-

scribed [17]. Raw mass cytometry data was extracted into listmode FCS files using CyTOF

Instrument Control Software version 5.1.451 (DVS Sciences, Sunnyvale, CA) using default pa-

rameters except for the following: The instrument dual-count slopes were recalibrated weekly

using solution-based standards and “Instrument” dual-count calibration was used for FCS file

extraction; cell events with event length values between 10 and 65 were extracted.

Machine sensitivity was monitored using polystyrene internal standard beads contain-

ing 5 embedded lanthanide elements (139La, 141Pr, 159Tm, 169Tb, 175Lu) (a gift from

Scott Tanner, University of Toronto). Beads were spiked into the cell suspension immedi-

ately before measurement at approximately 2x104 beads/mL. To facilitate quantitative com-



APPENDIX . 126

Rank Target NRS1 NRS2 Max. NRS Included in hybrid panel?

1 HLA-DR 22.5 20.5 22.5 Yes (high score)
2 CD34 19.3 21.4 21.4 Yes (high score)
3 CD64 – 17.0 17.0 Yes (high score)
4 CD44 15.6 16.7 16.7 Yes (high score)
5 CD15 16.5 15.5 16.5 Yes (high score)
6 CD33 15.8 15.6 15.8 Yes (high score)
7 CD45 13.7 14.5 14.5 Yes (high score)
8 CD38 14.1 11.2 14.1 Yes (high score)
9 CD11b 13.2 – 13.2 Yes (high score)
10 CD3 13.1 12.9 13.1 Yes (high score)
11 CD7 12.9 12.4 12.9 Yes (high score)
12 CD41 12.3 – 12.3 Yes (high score)
13 CD2 – 12.2 12.2 No (T / NK marker)
14 CD123 11.8 10.5 11.8 Yes (high score)
15 CD11c 11.7 – 11.7 No (monocyte marker)
16 CD47 10.6 10.3 10.6 Yes (high score)
17 CD8 10.4 – 10.4 No (low score)
18 CD49d – 10.1 10.1 No (low score)
19 CD117 9.7 9.7 9.7 Yes (HSPC marker)
20 CD14 9.6 7.9 9.6 No (low score)
21 CD5 – 9.1 9.1 No (low score)
22 CD45RA 8.3 6.6 8.3 No (low score)
23 CD4 8.1 – 8.1 No (low score)
24 CD16 8.0 5.7 8.0 No (low score)
25 CD13 6.9 – 6.9 No (low score)
26 CD61 6.6 – 6.6 No (low score)
27 CD184 (CXCR4) 6.6 5.7 6.6 No (low score)
28 CD133 – 6.1 6.1 No (low score)
29 CD235a/b 6.0 – 6.0 No (low score)
30 CD22 – 5.6 5.6 No (low score)
31 CD135 (Flt3) – 4.8 4.8 No (low score)
32 CD20 4.5 3.4 4.5 No (low score)
33 CD19 3.1 4.5 4.5 Yes (B cell marker)
34 IgM 4.2 – 4.2 No (low score)
35 CD161 3.9 – 3.9 No (low score)
36 TIM3 – 3.9 3.9 No (low score)
37 CD10 3.9 – 3.9 No (low score)
38 IgD – 3.6 3.6 No (low score)
39 CD90 3.5 2.0 3.5 No (low score)
40 CD114 – 3.4 3.4 No (low score)
41 CD56 2.5 2.4 2.5 No (low score)
42 CD79b – 2.1 2.1 No (low score)

Table A.2: Antibodies included in two pilot studies to determine a minimal set of informative
markers for use in the hybrid panel. The NRS (Eq. 3) was calculated for each marker and
averaged over the 36 bone marrow samples used for this pilot study. NRS1 and NRS2 refer
to the two overlapping panels.
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parisons between data acquired on different days, single-cell data was normalized as pre-

viously described [19]. Bead-normalized data are publicly available for download at http:

//cytobank.org/nolanlab/reports.

Bead-normalized single-cell measurement intensities were transformed using the hyperbolic

inverse sine with cofactor 5, as previously described [17]. To remove dead cells and debris, cells

were gated based on event length, nucleic acid staining, and cisplatin as described previously

[117].

For analysis of the surface markers we performed further normalization to: (1) Facilitate

comparison between patients, as these were each collected in a different tube; (2) Better

equalize the contribution of each surface protein to the clustering and dimension reduction

solutions. Different antibodies have varied dynamic ranges that do not necessarily reflect the

physical dynamic range or the marker’s importance and markers with larger dynamic range

can have a disproportionate influence on the clustering solution. Therefore we chose to rescale

marker intensities across the surface panel.

As proteins can be highly overexpressed in cancer, and this overexpression is often of

biological significance, we used the healthy bone marrow samples in our data as the standard

for normalization. For each surface marker, the maximum intensity observed in healthy

samples was determined as the 99.5th percentile of the 3 × 106 healthy bone marrow cells

from the 5 donors. The top half percentile was excluded from this determination because

mass cytometry data can have high-intensity outliers. Data from all samples (healthy and

AML) were divided by these psuedo-maximum values, yielding expression values that can be

interpreted as x-fold of the maximum expression observed in healthy. As a result, intensity

values for different antibodies were placed in more commensurate dynamic ranges (largely

falling between 0 and 1), and expression in AML samples exceeding 1 can be considered as

fold-change above the maximum expression observed in normal bone marrow. Because only

surface marker intensities were directly compared across samples, only these channels were

normalized in this manner.

http://cytobank.org/nolanlab/reports
http://cytobank.org/nolanlab/reports
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A.4 Microarray data and normalization

Matched gene expression profiles for our AML patients [105] were downloaded from the Gene

Expression Omnibus (GEO; ID # GSE14471). This data consisted of gene expression mea-

sured with Affymetrix U133A arrays. Gene expression and survival data for 242 cytogeneti-

cally normal adult AML patients from two independent cohorts [113] were downloaded from

GEO (ID # GSE12417). This data set consisted of arrays from two different Affymetrix

platforms (U133A and U133 Plus 2.0).

All microarray data were processed and normalized as described previously [118]. Of the

19291 probe sets on these arrays, 7604 were removed for low intensity (defined as being below

7 on log2 scale in at least 12 of the 16 arrays). Probe sets targeting the same gene whose

measurements were well correlated (r > .75) were averaged to produce consensus expression

values for 8196 unique genes. Additionally, 286 genes from the X and Y chromosomes were

excluded. Each array was normalized by dividing the log2 intensities by the third quartile

of the array. Principal component analysis of the arrays before filtering or normalization

identified the array for patient SJ12 as an outlier; this patient was excluded from all gene

expression analyses.
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