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Abstract

A great challenge today, arising in many fields of science, is the proper mapping
of datasets to explore their structure and gain information that otherwise would
remain concealed due to the high-dimensionality. This task is impossible without
appropriate tools helping the experts to understand the data. A promising way
to support the experts in their work is the topographic mapping of the datasets
to a low-dimensional space where the structure of the data can be visualized and
understood.

This thesis focuses on Neural Gas and Self-Organizing Maps as particularly
successful methods for prototype-based topographic maps. The aim of the thesis
is to extend these methods such that they can deal with real life datasets which
are possibly very huge and complex, thus probably not treatable in main memory,
nor embeddable in Euclidean space. As a foundation, we propose and investigate a
fast batch scheme for topographic mapping which features quadratic convergence.
This formulation allows to extend the methods to general non-Euclidean settings
in two ways, on the one hand by restricting prototype locations to data points,
leading to so-called median variants. On the other hand, continuous prototype
updates become possible by means of an equivalent formulation of the methods
in terms of pairwise dissimilarities only and the notation of generalized relational
prototypes, leading to so-called relational variants. Since the methods rely on the
standard cost functions of Neural Gas and Self-Organizing Maps (in the version of
Heskes), further extensions to incorporate auxiliary information in terms of labels,
and to control the magnification exponent of the resulting prototype distribution
become possible. The dependency of the models on prototypes allows to include an
intuitive patch processing scheme which turns the basic algorithms into a framework
which requires only constant memory and linear time complexity also for the case
of general (quadratic) dissimilarity matrices. The suitability of these methods is
demonstrated in several experiments including an application to text data for which
the dissimilarity matrix requires almost 250 GB storage capacity.
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Chapter 1

Introduction

In many fields of science today, massive datasets are collected that have to be exam-
ined. A task that is utterly impossible without appropriate automated tools helping
the experts to understand the data. For example in biomedical sciences, climate re-
search, experimental physics, astronomical research, or life sciences, obtained data
has to be grouped, arranged, and illustrated to make it accessible for visual ex-
ploration (Keim et al., 2008; Simoff et al., 2008). A promising way to support the
experts in their work is the topographic mapping of the datasets to a low-dimensional
space where the structure of the data can be visualized and understood. Moreover,
those automated tools should present an interpretable visualization of prototypical
data points to the experts. Then the experts can better control the exploration of
the data space in the framework of an interactive tool, initiate further experiments
with different settings based on their experience, or manually classify the data to
integrate expert knowledge to the system, for instance.

These requirements are in a perfect way satisfied by prototype-based methods
like Neural Gas and Self-Organizing Maps. Numerous successful applications of
those methods have been reported in literature as, for instance, substantiated by
the extensive collection of over 7000 references in the Bibliography of Self-Organizing
Map (SOM) Papers (Kaski et al., 1998; Oja et al., 2003; Pöllä et al., 2007).

Beyond that, a particular challenge in visual analytics is the handling of large
datasets, since especially in this case it is difficult to provide the results in a reason-
able time. Unfortunately, the standard formulations of Neural Gas and SOMs are
based on a learning scheme featuring a rate of convergence that is not sufficient for
a fast adaptation of the prototypes. Therefore, a fast processing scheme for Neural
Gas and SOMs is introduced in the first part of this thesis that accelerates the con-
vergence considerably. In addition, useful extensions for the accelerated variants
are presented, which incorporate supplementary information about data into the
learning process, actively control the learning process with regard to the prototype
distribution, and handle even much bigger datasets.

Up to now, we were discussing prototype-based methods which operate in Eu-
clidean spaces. But in modern science today, it has become beneficial to apply
special metrics to measure the pairwise proximities between the objects being re-
garded, since Euclidean representations were found to be not descriptive enough to
map the whole structure of the data. Examples for non-Euclidean measures are,
for instance, alignment distances from bioinformatics, normalized compression dis-
tance from algorithmic information theory, or geodesic distances from graph theory.
These special suited dissimilarity measures yield very powerful representations, but
in general they originate from non-Euclidean spaces, hence no vector representa-
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2 Chapter 1 : Introduction

tion is available to work with. The application of the popular standard methods
k-Means, Neural Gas and Self-Organizing Maps that operate in Euclidean spaces is
therefore not possible.

A couple of mining tools for non-Euclidean datasets have been proposed: First of
all, the popular kernel approach that has gained a lot of attention in the last decade.
By linearizing non-linearities in a kernel-defined feature space, these methods can
handle various complex structured data (Filippone et al., 2008). Kernel functions
proposed for complex structured data are, for instance, Edit distance-based ker-
nel functions for strings and graphs (Neuhaus and Bunke, 2006), Fisher Kernel
(Saunders et al., 2003) and String Kernel (Lodhi et al., 2002) for text processing,
Graph Kernel (Kashima et al., 2004; Bach, 2008), Kernel on pointsets (Parsana
et al., 2008), and Alignment Kernel from bioinformatics (Qiu et al., 2007). Later on
in this thesis, we will demonstrate that our proposed prototype-based algorithms
can easily be kernelized and hence are able to make use of the large collection of
available kernel functions.

Another popular approach working on dissimilarity data is based on Determin-
istic Annealing (Rose, 1998) that was utilized for clustering by Hofmann and Buh-
mann (1999), and for a stochastic formulation of Self-Organizing Maps by Graepel
and Obermayer (1999).

All these approaches have some drawbacks regarding their applicability for the
interpretable visualization of data: Either they do not provide interpretable out-
comes, need too much computational efforts, work only on special classes of dissim-
ilarity data, or provide unstable results. But by now there are no simple, robust,
and efficient methods for arbitrary dissimilarity datasets.

At this point, the thesis at hand ties up by building the bridge between the
standard prototype-based methods, and the non-Euclidean spaces. An extension
of Neural Gas and Self-Organizing Maps is introduced which can directly work on
arbitrary dissimilarity datasets. Since the size of dissimilarity datasets is quadratic
in the number of datapoints, these extended methods are also quadratic in their
basic form and thus they are not applicable to huge datasets. Therefore, we pro-
pose a fast and intuitive processing scheme with a linear time and constant space
complexity which constitutes one of the few prototype-based methods for very large
dissimilarity datasets.

In the first part of the thesis, we lay the technical foundation of the thesis and
present the standard prototype-based methods. We introduce a fast processing
scheme and show its convergence. Furthermore, we propose extensions to incorpo-
rate supplementary information about data into the learning process, to actively
control the learning process with regard to the prototype distribution, and to handle
very large or streaming datasets using constant memory.

The second part of the thesis deals with dissimilarity data and how to reformu-
late the prototype-based methods to work directly on these kind of data. A first
direct approach is built on the formal notion of cost functions by restricting the
flexibility of prototype locations. As an alternative, full flexibility can be achieved
by the so-called relational prototypes. We first discuss how to define these proto-
types in non-vectorial spaces. Then, based on the possibility to express distances
between relational prototypes and data points by only the given dissimilarities be-
tween data points, we derive relational variants of the prototype-based standard
methods. Finally, we introduce an approximation scheme to transfer the efficient
patch processing scheme to the non-Euclidean scenario. We demonstrate its ap-
plicability in a real-life setting where around 180.000 data objects are processed
corresponding to a full dissimilarity matrix with a size of 250 gigabytes.
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Finally, it should be mentioned here that the thesis at hand is based on several
scientific research articles to which the author has contributed in the past four years.
The thesis is therefore also meant as an extension and an unified presentation of
the following articles:

Refereed Journals

• Batch and Median Neural Gas
Cottrell, M., Hammer, B., Hasenfuss, A., and Villmann, T.
Neural Networks 19:762–771, 2006

• Magnification Control for Batch Neural Gas
Hammer, B., Hasenfuss, A., and Villmann, T.
Neurocomputing 70:1225–1234, 2007

• Patch Clustering for Massive Data Sets
Alex, N., Hasenfuss, A., and Hammer, B.
Neurocomputing 72:1455–1469, 2009

Edited Books

• Median Topographic Maps for Biomedical Data Sets
Hammer, B., Hasenfuss, A., and Rossi, F.
In Similarity-based Clustering and its Application to Medicine and Biology
Springer, 2009

Refereed Conferences

• Magnification Control in Relational Neural Gas
Hasenfuss, A., Hammer, B., Geweniger, T., and Villmann, T.
In Proceedings of the 16th European Symposium on Artificial Neural Networks
(ESANN 2008), pp. 325–330, 2008

• Patch Relational Neural Gas - Clustering of Huge Dissimilarity Datasets
Hasenfuss, A., Hammer, B., and Rossi, F.
In Artificial Neural Networks in Pattern Recognition (ANNPR 2008)
Springer LNCS 5064:1–12, 2008

• Topographic Processing of Very Large Text Datasets.
Hasenfuss, A., Boerger, W., and Hammer, B.
In Proc. ANNIE 2008, 2008.

• Single Pass Clustering and Classification of Large Dissimilarity Datasets
Hasenfuss, A., and Hammer, B.
In Artificial Intelligence and Pattern Recognition (AIPR 2008)
pp. 219–223, 2008

• Relational Topographic Maps
Hasenfuss, A., and Hammer, B.
In Advances in Intelligent Data Analysis VII, Proc. IDA 2007
Springer LNCS 4723:93–105, 2007

• Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes
Hasenfuss, A., Hammer, B., Schleif, F.-M., and Villmann, T.
In Computational and Ambient Intelligence (IWANN 2007)
Springer LNCS 4507:539–546, 2007
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• Thinning Mesh Animations
Winkler, T., Drieseberg, J., Hasenfuss, A., Hammer, B., and Hormann, K.
In Proceedings of Vision, Modeling, and Visualization (VMV 2008), 2008

• Relational Neural Gas
Hammer, B., and Hasenfuss, A.
In KI 2007: Advances in Artificial Intelligence
Springer LNAI 4667:190–204, 2007

• Topographic Processing of Relational Data
Hammer, B., Hasenfuss, A., Rossi, F., and Strickert, M.
In Proceedings of 6th Int. Workshop on Self-Organizing Maps (WSOM 2007)

• Intuitive Clustering of Biological Data
Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T., Strickert, M., and
Seiffert, U., In Proceedings of International Joint Conference on Neural Net-
works (IJCNN 2007), pp. 1877–1882, 2007

• Accelerating Relational Clustering Algorithms with Sparse Prototype Repre-
sentation, Rossi, F., Hasenfuß, A., and Hammer, B.
In Proceedings of 6th Int. Workshop on Self-Organizing Maps (WSOM 2007)

• Magnification Control for Batch Neural Gas
Hammer, B., Hasenfuß, A., and Villmann, T.
In Proceedings of the 14th European Symposium on Artificial Neural Networks
(ESANN 2006), pp. 7–12, 2006

• Supervised Batch Neural Gas
Hammer, B., Hasenfuss, A., Schleif, F.-M., and Villmann, T.
In Artificial Neural Networks in Pattern Recognition
Springer LNAI 4087:33–45, 2006

• Supervised Median Clustering
Hammer, B., Hasenfuss, A., Schleif, F.-M., and Villmann, T.
In Proceedings of the Artificial Neural Networks in Engineering Conference
(ANNIE 2006) 16:623–632, 2006

• Batch Neural Gas
Cottrell, M., Hammer, B., Hasenfuß, A., and Villmann, T.
In Proceedings of the 5th Int. Workshop on Self-Organizing Maps (WSOM
2005)
pp. 275–282, 2005



Chapter 2

Introduction to Topographic
Mapping

A great challenge today, arising in many fields of science, is the proper mapping of
datasets to explore their structure and gain information that otherwise would re-
main concealed, buried due to the high-dimensionality of the data. In this chapter
we are concerned with the principles of topographic mapping that provides solutions
to this problem.

Usually, a topographic mapping is defined between a high-dimensional input
space and a low-dimensional map space. The mapping is expected to preserve
neighbourhoods to a considerable extent, that is neighbourhoods from input space
shall be mapped to neighbourhoods in map space, and vice versa. This informal
description may be sufficient for the present to follow the discussion, later on we
shall discuss a more formal framework.

Since the map space is low-dimensional, the mapped data can be visualized eas-
ier and often explored better than in the original space. Moreover, the map space
often contains a discrete map structure on which the input data is mapped what
leads to particular comfortable and plastic visualizations.

We start by considering some very popular projection techniques that do not
exactly focus on a topology-preserving mapping of data but nevertheless shall give
a first impression of how data can be projected — and last but not least they are
presented here for historical reasons.

Principal Component Analysis One of the most popular and successful pro-
jection technique today is surely the Principal Component Analysis (PCA) that
dates back to the early work of Pearson (1901) and Hotelling (1933). As the name
suggests, PCA’s objective is to determine the most important directions of a given
Euclidean dataset in terms of the variance. The method is based on a linear projec-
tion to a subspace using the covariance matrix of data as the linear function that
maps data to the corresponding subspace spanned by its eigenvectors. That way,
the variance of the dataset is optimally preserved by the mapping.

Naturally, by further projecting to the subspace spanned by only a few eigen-
vectors corresponding to the largest eigenvalues, one gets the desired dimension
reduction. Note that in this way also the pairwise distances between the data
points are preserved as good as possible in the projection (cf. Gower, 1966). PCA
can also be linked to the field of neural networks, where Oja’s rule (Oja, 1982, 1992,
2008) is a mathematical formalization of Hebbian learning for a single neuron that
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6 Chapter 2 : Introduction to Topographic Mapping

was shown to perform a principal component analysis on the input data after con-
vergence. The converged neuron projects input data to the subspace spanned by
the largest eigenvector of the covariance matrix.

Obviously, the drawback of PCA is its linearity. PCA is not able to provide
topology-preserving maps for non-linear datasets and is therefore not suited for to-
pographic mapping. Most of the times one will end up with meaningless results
after projecting non-linear data — a situation that practitioners usually face when
messing around with real data. Despite this fact, PCA enjoys great popularity in
practice as attested by the numerous publications of the last 40 years from various
fields, for an overview see e.g. (Jolliffe, 2002).

A generalization of PCA that overcomes the limitations of linearity are the Prin-
cipal Curves and Principal Surfaces which provide approximations of data manifolds
by parameterized smooth curves and surfaces (Hastie, 1984; Hastie and Stuetzle,
1989). The projection of the data onto the parametric curve or surface is the
best approximation in sense of the mean squared error. Unfortunately, there is no
general method to learn the parametric representation of higher dimensional data
(Chang and Ghosh, 1999). The original definition of Principal Surfaces has also
limitations, e.g. problems with self-intersecting data, for an overview see (Ozertem,
2008). Chang and Ghosh (2001) proposed a unifying probabilistic model that over-
comes several issues.

Multidimensional Scaling In contrast to PCA where vectorial data from a
Euclidean space is given, the Multidimensional Scaling (MDS) techniques are con-
cerned with pairwise distances between data objects. Their objective is to find
suitable points in a Euclidean space, corresponding to the given pairwise distances,
such that those distances are preserved as good as possible by the Euclidean points.
Obviously, most of the times some distortion will occur, because in general arbi-
trary distances are not isometrically embeddable into Euclidean spaces (Indyk and
Matoušek, 2004), and even if they are, the dimension of the chosen Euclidean space
might be too low.

There are many different approaches of MDS, for an excellent overview see (Borg
and Groenen, 2005). However, these various variants can be classified into three
groups: Classical Scaling (Torgerson, 1952) the original technique is strongly re-
lated to the above introduced PCA as shown by Gower (1966). Essentially, it is
a linear model and features the same outcome as PCA when applied to Euclidean
distances. Another class is formed by Metric MDS techniques (Torgerson, 1958;
Sammon, 1969) which rely on some cost function measuring the distortion error of
the embedding. These techniques therefore try to preserve the (exact) distances. In
contrast, methods from the third class, the Non-Metric MDS techniques (Kruskal,
1964), do not focus on the distances itselves they rather try to keep the ranking of
distances.

Once again, the focus of multidimensional scaling techniques is not explicitly
topology-preservation. Their objectives are preservation of distances or preservation
of ranks regarding distances. Nevertheless, sometimes later on in the experiments
we shall rely on MDS to visualize and explore representative objects that are given
only by their pairwise distances in between.

In the next section, we are concerned with the basics of prototype-based meth-
ods. These methods are based on representative prototypes that are located in data
space with the aim to characterize a given data distribution as good as possible in
terms of an error measure. Since prototypes can serve as average representatives
for surrounding data points, the prototype-based methods are very intuitive, practi-
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tioners are able to investigate important characteristics of the data in certain regions
of the data space by analyzing the corresponding representatives. All topographic
mapping techniques presented later will therefore be based on prototypes. Having
justified our decision to focus exclusively on prototype-based methods, we will now
give a brief introduction about what they are. Moreover, we will introduce two im-
portant prototype-based methods, namely Self-Organizing Maps and Neural Gas,
which shall play a central role throughout the remaining chapters.

2.1 Prototype-based Methods

Throughout this work, we are exclusively concerned with methods relying on rep-
resentative prototypes which are situated within data space in a way that they
approximate a given data distribution best. These prototype-based approaches of-
fer very intuitive learning techniques and their outcomes are meaningful in a way
that they can be interpreted and visualized directly. Practitioners like e.g. biol-
ogists, medical scientists, or social scientists are often interested in prototypical
individuals for further analysis which bear characteristical properties of the data.
In this spirit, prototype-based approaches are superior to any other technique and
the right tools to choose. This shall be our motivation to concentrate on these
fruitful approaches leaving aside other models.

Historically issues of that kind were dealt with as part of a far more general
framework in quantization theory (Gersho and Gray, 1992). That’s why we will
rely on some nomenclature, definitions, algorithms, and results from that field in
the following. However, the objectives in quantization theory are often different
from those in machine learning what justifies an independent treatment of the topic.
Only the basics can be transferred, the bigger part has to be built on top anew. A
very recommended reading about all the different facets of quantization theory is the
survey of Gray and Neuhoff (1998). In what follows, we give some basic definitions
borrowed from quantization theory and introduce the concept of prototype-based
representation in conjunction with central definitions.

Regarding the representation of data by prototypes, the quality of the repre-
sentation is usually measured in terms of the quantization error that subsumes the
quadratic distances of the data to the nearest prototype. More precisely, let the
data be given by a probability distribution over a manifold V ⊆ �d, described by
the probability density function p. Given a finite collection W = (wi)i∈{1,...,n} from
�d of representative prototypes, the prototypes are requested to characterize the
data manifold best when measured by the quantization error

Q(W ) =
1
2

n∑
i=1

∫
V

χi(W, v) · ‖wi − v‖2
p(v) dv, (2.1)

where χi(W, v) is one iff v ∈ {x ∈ �d : ‖wi − x‖ = minwj∈W ‖wj − x‖}, and zero
else. In this context the set of prototypes W is also called a vector quantizer. Note
that once in a while in the theoretical discussion, we shall also consider countable
sets of prototypes.

For a finite set of data points V = {v1, v2, . . . , vm}, drawn with respect to
the underlying probability distribution, the quantization error is estimated by the
intra-class variance

Q̂(W ) =
1
2

n∑
i=1

m∑
j=1

χi(W, vj) · ‖wi − vj‖2
, (2.2)
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and we shall also refer to the intra-class variance as the (empirical) quantization
error (Graf and Luschgy, 2002) from now on.

The prototypes induce a Voronoi diagram {Vi(W ) : wi ∈ W} of �d, where
Vi(W ) = {x ∈ �d : ‖wi − x‖ = minwj∈W ‖wj − x‖} is the Voronoi region gen-
erated by wi ∈ W . By our definition, the points on a shared border of adjacent
prototypes belong to all participating prototypes. The Voronoi diagram is a cover-
ing of �d, that is ∪wi∈W Vi = �d. Note that the Voronoi region of a prototype is
also called its receptive field for historical reasons.

We further define the winner index s(v, W ) to be

s(v, W ) = argmin
i

‖wi − v‖, (2.3)

if it is well-defined. If there are different wi with the same distance to v, ties shall
be broken deterministically, e.g. by consulting the natural order of the indices. Here
and elsewhere we shall omit the set of prototypes W in the notation, leaving χi(v)
and s(v), when it can be done without ambiguity.

Naturally the question arises how to algorithmically determine an appropriate
set of prototypes for given data. In 1957 Lloyd introduced a prototype-based algo-
rithm minimizing the quantization error given a finite set of data that is nowadays
one of the most popular methods operating under the name k-means. After ran-
domly initializing the prototypes, it determines in every iteration which points are
located inside the Voronoi region of each prototype and moves the corresponding
prototype to the barycenter of those points. These two operations are repeated un-
til a stopping criterion holds. Interestingly, the original method was only published
as a technical report first, the official journal publication follows not until 1982,
see (Lloyd, 1982). Meanwhile, numerous extensions and variations of k-means have
been published, milestones often cited are e.g. a special online variant by MacQueen
(1967), a variant particularly efficient for clustering Hartigan and Wong (1979), and
k-means with a growing set of prototypes doubling the number in each step by Linde
et al. (1980). All these k-means derivates determine a set of prototypes, but all of
them share the common drawback that they easily get stuck in local optima of the
cost function they try to optimize. Furthermore, closely linked to this disadvantage
is their sensitivity to initialization of the prototypes. Thus, they often provide only
suboptimal solutions in form of prototypes not faithfully representing given data.
Later on, we shall introduce alternative methods overcoming these issues.

Having introduced the basic concepts how to represent data by prototypes in
input space, we are now concerned with a first – and perhaps the most popular –
prototype-based technique of topographic mapping, the Self-Organizing Map. The
representation of data is no longer done only by prototypes situated in input space,
the data is mapped to prototypes in a lower dimensional structure hopefully carrying
over much topological information.

2.2 Self-Organizing Maps

Motivated by biological self-organization processes that emerge in neural cell struc-
tures, Kohonen (1982, 2001) introduced the concept of Self-Organizing Maps (SOM),
modeled as a special artificial neural networks in conjunction with a heuristical
learning rule. Essential part of the concept is the map, a finite structure with a
fixed topology whose elements shall serve as representatives of the data later on. The
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term self-organization refers to the ability of the method to reorganize its initial map
and adapt it to the topological characteristics of given input data autonomously.
Each element of the map is assigned to a prototype located in input space which
is updated in a vector quantization style but under influence of the neighbourhood
structure dictated by the map. Those assignments provide the connections between
each element of the map and a corresponding Voronoi region of the input space. By
transferring collective properties of the data within the Voronoi regions in form of
e.g. labels, elements of the map can reflect characteristics of certain regions of the
input space, providing a low-dimensional visualization of high-dimensional data.

Despite its simple and intuitive principle, the Self-Organizing Map has shown
a robust performance in practice and has proved to be well-suited for many appli-
cations. It has raised great interest in different communities and started a large
flow of successive literature. For an extensive collection of over 7000 references see
e.g. the Bibliography of Self-Organizing Map (SOM) Papers (Kaski et al., 1998; Oja
et al., 2003; Pöllä et al., 2007).

Note that Self-Organizing Maps can also be interpreted as discrete approxima-
tions of Principal Surfaces (cf. page 6) as pointed out by Mulier and Cherkassky
(1995). A related concept are the Elastic Nets, see (Willshaw and von der Malsburg,
1976; von der Malsburg and Willshaw, 1977; Durbin and Willshaw, 1987), that show
similar states of convergence but their ordering process is different (Claussen and
Schuster, 2002).

As mentioned before, the Self-Organizing Map is based on a predefined map
structure with a fixed topology. We refer to this structure in the following as a
lattice. The lattice is usually chosen as a simple, low-dimensional structure, like a
rectangular grid, a torus, or a hexagonal grid, to keep the advantage of easy visu-
alization. Also more advanced structures like periodical grids in hyperbolic space
featuring an exponential growth of elements are sometimes considered (cf. Ritter,
1999) but require proper visualization techniques for non-Euclidean structures.

Besides grids also other shapes are possible as lattice structures, e.g. trees are
used in the TreeSOM approach (Sauvage, 1997). The lattice can also grow during
processing, see the Growing SOM (Bauer and Villmann, 1997) and the Growing
Hierarchical Tree SOM (Forti and Foresti, 2006).

The lattice structure needs not to be constructed explicitly for training. We
only need to know the pairwise distances between the lattice elements induced by
the neighbourhood structure. Here, usually the shortest path distance is chosen,
i.e. the shortest path length in a graph-theoretical sense where every arc often has
length one by definition.

More precisely, abstracting from any biological and neural point of view, we
describe the Self-Organizing Map method as follows:

Formal Description of Self-Organizing Maps

Assume that there is input data given by a probability distribution over a manifold
V ⊂ �d that is described by a probability density function p. As a first ingredient,
we introduce a finite collection of prototypes W = (wi)i∈{1,...,n} from �d that serves
as a vector quantizer in input space. The second component is a lattice structure
featuring the same number of elements as W . We identify the elements of the lattice
structure with the prototypes of W and denote them also as w1, w2, . . . , wn, what
can be done formally by a bijective mapping. In doing so, each prototype is in a
way distinctly connected to an element of the lattice, and vice versa. Since we are
only interested in the pairwise distances of lattice elements, let g(wi, wj) denote the
pairwise distance of elements wi and wj in the given lattice structure.
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One can imagine the training process of the method as a simultaneous vector
quantization and non-linear projection of the sampled input data whereas both
techniques influence each other coupled by the connection of prototypes and lattice
elements. More formally, the online training algorithm of a Self-Organizing map is
given as follows:

Training of Self-Organizing Maps The prototypes W = (wi)i∈{1,...,n} from
Rd are initialized randomly in input space and are updated in each epoch by the
rule

Δwi = εt · hλ(g(ws(v), wi)) · (v − wi) (2.4)

for all prototypes wi ∈ W . Thereby, g(·, ·) denotes the pairwise distances in the
lattice and ws(v) denotes the winning prototype for the sampled data point v as
defined in (2.3). The parameter λ > 0 controls the neighbourhood range through
the neighbourhood function hλ(x) = exp(−x/λ). The update is governed by a
decreasing step size εt ∈ (0, 1] that usually obeys the condition

∑∞
t=1 εt = ∞ and∑∞

t=1 ε2
t < ∞, following the work of Robbins and Monro (1951) who introduced

similar conditions in their work on stochastic approximation.
During processing the initially large neighbourhood range λ is driven asymptot-

ically to zero changing the characteristics of the updates in every step.

In what follows, we intent to give a brief summary of the theoretical properties
that were derived for Self-Organizing Maps. Unfortunately, despite its algorithmic
simplicity and intuitivity, the method has shown to be quite resistant against a
mathematical treatment. For an overview of the latest achievements see (Cottrell
et al., 1994, 1998; Hammer and Villmann, 2003; Fort, 2006). Briefly, the state-of-
the-art is a broad theoretical understanding of the one-dimensional case but only
few theoretical results about the multi-dimensional case are known.

Theoretical Properties of Self-Organizing Maps Due to the dynamics of
λ, the Self-Organizing Maps show two phases during training (cf. Sadeghi, 2001).
In a first phase, the self-organization phase, the initially disordered prototypes and
therefore also the disordered map elements become in some way organized reflecting
topological properties of the input space. In the second phase, the convergence
phase, the prototypes converge to their final destinations driven in a fashion of
a special case of the Robbins-Monro algorithm (cf. Sadeghi, 1998), but for finite
datasets they do not minimize exactly the quantization error as pointed out by
Rynkiewicz (2006) based on previous work by Fort and Pagès (1995, 1996).

However, it must be stated here that almost all theoretical results about SOM
were derived only for the one-dimensional case, i.e. one-dimensional input space
and a one-dimensional lattice in shape of a chain. These results transfer also to
settings where lattice space and data space are separable, i.e. the distributions are
independent for each dimension. There is not much theoretical evidence about the
general multidimensional case. Complete proofs of convergence in the general case
are not known so far.

Moreover, it has been shown that in general for a continuous input distribution
there does not exist any cost function that is minimized by the Self-Organizing Map
in a gradient descent fashion (cf. Erwin et al., 1992).

Heskes and Kappen (1993); Heskes (1996, 1999) demonstrated for the general
case that by slightly changing the winner definition in the update rule (2.4), nom-
inating a prototype as winner that minimizes the weighted average distance (also
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referred to as the local error) to the sampled data point instead, that is

s∗(v, W ) =
n

argmin
i=1

n∑
k=1

hλ(g(wi, wk))‖wk − v‖2 , (2.5)

the modified Self-Organizing Map performs a stochastic gradient descent on the
cost function

ESOM(W ) =
1
2

n∑
i=1

∫
hλ(g(ws∗(v), wi)) · ‖wi − v‖2

p(v) dv. (2.6)

Finishing this brief summary of the theoretical properties of SOM, it should be
mentioned here that despite the lack of theoretical evidence Self-Organizing Maps
perform very robust and reliable in practical applications, surely one good reason
for their popularity in numerous fields (Kohonen, 2001).

It should also be noted that Bishop et al. (1998a,b) proposed a concurrent
method, the Generative Topographic Mapping (GTM). GTM is a probability den-
sity model which describes the data distribution by latent variables utilizing a grid
in a low dimensional latent space and a set of non-linear basis functions that are
combined in data space governed by an adapted transformation. The model is a
probabilistic reformulation of Kohonen’s SOM appropriate to overcome disadvan-
tages of the Self-Organizing Map. The GTM model comes up with an explicit
continuous density model of the input data not only a discrete one as in case of
SOM, a provable convergence in contrast to SOM, and a cost function signalizing
the quality of the map. Nevertheless, a decade after its introduction the GTM has
not yet displaced the original Self-Organizing Map, maybe owing to its less intuitive
principle. The intention of our thesis is topographic mapping by prototype-based
methods, so we leave it at that brief discussion of GTM.

In the following section, we are concerned with the topology preservation prop-
erty of Self-Organizing Maps, a crucial aspect regarding the visualization ability of
a projection method.

Topology Preservation in Self-Organizing Maps

One of the most important issues concerning SOM is the topology preservation
feature that is needed for a meaningful projection of (intrinsic) high-dimensional
input data into the lower-dimensional lattice space. Since in general the projection
will take place from a higher to a true lower-dimensional space, naturally some
topological information will be lost in the process due to disrupted neighbourhoods,
or new neighbourhoods will be created where there were none before. This is usually
referred to as the dimension conflict. But also a mismatch in the topology of data
manifold and the fixed lattice structure will impose errors. As discussed by Venna
and Kaski (2006) these kinds of errors influence the measures trustworthiness and
discontinuity of the map. Obviously, there is a tradeoff between those measures,
thus projection methods cannot optimize both objectives at the same time.

For analyzing the quality of the mapping in terms of topology preservation, one
has to define appropriate measures in a mathematically sound way. This issue is
not trivial, there were various formal frameworks proposed measuring the topology
preservation of a Self-Organizing Map, for a comprehensive overview see (Bauer
et al., 1999; Villmann, 2004). The most promising approach is the topographic
product (Bauer and Pawelzik, 1992) defined on rectangular and hexagonal lattice
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structures and the more general topographic function (Villmann et al., 1997; Vill-
mann, 1997).

In the context of Self-Organizing Maps, we can formally define a topology pre-
serving mapping as a pair of suitable forth and back mappings between data and
lattice space that are both continuous in the topological sense, i.e. they are neigh-
bourhood preserving. If a topology preserving mapping between a data manifold
and a lattice structure exists, we call the lattice a topology preserving map of the
manifold. Later on, we will also refer to this kind of lattice as a perfectly topol-
ogy preserving map to emphasize its ultimate perfection in contrast to topographic
maps with some topological defects that shall be discussed later. For a formal dis-
cussion of topology preservation we need to define suitable neighborhoods on data
and lattice spaces to obtain topological spaces.

Topographic Function To measure the quality of a topographic map provided
by a SOM, Villmann et al. (1997) considered a discrete lattice space and the discrete
space of prototypes. They defined appropriate metrics on lattice and prototype
space which induce suitable topologies. Between these discrete topological spaces a
mapping Ψ was defined in the following way: The forth mapping assigns input data
v ∈ V to the lattice element corresponding to its winning prototype ws(v). It is
considered neighborhood preserving iff the images of adjacent points vi, vj ∈ V are
also adjacent according to the Chebyshev distance in the lattice. The back mapping,
i.e. the bijection between lattice elements and prototypes assigning each lattice
element to its corresponding prototype in input space, is said to be neighborhood
preserving iff images of adjacent elements of the lattice measured by the Euclidean
distance are also adjacent in data space.

Based on these metrics inducing the topological spaces, the topographic function
Φ was introduced that provides a measure of the degree of topology preservation
of the mapping Ψ. The definition relies on the existence of an induced Delaunay
triangulation of the prototypes in input space what presumes some kind of density
criterion to be fulfilled that is discussed later on in more detail.

The topographic function Φ depends on a parameter that ranges in the interval
[−(n − 1), n − 1] of the number of prototypes n, with a special meaning for Φ(0).
With help of the topographic function it is now possible to quantify the quality of
the topographic mapping. If it holds Φ(0) = 0, the mapping is perfectly topology
preserving. The largest value k+ for which Φ(k+) �= 0 and the smallest value k− for
which Φ(k−) �= 0 are indicators to distinguish local and global dimensional conflicts
(cf. Villmann, 2004).

However, Fort (2006) pointed out that by then all proposed measures were
based on a discrete setting utilizing a topology based on Voronoi tesselations. He
also stated that proving results about self-organization seemed to be very difficult
in the discrete framework, instead, an asymptotic framework was suggested and
briefly sketched.

Concerning the above introduced SOM variant of Heskes and Kappen (1993)
that performs a gradient descent on a cost function, Heskes (1996) analysed the
average transition time from disordered maps to fully ordered configurations in the
modified SOM variant. In this context, it was pointed out that topological defects
of the map, like kinks in one-dimensional maps or twists in two-dimensional maps,
correspond to local minima of the error potential, whereas the global minima cor-
responds to a perfectly ordered configuration. That way, topological conflicts are
observable in this variant, provided that there is no conflict of intrinsic dimension-
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ality in principle.

As discussed above, one serious drawback of Self-Organizing Maps is their fixed
lattice structure that is very well suited for visualization but lacks of flexibility
in terms of topology. Another type of methods trades easy visualization in for
a more flexible lattice structure that is driven by data and not fixed beforehand.
The approach is based on so called Topology Representing Networks which shall be
discussed in the following section.

2.3 Topology Representing Networks

In this section, we briefly introduce a topographic mapping approach (Martinetz
and Schulten, 1994) that in contrast to Self-Organizing Maps does not depend on
a predefined fixed lattice structure. It constructs its lattice structure according to
the given data topology by applying a competitive Hebbian scheme.

More precisely, let M ⊆ �d be a manifold which we suppose for the present to be
given explicitly. Suppose further that there is a finite collection of prototypes W =
(wi)i∈{1,...,n} from �d lying in the manifold. We shall show later how prototypes can

be distributed homogeneously over a manifold. We name V
(M)
i (W ) = Vi(W ) ∩ M

the masked Voronoi region of prototype wi. Because of wi ∈ M and of course wi ∈
Vi(W ) the intersection is never empty. Moreover, since the Voronoi diagram V (M)
covers �d, the masked Voronoi diagram covers M , i.e. it is M =

⋃n
i=1 V

(M)
i (W ).

We define a neighbourhood relation of prototypes on the manifold by a non-
empty intersection of the corresponding masked Voronoi regions. That way, a
masked Voronoi diagram generates a so-called induced Delaunay triangulation, a
graph structure on W that is given by the adjacency of the masked Voronoi re-
gions, i.e. there is an edge wi

e wj iff V
(M)
i (W ) ∩ V

(M)
j (W ) �= ∅. As shown by

Martinetz and Schulten (1994, Theorem 2), the induced Delaunay triangulation is
a perfectly topology preserving map of M . That means, neighbourhoods in the
manifold are mapped to neighbourhoods in the graph structure, and vice versa. It
is to be understood here, that obviously the larger the number of prototypes the
finer is the resolution of the map. Note that by definition, also one single prototype
wi ∈ M is a perfectly topology preserving map!

At this point the question arises how to determine the induced Delaunay tri-
angulation algorithmically. This is not as easy as the construction of the standard
Delaunay triangulation via the Voronoi regions. Usually, the manifold M is only
accessible by a probability distribution defined on �d, i.e. we can only sample its
points. Martinetz and Schulten (1994) therefore proposed an iterative Hebbian
learning scheme that always strengthen the connections between first and second
winner prototype for each sampled point.

Martinetz and Schulten (1994) defined prototypes W ⊆ M to be dense in M if
for every v ∈ M the triangle formed by v and the first and second winner prototype
regarding v lies completely in M , i.e. Δvws(v)ws′(v) ⊆ M . For instance, in convex
datasets the prototypes are always dense according to the above definition. More-
over, it was shown that the generated connective structure of a TRN converges to
the induced Delaunay triangulation if the prototypes are lying dense in the man-
ifold. The resulting graph structure was also shown to be path-preserving in the
manifold M , i.e. two points wi, wj are connected by a path in the graph structure
if and only if they are connected by a path in the manifold M .1

1A path in a manifold X from x1 to x2 is a continuous map φ : [a, b]→ M such that φ(a) = x1

and φ(b) = x2.
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Thus, under the constraint that the prototypes obey a density criterion regarding
the underlying data manifold, applying a competitive Hebbian scheme by always
connecting the first and second ranked prototypes leads to a graph structure that
represents the induced Delaunay triangulation of the data manifold. That way, a
perfect topology preservation is obtained. The outcoming lattice can be seen as a
discrete, path preserving representation of the data manifold. In this context, we
call that approach a topology representing network.

Martinetz and Schulten (1994) discussed loosely in this context that a homo-
geneous distribution of prototypes can be made dense by increasing the number of
prototypes. Obviously, if the data manifold M has a smooth boundary ∂M , e.g.
it is convex, a sufficiently large number of prototypes will be dense in M . Note
that this aspect is of great importance for the algorithmic usage, later on we will
present a technique capable of generating a homogeneous distribution of prototypes
and therefore constituting the foundation of the discussed approach.

It should be noted here that there is a related framework introduced by Fritzke
(1995) and Bruske and Sommer (1995) which relies on a growing strategy. The
number of prototypes is increased by time and topological connections are drawn
using the same Hebbian scheme as above. Connections as well as prototypes fade
away during the iteration process if they no longer match the topology best. Later
on Fritzke (1997) applied his approach also successfully to the processing of non-
stationary distributions. For some of the latest developments in this direction,
namely the Growing Hierarchical Tree SOM, see also (Forti and Foresti, 2006).

One important question concerning the usability of the Topology Representing
Network approach has remained open: We haven’t discussed yet how to get suit-
able prototypes lying in the manifold and capturing the subtleties of the topology.
Fortunately, there is a reliable vector quantization technique distributing its proto-
types exactly as desired, the so-called Neural Gas method. In what follows we will
introduce the principles of Neural Gas.

2.4 The Neural Gas Algorithm

As motivated in the last section, the foundation of Topology Representing Net-
works are prototypes which lie dense in the data manifold. As stated by Martinetz
and Schulten (1994), a homogeneous distribution of prototypes can always be made
dense by simply increasing the number of prototypes. For that reason, methods are
sought after that are capable of distributing prototypes homogeneously in the data
manifold. In the following, we will present the very robust and reliable vector quan-
tization method Neural Gas that can serve as a basis for Topology Representing
Networks (Martinetz and Schulten, 1994). Besides being part of Topology Repre-
senting Networks, it also offers great advantage over the popular k-means algorithm
and can be used as a substitute (Martinetz et al., 1993).

Neural Gas (NG), introduced by Martinetz et al. (1993), is a vector quantization
technique that aims to construct a finite collection W = (wi)i∈{1,...,n} of represen-
tative prototypes from �d for a given data manifold M ⊂ �d. Once in a while in
the theoretical discussion, we shall also consider countable sets of prototypes.

In the following, let the data be given by a probability distribution over a man-
ifold V ⊆ �d, described by the probability density function p. The prototypes are
then requested to characterize the data manifold best when measured by the quan-
tization error (2.1). Technically, Neural Gas utilizes a stochastic gradient descent
on a cost function that is based on a ranking scheme, relating the strength of pro-
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totypes updates to their ranks regarding the distances to the sampled data point.
Due to its importance for the theory of Neural Gas and all upcoming parts of this
work, we would like to emphasize the following definition of ranks:

Definition 2.4.1 (Ranking of Prototypes) Let W = (wi)i∈{1,...,n} from �d be
a finite collection of prototypes. The rank ki(W, v) of a prototype wi relative to data
point v ∈ �d is given by the rank function ki :

(�n
i=1�

d
)×�d→ {0, 1, . . . , n − 1}

defined by

ki(w1, w2, . . . , wn, v) = |{wk : ‖wk − v‖ < ‖wi − v‖}|. (2.7)

Moreover, we require the function to be bijective. If necessary, ties ‖wk − v‖ =
‖wi − v‖ shall be broken deterministically. For convenience, we denote also the
rank function as ki(W, v) in the following. �

We would also like to emphasize the importance of Neural Gas for the thesis at
hand. It shall serve us as a reference throughout in a way that new techniques are
introduced and discussed on its basis. In the majority of cases, these introduced
techniques are easily transferable to Self-Organizing Maps or k-Means due to the
close relationship between the models. So most of the times, we present only the
Neural Gas variant of a technique and settle back by simply referring to the analogy
of the procedure. Having set the further course of action, we present the Neural
Gas algorithm in the following.

Neural Gas Algorithm

For input data given by a probability distribution that is described by a probability
density function p, Neural Gas performs a stochastic gradient descent on the cost
function

Eλ(W ) =
n∑

i=1

∫
hλ(ki(W, v)) · ‖wi − v‖2

p(v) dv, (2.8)

through the update rule

Δwi = εt · hλ(ki(W, v)) · (v − wi) (2.9)

for all prototypes wi ∈ W . The parameter λ > 0 controls the neighbourhood range
through the neighbourhood function hλ(x) = exp(−x/λ). The update is governed
by a decreasing step size εt ∈ (0, 1] that usually obeys the condition

∑∞
t=1 εt = ∞

and
∑∞

t=1 ε2
t < ∞, following the work of Robbins and Monro (1951) who introduced

similar conditions in their work on stochastic approximation.

During processing the initially large neighbourhood range λ is driven asymptot-
ically to zero changing the characteristics of the cost function in every step. Due
to the dynamics of λ, Neural Gas is not sensitive to initialization, and most local
optima are supposed to arise only later in the process. Therefore the neighbourhood
dynamics prevents the method from getting stuck too early in suboptimal states.
Note that for a vanishing neighbourhood range the cost function Eq. (2.8) becomes
the quantization error (2.1), since C(λ) → 1 and hλ(ki(W, v)) → χi(W, v) hold for
λ → 0.

For all experiments in this work the initial neighborhood range λ0 was chosen
as n/2 as suggested by Martinetz et al. (1993), where n is the number of neurons
used. The neighborhood range λt was decreased exponentially with the number of
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adaptation steps t according to λt = λ0 · (0.01/λ0)t/tmax as it was suggested in the
original work of Martinetz et al. (1993). The value tmax is the number of epochs of
a training run.

In what follows we are concerned with an inherent but counterintuitive char-
acteristic of vector quantizers. The final prototypes do not exactly reproduce the
input data density, instead an asymptotic power law holds. This inherent charac-
teristic can pose undesired effects in practical applications and has therefore to be
kept in mind while applying vector quantizers.

2.5 The Magnification Effect

It was first demonstrated by Zador (1963, 1982) and stated more precisely by Graf
and Luschgy (2000) that vector quantization techniques aiming for a minimization
of the distortion error feature the inherent characteristic that the final prototype
density � does not exactly match the data density p. Instead, the relation between
those densities asymptotically obeys the power law

�(w) ∼ p(w)α, (2.10)

with α �= 1 in general. In this context, the exponent α is called the magnification
exponent. In a more general setting, the magnification characteristic of a certain
method is called the magnification factor.

The magnification effect might seem counterintuitive at first feel, but it can be
easily observed in experiments when sparsely sampled regions of the input space
with low probability draw prototypes from dense regions. This is particularly strik-
ing in case of outliers in real data.

In general, the magnification effect is an inherent characteristic of the different
methods and not only vector quantizers suffer from this discrepancy. Although, for
a variety of popular methods, the magnification follows a power law with exponent
different from one (see Villmann and Claussen, 2006).

As it was shown by Zador (1982) in a more general setting, for vector quantizers
minimizing the quadratic distortion error Eq. (2.1), like the popular k-means, it
holds

α =
d̂

d̂ + 2
, (2.11)

where d̂ denotes the intrinsic data dimensionality (see also Graf and Luschgy, 2000).
Martinetz et al. (1993) proved that for a small neighbourhood range 0 < λ 
 n

the Neural Gas algorithm also features a magnification exponent of α = d̂/(d̂ + 2),
what is consistent with the result of Zador (1982) in (2.11).

A magnification factor of one relates to an optimal information transfer and
yields maximum entropy of the mapping in an information-theoretical sense. The
prototypes are then exactly adjusted according to the underlying data distribution
– the data density equals the prototype density. In that case, the amount of in-
formation, which is conserved replacing the points in the receptive fields by their
representative prototypes, is maximized.

It also means that all prototypes have the same probability over the data distri-
bution to become winner. For a given data distribution P and magnification factor
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one, it then holds

lim
|W |→∞

∣∣∣∣∣
∫

Vi(W )

v dP (v) −
∫

Vj(W )

v dP (v)

∣∣∣∣∣ = 0 for all wi, wj ∈ W ,

where Vi(W ) and Vj(W ) are the corresponding Voronoi regions of the final prototype
locations wi, wj ∈ W after learning, respectively.

A magnification factor one is specific for approaches explicitly optimizing the
information transfer or related measures (cf. Linsker, 1989).

The reader might be in doubt about the impact of the magnification effect in
real-life data, because for high-dimensional data, Neural Gas is approximately in-
formation optimal, since d/(d + 2) → 1 for d → ∞. But almost always the intrinsic
dimensionality of real data is very low, i.e. d̂ 
 d. So there is a good justification
to deal with the magnification effect in the real world.

Later on, subsequent to the presentation of each upcoming method, we will
discuss possibilities to modify the methods in a way that the magnification exponent
changes. That results in an altered distribution of the final prototypes and opens
the field of magnification control allowing for arbitrary control of the magnification.

As discussed above, Neural Gas tends to shift prototypes towards regions where
data is sparsely sampled. This inherent behaviour might lead to unwanted effects
if, for example, unwanted outliers occur in the dataset (Hodge and Austin, 2004).
Here, magnification control can help to suppress the influence of the outlying data
points.

In practice also the opposite effect is of great interest. For example, if the focus
lies on rare events that should be covered by prototypes (Merényi and Jain, 2004;
Villmann et al., 2003; Villmann and Heinze, 2000), magnification control allows to
emphasize regions of low density.

In the next chapter, we will discuss how to accelerate the introduced prototype-
based methods and also how to apply them efficiently on very large datasets.
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Chapter 3

Fast Topographic Mapping of
Euclidean Data

This chapter is concerned with fast variants of prototype-based methods that can
be applied if the given Euclidean dataset is finite. They show a very fast conver-
gence compared to the original formulations and can be used as a replacement in
all applications where the whole dataset is available in advance. Later on, we will
discuss also variants that are capable of dealing with very large datasets, and also
with streaming data or datasets that are gathered over time.

The proofs and concepts in this section shall play an important role for this
work, because all following parts are based on quite similar reasonings and can be
traced back to the proofs and concepts presented here. That’s why we will give
more details here and keep things shorter later on by referencing to this chapter.

3.1 Batch Processing for Prototype-based
Methods

The original Neural Gas method optimizes its cost function by applying a stochastic
gradient descent method, that in principle needs many iterations until convergence
(Martinetz et al., 1993). However, if a finite dataset {v1, v2, . . . , vm} is given, Neural
Gas can be formulated as a faster batch variant as introduced by Cottrell et al.
(2005, 2006).

In the finite setting, the cost function of Neural Gas Eq. (2.8) becomes

Eλ(W ) =
1
2

n∑
i=1

m∑
j=1

hλ(ki(W, vj)) · ‖wi − vj‖2
. (3.1)

In every iteration of a batch approach, all prototypes are updated at once taking
into account the whole dataset. The optimal locations of the prototypes must
therefore be calculated in an efficient manner, that’s why we are looking for an
analytic solution.

Obviously,

∂

∂wi
Eλ(W ) =

∑
j

hλ(ki(W, vj))(wi − vj)
!= 0

cannot be solved explicitly because of the rank function. As a consequence, there
is no way to directly derive update rules for the optimal prototype locations.

19
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For this reason, we introduce a set of hidden variables kij to replace the rank
function ki(W, vj), where {kij : i ∈ {1, 2, . . . , n}} is a permutation of {0, 1, . . . , n−
1} for every j ∈ {1, 2, . . . , m}. This yields

Êλ(W, kij) =
1
2

∑
i

∑
j

hλ(kij) · ‖wi − vj‖2
. (3.2)

That way, an alternating optimization technique (Hathaway and Bezdek, 2003) can
be applied, that, in turn, optimizes the hidden variables kij for fixed prototype
locations wi, and then determines optimal prototype locations wi for fixed hidden
variables kij , according to the cost function Eq. (3.2).

In Table 3.1 the Batch Neural Gas algorithm is quoted. In the following, we will
discuss in detail how to get the optimal assignments in each step of the alternating
optimization. Also a proof of convergence of the algorithm in sense of the cost
function is given.

Algorithm 3.1: Batch Neural Gas

Input

Data V = {v1, v2, . . . , vm} ⊂ �d

Begin

(* Initialize prototypes and neighbourhood range *)

Init wi ∈ �d randomly for all i ∈ {1, . . . , n} and λ0 = n/2, λ = λ0

(* Repeat for a given number of epochs. . . *)

for t := 1 to epochs do

Compute Euclidean distances. . .

d(wi, vj) = ‖wi − vj‖
Determine hidden variables as ranks (break ties deterministically). . .

kij = |{ l ∈ {1, . . . , n} : d(wl, vj) < d(wi, vj)}|
Update prototype locations. . .

wi =
∑

j hλ(kij) · vj/
∑

j hλ(kij)

Decrease neighbourhood range. . .

λ = λ0 · (0.01/λ0)t/epochs

endfor;

(* Return representative prototypes *)

Return wi

End.

Optimal Assignments

The first step of the alternating optimization is the determination of optimal as-
signments for the hidden variables kij . Given fixed prototype locations, an optimal
assignment for the hidden variables kij , in terms of the modified cost function Êλ,
turns out to be the ranks of the prototypes, that means

kij = ki(W, vj), (3.3)
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since that way farther situated prototypes will get lower weights, and vice versa.

Assume W are fixed prototype locations. We say an assignment k′
ij is conform

with the ranks ki(W, vj) if there is no pair (k′
tj , k

′
t′j) with k′

tj < k′
t′j and ‖wt − vj‖2

>

‖wt′ − vj‖2. Obviously, kij = ki(W, vj) is conform with the ranks.

Proposition 3.1.1 Let W be fixed prototype locations. Then, the assignment
kij = ki(W, vj) is a global minimizer of Êλ(W, kij), and it is unique up to conformity.

Proof. To verify the claim, we show that all conform assignments are global mini-
mizers of Êλ(W, kij), and that it holds Êλ(W, kij) < Êλ(W, k′

ij) for any assignment
k′

ij not conform with the ranks ki(W, vj).

We may assume, without loss of generality, that the fixed prototypes w1, w2, . . . , wn

are subscripted in a way that

‖w1 − vj‖2 ≤ ‖w2 − vj‖2 ≤ . . . ≤ ‖wn − vj‖2

when considering vj . Let t < t′. For any nonnegative η, η′ with η < η′ it then holds

‖wt − vj‖2
< ‖wt′ − vj‖2 ⇐⇒

(η′ − η) · ‖wt − vj‖2
< (η′ − η) · ‖wt′ − vj‖2 ⇐⇒

η · ‖wt − vj‖2 + η′ · ‖wt′ − vj‖2
> η′ · ‖wt − vj‖2 + η · ‖wt′ − vj‖2

(3.4)

Since the set of possible assignments is finite, there must exist a global minimizer,
an assignment k∗

ij with Êλ(W, k∗
ij) ≤ Êλ(W, kij) for all possible assignments kij .

Let k∗
ij be a global minimizer of Êλ for fixed prototypes W . Suppose k∗

ij is not
conform with the ranks ki(W, vj). By definition of conformity, there must exist
at least one pair (k∗

tj , k
∗
t′j) where k∗

tj > k∗
t′j and ‖wt − vj‖2

< ‖wt′ − vj‖2. Let
(k∗

tj , k
∗
t′j) be such a pair and set ηij = hλ(k∗

ij) = exp(−k∗
ij/λ). Then, the cost

function can be written as

Êλ(W, k∗
ij) =

1
2

∑
j

⎡
⎣ ∑

i�=t,i�=t′
ηij ‖wi − vj‖2 + ηtj ‖wt − vj‖2 + ηt′j ‖wt′ − vj‖2

⎤
⎦ .

Since by assumption k∗
ij is not conform with the ranks due to the pair (k∗

tj , k
∗
t′j),

it holds ηtj < ηt′j and ‖wt − vj‖2
< ‖wt′ − vj‖2. Then, according to Eq. (3.4), we

obtain

Êλ(W, k∗
ij) >

1
2

∑
j

⎡
⎣ ∑

i�=t,i�=t′
ηij ‖wi − vj‖2 + ηt′j ‖wt − vj‖2 + ηtj ‖wt′ − vj‖2

⎤
⎦

=: Êλ(W, k∗∗
ij )

Thus, there is an assignment k∗∗
ij with Êλ(W, k∗∗

ij ) < Êλ(W, k∗
ij), namely the assign-

ment where positions t and t′ are transposed compared to k∗
ij . But then k∗

ij is not a
minimizer, what leads to a contradiction. Therefore, the supposition must be false,
k∗

ij has to be conform with the ranks. Thus, any global minimizer of Êλ is conform
with the ranks.

Obviously, all conform assignments share the same value when mapped by Êλ.
Since there must exist a global minimizer that is always a conform assignment,
by definition, all conform assignments are global minimizers of Êλ. In particular,
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the assignment kij = ki(W, vj) is a global minimizer of the function Êλ for fixed
prototypes, and it is unique up to conformity. �

If ties in the rank determination are broken deterministically, then kij = ki(W, vj)
is the only conform assignment, and therefore a unique global minimizer of Êλ(W, kij)
for fixed W .

Optimal Prototypes

The second step of the alternating optimization is the determination of optimal
prototype locations. It turns out that the optimal prototype locations W for fixed
hidden variables kij are given by the update rule

wi =

∑
j hλ(kij) · vj∑

j hλ(kij)
for all i ∈ {1, 2, . . . , n}. (3.5)

This can be seen as follows: Consider the modified cost function Êλ from
Eq. (3.2) with substituted fixed hidden variables. It is differentiable on the whole
domain, and the partial derivatives of this modified cost function are given by

∂

∂wi
Êλ(W, kij) =

∂

∂wi

1
2

∑
i

∑
j

hλ(kij) ‖wi − vj‖2 =
∑

j

hλ(kij)(wi − vj)

= wi ·
∑

j

hλ(kij) −
∑

j

hλ(kij)vj ,

and from
∂

∂wi
Êλ(W, kij)

!= 0 and
∑

j hλ(kij) > 0 it follows immediately that critical

points W ∗ are given by

w∗
i ·

∑
j

hλ(kij) −
∑

j

hλ(kij)vj = 0 ⇐⇒ w∗
i =

∑
j hλ(kij) · vj∑

j hλ(kij)
.

It is straightforward to verify that the Hessian matrix

H(W, kij) =
(

∂2

∂wi∂wj
Êλ(W, kij)

)
i,j∈{1,2,...,n}

is positive definite on the whole domain, because H is a diagonal matrix with
positive diagonal entries

∂2

∂w2
i

Êλ(W, kij) =
∑

j

hλ(kij) > 0.

Therefore, Êλ is strictly convex on the whole domain, and there exists only one
critical point W ∗ that is a global minimizer of Êλ.

Hence, it follows that the update rule Eq. (3.5) sets the prototypes directly to
the unique global minimum of function Êλ.

Convergence

In the following, it is shown that Batch Neural Gas converges to a local minimum
of the cost function Eq. (3.2). The proof is based on the work of Bottou and Bengio
(1995).
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We consider a sequence of alternating optimization steps

S = W (0) −→ k
(0)
ij

λ(1)−→ W (1) −→ k
(1)
ij

λ(2)−→ W (2) −→ k
(2)
ij

λ(3)−→ · · · −→ · · ·

generated by the algorithm, where

W (0) is a randomly initialized collection of prototypes from �d,

W (t), t ≥ 1, is set to the unique global minimizer of Êλ(t) (W (t−1), k
(t−1)
ij ) by

the update rule Eq. (3.5)

k
(t)
ij , t ≥ 0, is set to the unique global minimizer k∗

ij = ki(W (t), vj) of

Êλ(t)(W (t), k
(t−1)
ij ), cf. Eq. (3.3)

λ(t), t ≥ 1, is the monotone decreasing neighbourhood range in step t.

Note that, unlike optimal prototype locations, the optimal assignments kij in each
step are independent of the neighbourhood range λ, because hλ(·) is monotone de-
creasing for all λ > 0. Hence, it does not alter the order of the ranks, the optimal
assignments stay the same no matter how λ is chosen.

Lemma 3.1.2 Given a sequence S of alternating optimization steps of Batch Neu-
ral Gas as defined above. It then holds

Êλ(t)(W (t), k
(t)
ij ) > Êλ(t+1)(W (t+1), k

(t+1)
ij )

for all t ≥ 0.

Proof. It holds Êλ(t)(W (t), k
(t)
ij ) > Êλ(t+1)(W (t), k

(t)
ij ). That is because hλ(·) is

strictly monotone in λ, and therefore also Êλ(W, kij) for fixed W and kij .
It also holds Êλ(t+1)(W (t), k

(t)
ij ) ≥ Êλ(t+1)(W (t+1), k

(t)
ij ) for all t ≥ 0, since the up-

date rule Eq. (3.5) always sets the prototypes directly to the unique global minimum
of the cost function Êλ given (fixed) k

(t)
ij .

Furthermore, it is Êλ(W (t+1), k
(t)
ij ) ≥ Êλ(W (t+1), k

(t+1)
ij ) for all t ≥ 0, because

also the assignments k
(t+1)
ij are chosen as the unique global minimizer k∗

ij of Êλ

given (fixed) W (t+1) according to Eq. (3.3). Combining these inequalities we have

Êλ(t)(W (t), k
(t)
ij ) > Êλ(t+1)(W (t+1), k

(t+1)
ij )

for all t ≥ 0. �

Theorem 3.1.3 Batch Neural Gas (Algorithm 3.1) converges in terms the cost
function Eq. (3.2) while performing alternating optimization steps.

Proof. Assume randomly initialized prototypes W (0) and associated k
(0)
ij are given,

whereby k
(0)
ij is chosen as the unique global minimizer of Êλ(0) for (fixed) W (0)

according to Proposition 3.1.1. Let S be the sequence of alternating optimization
steps of the algorithm as defined above.

Because of Lemma 3.1.2 the sequence (Êλ(0) (W (0), k
(0)
ij ), Êλ(1)(W (1), k

(1)
ij ), . . .)

generated by S is monotone decreasing. It is also bounded because Ê is strictly
positive, thus it is convergent. The Batch Neural Gas (Algorithm 3.1) converges to
a local minimum of the cost function Eq. (3.1). �
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As demonstrated by Cottrell et al. (2006), Batch Neural Gas features a quadratic
rate of convergence because it is interpretable as a Newton optimization method,
in contrast to the simple gradient descent of the original Neural Gas.

Following the same ideas, we can easily derive the Batch SOM algorithm (Koho-
nen, 2001) as shown in (Cottrell et al., 2006). The Batch SOM was analyzed by Fort
et al. (2002) drawing the conclusions that it has the advantages of simplicity of the
computation, quickness, better final distortion, no adaptation parameter to tune,
and deterministic reproducible results. But it also has serious drawbacks like bad
organization, bad visualization, too unbalanced classes, and strong dependency on
the initialization. Theoretical work for the Batch SOM with Heskes’ modification
was done by Cheng (1997) proving results about convergence and ordering.

In the following, we will discuss how to control the distribution of the final
prototypes to achieve a desired behaviour of the algorithm. This could be e.g. the
emphasis of rare events or to get an optimal information-theoretical transfer.

3.2 Magnification Control for Batch Methods

As it has been discussed before in Section 2.5, many prototype-based learning meth-
ods possess the characteristic property that there is a discrepancy between the
densities of the data distribution and the final prototype distribution after learn-
ing. In the following, we give an overview about different techniques to modify
the prototype-based methods aiming for an arbitrary control of the magnification
factor. An explicit control of the magnification is particularly interesting for ap-
plications where rare events should be suppressed or, contrarily, emphasized, or an
information optimal transfer should be achieved.

Several approaches have been proposed to control the magnification behaviour of
prototype-based learning methods. For a thorough survey on magnification control
for prototype-based methods consult (Villmann and Claussen, 2006). All techniques
have in common that they modify the original update rules

Δwi = εt · hλ(f(i, W, v)) · (v − wi)

of SOM and Neural Gas in some way to influence the dynamics of the method.
Some of the methods are able to provide an arbitrary magnification controlled by
parameters.

In literature, there are three important approaches to modify the update rule
(cf. Villmann and Claussen, 2006), namely

Localized Learning, where a multiplicative factor is introduced in form of a
localized learning rate εi = ε(wi),

Winner-relaxing Learning, where a winner relaxing term R(μ, κ) is added to
the update rule, and

Concave-convex Learning, where an exponent ξ is introduced to scale the shift
factor as (v − wi)ξ.

In our work, we will stick to the localized learning technique, because it has
proven to be the most stable one for Neural Gas and SOM (cf. Villmann and
Claussen, 2006) and offers arbitrary magnification control as follows.
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Localized Learning in Neural Gas

Given a data distribution density function p, localized learning extends the learning
rate in (2.9) by a factor which depends on the local data density:

Δwi = ε0 · p(ws(vj))c · hλ(ki(W, vj)) · (vj − wi) (3.6)

where ε0 > 0 is the learning rate and s(vj) is the winner index (2.3) for data point
vj . Parameter c controls the magnification exponent, where p(ws(vj))c vanishes for
c = 0 leading to standard Neural Gas. That way, a local learning factor depending
on the data density at the winner location is added.

As shown by Villmann (2000), Neural Gas with the modified learning rule (3.6)
asymptotically obeys the power law

�(wi) ∼ p(wi)α′
with α′ = (c + 1) · α = (c + 1) · d̂

d̂ + 2
, (3.7)

where d̂ is the intrinsic dimension of the data. Obviously, an information theoret-
ically optimum factor α = 1 is obtained for c = 2/d̂. Larger values of c emphasize
input regions with high data density, whereas smaller values put a focus on regions
with rarely sampled data points.

A drawback of the above approach is the need to calculate the density p(ws(vj))
at the winning prototype location in each step. Having a transfer of magnification
control to batch variants in mind, it would come in handy to precalculate data
densities at the locations of the data points of the finite dataset and rely only on
these values. With this motivation in mind, we consider the similar learning rule

Δwi = ε0 · p(vj)c · hλ(ki(W, vj))(vj − wi) , (3.8)

where the local density at the location of the sampled data point is taken instead
of that at the location of the winning prototype.

Now, the average of the learning rule (3.8) can be formulated as an integral

〈Δwi〉 ∼
∫

p(v)c · hλ(ki(W, v)) · (v − wi) · p(v) dv. (3.9)

Since the magnification factor of localized learning has been derived under the
assumption of a continuum of prototypes, where ws(v) = v holds, the average update
(3.9) yields exactly the same result as the original one (3.6) proposed by Villmann
(2000). Thus, the same magnification factor (3.7) results also for the altered learn-
ing rule (3.8).

Moreover, the alternative update (3.8) has the benefit that it performs a stochas-
tic gradient descent on the cost function

Eλ(W, c) =
1

2C(λ)

n∑
i=1

∫
V

hλ(ki(W, v)) · ‖wi − v‖2 · p(v)c+1 dv. (3.10)

That is because (cf. Hammer et al., 2007b) the derivative of cost function (3.10)
is given by

∂Eλ(W, c)
∂wl

=
1

C(λ)

∫
V

hλ(ki(W, v)) · (wl − v) · p(v)c+1 dv

+
1

2C(λ)

n∑
i=1

∫
V

h′
λ(ki(W, v)) · ∂ki(W, v)

∂wl
· ‖wi − v‖2 · p(v)c+1dv .
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It has been shown in (Hammer et al., 2007b) that the second term vanishes.
The first term complies straightforward with the average update rule (3.9). Hence,
a stochastic gradient descent on the cost function (3.10) is performed when using
update rule (3.8).

Thus, learning schemes which optimize the cost function Eλ(W, c) yield a map
formation with magnification factor α′ as given by Eq. (3.7).

Note that for an application of the learning rule (3.6), the density p of the data
distribution as well as the effective data dimensionality d̂ have to be estimated
from the data. These estimations can be done by standard techniques, e.g. Parzen
window estimators, and the algorithm of Grassberger and Procaccia (1983), but in
general those are indeed difficult problems that are widely discussed in literature
(Scott, 1992; Tong, 1993).

Transfer of Localized Learning to Batch Neural Gas

The formulation of localized learning by the modified update rule (3.8) that only
relies on local densities at data locations opens a way to integrate magnification
control into Batch Neural Gas as follows.

For a given finite dataset V = {v1, v2, . . . , vm} the cost function (3.10) becomes

Êλ(W, c) =
1

2C(λ)

n∑
i=1

m∑
j=1

hλ(ki(W, vj)) · ‖wi − vj‖2 · p(vj)c. (3.11)

As beforehand in (3.2), we substitute the terms ki(W, vj) by hidden variables kij ,
where {kij : i ∈ {1, 2, . . . , n}} is a permutation of {0, 1, . . . , n − 1} for every j ∈
{1, 2, . . . , m}. This yields

Êλ(W, c, kij) =
1

2C(λ)

n∑
i=1

m∑
j=1

hλ(kij) · ‖wi − vj‖2 · p(vj)c . (3.12)

Batch optimization in turn determines optimum kij , given prototype locations, and
optimum prototype locations, given values kij . With the same arguments as used
before (cf. page 20), the optimal assignments kij are given by the ranks for fixed
prototype locations W .

It can be seen further by setting the partial derivatives of Eq. (3.12) to zero,

∂Êλ(W, c, kij)
∂wi

=
1

C(λ)

m∑
j=1

hλ(kij)(wi − vj) · p(vj)c != 0 ,

that the optimum prototypes wi for fixed assignments kij are given by the average
of the points weighted by the ranks and local data densities,

wi =

∑
j hλ(kij) · p(vj)c · vj∑

j hλ(kij) · p(vj)c
. (3.13)

The optimality follows in analogy to the discussion in the context of Batch Neural
Gas (cf. page 22).

Hence, we obtain a Batch Neural Gas algorithm with local learning featuring a
magnification exponent of (c+1) · d̂/(d̂+2) that provides an arbitrary control of the
magnification via control parameter c. As discussed beforehand, the intrinsic data
dimensionality d̂ and the local data density p(vj) at the positions of the data points



3.3 Incorporating Additional Information 27

Algorithm 3.2: Batch Neural Gas with Localized Learning

Input

Data V = {v1, v2, . . . , vm} ⊂ �d

Data density p(v) ∈ [0, 1] at all points of V

Control parameter c

Begin

(* Initialize prototypes and neighbourhood range *)

Init wi ∈ �d randomly for all i ∈ {1, . . . , n} and λ0 = n/2, λ = λ0

(* Repeat for a given number of epochs. . . *)

for t := 1 to epochs do

Compute Euclidean distances. . .

d(wi, vj) = ‖wi − vj‖
Determine ranks (break ties deterministically). . .

ki(W, vj) = |{ l ∈ {1, . . . , n} : d(wl, vj) < d(wi, vj)}|
Update prototype locations. . .

wi =

∑
j hλ(kij) · p(vj)c · vj∑

j hλ(kij) · p(vj)c

Decrease neighbourhood range. . .

λ = λ0 · (0.01/λ0)t/epochs

endfor;

(* Return representative prototypes *)

Return wi

End.

have to be estimated. In Algorithm 3.2 an outline of the algorithm is presented.

It can be shown in analogy to Theorem 3.1.3 that the Batch Neural Gas algo-
rithm with local learning (Algorithm 3.2) converges to a local minimum of the cost
function (3.11) (see also Hammer et al., 2006c).

By now, the magnification control of Neural Gas has proven beneficial not only
in artificial experiments but also in several tasks in the field of robotics and satellite
image processing (cf. Hammer et al., 2007b; Villmann et al., 2003; Villmann and
Heinze, 2000; Merényi and Jain, 2004). Explicit magnification control of Batch
Neural Gas has shown its benefits in applications in the field of collision detection
of geometric data structures as demonstrated by Weller (2008).

3.3 Incorporating Additional Information

As it is often the case in data mining, there is additional information available about
class structures within the data that should be included into processing, otherwise
it can be difficult or even impossible to get meaningful results from unsupervised
learning. In particular the minimization of the quantization error for high dimen-
sional or noisy data often does not yield meaningful clusters, additional information
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such as cluster labels or correlation can help to improve the quality. This issue is
also named ‘garbage in - garbage out’ problem of unsupervised learning and is dis-
cussed e.g. by Kaski et al. (2005, 2003).

For an integration of additional information into prototype-based methods, we
presume that the additional information is available in form of a class label for each
data point (cf. Villmann et al., 2006). Without loss of generality, we assume that
these data labels are embedded in �c by an unary encoding of the c classes. Let
the label that is attached to a data point vj ∈ V be denoted by vL

j ∈ �c, i.e. vL
j is

a vector with component (vL
j )(k) = 1 iff vL

j represents class k, and (vL
j )(k) = 0 else.

Additionally, each prototype wi features a label wL
i ∈ [0, 1]c which shall be

adapted during learning depending on the label distribution of the data points in
its neighbourhood. By the above construction, we are able to interpret the proto-
type labels wL

i as a collection WL =
(
wL

i

)
i∈{1,...,n} of prototypes in the label space

L = [0, 1]c.

To integrate supervision into a prototype-based method, we now substitute the
original Euclidean metric in the cost function Eλ(W ) by a combination of the metric
in data space and the metric in label space, yielding a new cost function

E∗
λ(W, WL, β) =

1
2

n∑
i=1

m∑
j=1

hλ(ki(W, vj))·
(
(1 − β) · ‖wi − vj‖2 + β · ∥∥wL

i − vL
j

∥∥2
)

,

where the weighting of the metric in data space and the metric in label space is
controlled by parameter β.

In this section, we have chosen Batch Neural Gas as a representative example.
Nevertheless the concept can easily be migrated to other prototype-based batch
methods like Batch SOM (Hammer et al., 2006b).

Alternating optimization as introduced beforehand leads to new update rules
for the prototypes W in data space and the prototypes WL in label space. It can
easily be seen that the cost function separates such that the update rule for the
prototypes in data space stays the same as before Eq. (3.5), and the prototype
labels are updated in label space by the same rule, i.e. we have

wL
i =

∑
j hλ(kij) · vL

j∑
j hλ(kij)

for all i ∈ {1, 2, . . . , n}. (3.14)

The optimal assignments kij are determined subject to a modified rank function
that is based on the combined metric. That way, the additional label information
exerts influence on the prototype updates in data space turning the unsupervised
methods into a supervised one.

It follows directly from the update rule that the components of each prototype
label sum up to 1 and are therefore interpretable as probabilities or fuzzy labels.
Crisp labels can be obtained by applying e.g. the majority vote principle.

There is another way to interpret the chosen approach of supervision in the Eu-
clidean setting. It can easily be seen that if the data space is Euclidean, data space
and label space can be embedded into �d+c by vectors (

√
1 − β · x,

√
β · xL). The

squared Euclidean norm then results in ‖(√1 − β · x,
√

β · xL)‖2 = (1 − β) · ‖x‖2 +
β · ∥∥vL

∥∥2, which yields the same separable cost function as above. Thus, applying
the standard batch methods on the embedded Euclidean vector set is equivalent to
the supervised batch methods introduced above.
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All the batch variants of Neural Gas, SOM, and kMeans can be modified like
presented above to incorporate additional label information. The convergence of the
supervised variants is guaranteed for all the methods as shown in (Hammer et al.,
2006b). In Algorithm 3.3 a sketch of the Supervised Batch Neural Gas algorithm
(Hammer, Hasenfuss, Schleif, and Villmann, 2006b) is shown as a representative
example.

Algorithm 3.3: Supervised Batch Neural Gas

Input

Data V = {v1, v2, . . . , vm} ⊂ �d

Labels
{
vL
1 , vL

2 , . . . , vL
m

} ⊂ �c

Begin

(* Initialize prototypes and neighbourhood range *)

Init wi ∈ �d randomly for all i ∈ {1, . . . , n} and λ0 = n/2, λ = λ0

(* Repeat for a given number of epochs. . . *)

for t := 1 to epochs do

Compute distances. . .

d∗β(wi, vj) = (1 − β) · ‖wi − vj‖2 + β
∥∥wL

i − vL
j

∥∥2

Determine ranks (break ties deterministically). . .

ki(W, vj) =
∣∣∣{ l ∈ {1, . . . , n} : d∗β(wl, vj) < d∗β(wi, vj)

}∣∣∣
Update prototype locations. . .

wi =
∑

j hλ(kij) · vj/
∑

j hλ(kij)

Update prototype labels. . .

wL
i =

∑
j hλ(kij) · vL

j /
∑

j hλ(kij)

Decrease neighbourhood range. . .

λ = λ0 · (0.01/λ0)t/epochs

endfor;

(* Return representative prototypes and prototype labels *)

Return wi and wL
i

End.

The introduced modification now allows to incorporate additional information
into the learning process which turns the original unsupervised methods into su-
pervised ones. This supervision helps to improve the quality of the results because
the receptive fields are influenced by the underlying class information. Especially,
when the prototypes are used as a classifier, this leads to a better generalization
ability as it can be seen from the experiments in Section 3.5.

Up to now, we have been discussing methods that are capable of dealing with
ten thousands of datapoints from Euclidean spaces. But nowadays there are many
situations where the practitioner is facing datasets with millions of points. While
handling those huge datasets, the computational limits of the standard methods,
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even those of the fast batch approaches, quickly arise. In the following, we will
present a technique to handle even those very large datasets by prototype-based
methods. The introduced technique is based on patches of smaller size that are
consecutively cut from the dataset. While processing the patches, statistical infor-
mation gained from the processing of former patches is taken into account.

3.4 Processing of Very Large Datasets

Twenty month from now, the amount of electronic data stored worldwide will be
doubled—and the rate is accelerating. In many fields, e.g. computational biology,
image processing, or particle physics, vast amounts of data are produced from day
to day in experiments. As a consequence, nowadays almost every scientific disci-
pline is facing the problem to handle huge data repositories. Here, automatic data
mining constitutes an indispensable tool bridging the gap between available data
and desired knowledge which would otherwise be inaccessible. Some of the big
challenges of real-world data mining have been identified in a panel discussion at
the 2007 SIAM International Conference on Data Mining as follows (Hirsh, 2008):
Mining massive data which go beyond the capacities of standard algorithms, min-
ing streaming data which is generated in a continuous process and which requires
immediate feedback, mining heterogeneous data which stem from different sources,
applicability of methods and interpretability of the results by researchers outside
the data mining community, among others. These facts pose particular require-
ments towards standard data mining tools concerning their efficiency, flexibility,
and interpretability.

Prototype-based techniques, like the above introduced SOM and Neural Gas,
possess several striking features because of which they are widely used in appli-
cations: training is intuitive and simple, the final classifier represents classes by
geometrically meaningful prototypes, and the algorithms are quite powerful com-
pared to more complex alternative clustering algorithms.

The original online variants that sample point for point from the dataset can
be applied to very large datasets without restrictions but due to their convergence
properties (Martinetz et al., 1993; Kohonen, 2001) the computation time needed
might be beyond practical limits.

In the fast batch variants, all data is used for every iteration over and over
again. But for a reasonable performance it is necessary to hold all data at once
in random-access memory during computation. Unfortunately, those very large
datasets cannot be held at once within memory for processing due to the sheer
amount of data.

To fill the gap, a special computation scheme is introduced, relying on a single
pass technique of fixed sized patches. In between processing of the patches a suffi-
cient statistic is passed over describing the data distribution in the former patches.
The patch size can then be chosen to match the given memory constraints. The
proposed patch versions reduce the computation and space complexity with a small
loss of accuracy. As beforehand, we develop the idea on the basis of Neural Gas to
give a concrete and clear representation, how to migrate the idea to SOM or other
prototype-based methods is obvious besides technicalities.

A variant of Neural Gas for very large datasets was introduced by Alex et al.
(2009). It is based on a patch processing scheme that splits the dataset into a
number of disjunct patches and applies Batch Neural Gas consecutively on each
patch. Additionally, each patch is enhanced by the prototypes of the processing of
the former patch weighted by the sizes of their receptive fields. That way, a suffi-
cient statistic of former data is transferred in between the patches. Batch Neural
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Gas in conjunction with this patch scheme shows a very good performance in the
experiments. Moreover, it can easily be parallelized with an almost linear speedup
as shown in (Alex and Hammer, 2008). Open questions by now concern with the
existence of bounds on the quantization error and the sufficiency of the statistics
from a theoretical point of view.

In the following, the Patch Neural Gas algorithm is presented in more detail, lay-
ing the foundations to build on in later chapters about patch schemes for prototype-
based methods in non-Euclidean spaces.

Patch Neural Gas

Assume a finite dataset V = {v1, v2, . . . , vm} ⊂ �d is given. During processing of
Patch Neural Gas, np disjoint patches of fixed size p = �m/np� are taken from the
dataset V consecutively1, i.e. every patch Pi is a subset of V and it holds

⋃
i Pi = V .

The idea of the patch scheme is to add the set of final prototypes Wt−1 from
the processing of the former patch Pt−1 as additional weighted datapoints to the
current patch Pt, forming an extended patch P ∗

t = Pt ∪ Wt−1 to work on further.
Every original datapoint vj ∈ V is equipped with a multiplicity m(vj) = 1.

The additional datapoints – as former prototypes – are weighted according to the
size of their receptive fields taking into account possible multiplicities, i.e. how
many datapoints they have been representing in the former patch counted with
multiplicities. The multiplicity m(wi) of a prototype wi ∈ Wt is then given by

m(wi) =
∑

v∈P∗
t ∩Vi(Wt)

m(v).

Now, the original Batch Neural Gas method must be modified to take into
account the multiplicities. Incorporating the multiplicities into the cost function
(3.2) yields

Êλ(W, kij) =
1
2

∑
i

∑
j

hλ(kij) · m(vj) · ‖wi − vj‖2
,

since every datapoint vj is weighted with multiplicity mj. The new update rule for
the prototypes derived from the modified cost function in analogy to (3.5) is given
by

wi =

∑
j hλ(kij) · m(vj) · vj∑

j hλ(kij) · m(vj)
for all i ∈ {1, 2, . . . , n}.

For the processing of each patch, all properties concerning optimal assignments and
convergence follow the same way as in Section 3.1, since the multiplicities can be
interpreted as multiples of a single point.

Picking up the pieces, we obtain the Patch Neural Gas algorithm (Alex, Hasenfuss,
and Hammer, 2009) as sketched in Algorithm 3.4.

Using the above introduced technique of patch processing, it is now possible to
handle very large datasets with millions of data points. The technique has shown
its strength in several experiments as it can be seen in Section 3.5 and also later on
in Section 4.6.

In the next section, we will present experimental results for all of the above
introduced methods and techniques.

1The remainder is no further considered here for simplicity. In the practical implementation
the remaining datapoints are simply distributed over the first (M − p · np) patches.



32 Chapter 3 : Fast Topographic Mapping of Euclidean Data

Algorithm 3.4: Patch Neural Gas

Begin

Cut the first Patch P1

Apply Batch Neural Gas on P1 −→ Prototypes W1

Update Multiplicities m(W1)

Repeat for i = 2, . . . , np

Cut patch Pi

Construct Extended Patch P ∗
i = Pi ∪ Wi−1

Apply modified Batch Neural Gas with Multiplicities

−→ Prototypes Wi

Update Multiplicities m(Wi)

Return final Prototypes Wnp

End.

3.5 Experimental Results and Applications

In the following, experimental results and applications of the above introduced
methods are presented. The data in the assessment was chosen to cover different
aspects that are common in real-life applications, or to demonstrate the behaviour
of the methods in situations which are of theoretical importance. Also, most of
the times, data that has already been used in literature was chosen to provide a
comparison to the state-of-the-art. There emerged already some interesting appli-
cations of the methods, most notably Batch Neural Gas has proved its amenities
in the efficient compression of sequences of 3D models in Computer Graphics by
determining key-frames in a very fast way (Winkler et al., 2008).

Experimental Results on Batch Methods

We demonstrate the behavior of the algorithms in different scenarios which cover
characteristic situations. All algorithms have been implemented based on the SOM
Toolbox for Matlab (Vesanto et al., 2000). We used k-means, SOM, and Online
Neural Gas with default parameters as provided in the toolbox. Batch NG and
Batch SOM have been implemented according to the above formulas. Note, that the
training sets are normalized prior to training using the z-transformation, i.e. data
is normalized in a way that the expectation value in each dimension is 0 and the
standard deviation is 1. Initialization of prototypes takes place using small random
values. The initial neighborhood rate for neural gas is set to λ = n/2, n being the
number of neurons, and it is multiplicatively decreased during training. For SOM,
we used square lattices of n =

√
n × √

n neurons and a rectangular neighborhood
structure, whereby

√
n is rounded to the next integer. Here the initial neighborhood

rate is
√

n/2. To measure the quality of the mapping the empirical quantization
error according to eq. (2.2) was determined.

Synthetic data

The first data set is the two-dimensional synthetic data set from (Ripley, 1996)
consisting of 250 data points and 1000 training points. Clustering has been done
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using n = 2, . . . , 25 prototypes, resp. the closest number of prototypes implemented
by a rectangular lattice for SOM. Training takes place for 5n epochs.

The mean quantization error on the test set is shown in Fig. 3.1. For k-means,
idle prototypes can be observed for large n. For Batch SOM and standard SOM,
the quantization error is worse (ranging from 1.7 for two neurons up to 0.3 for 24
neurons, not depicted in the diagram), which can be attributed to the fact that the
map does not fully unfold upon the data set and edge effects remain, which could
be addressed to a small but non-vanishing neighborhood in the convergent phase in
standard implementations of SOM which is necessary to preserve topological order.
Thus, Batch NG allows to achieve results competitive to NG in this case, however,
using less effort. The median variants whose results are also displayed in the figure
will be discussed later on.

Segmentation data

The segmentation data set from the UCI repository consists of 210 (training set)
resp. 2100 (test set) 19 dimensional data points which are obtained as pixels from
outdoor images preprocessed by standard filters such as averaging, saturation, in-
tensity, etc. The problem is interesting since it contains high dimensional and only
sparsely covered data. The quantization error obtained for the test set is depicted
in Fig. 3.1. As beforehand, SOM suffers from the restriction of the topology. Neu-
ral gas yields very robust behavior, whereas for k-means, idle prototypes can be
observed.

Checkerboard

This data set is taken from (Hammer et al., 2005). Two-dimensional data are
arranged on a checkerboard (cf. Figure 3.12), resulting in 10 times 10 clusters, each
consisting of 15 to 20 points. For each algorithm, we train 5 times 100 epochs
for 100 prototypes. Obviously, the problem is highly multimodal and usually the
algorithms do not find all clusters. The number of missed clusters can easily be
judged in the following way: the clusters are labeled consecutively using labels 1
and 2 according to the color black resp. white of the data on the corresponding
field of the checkerboard. We can assign labels to prototypes a posteriori based on
a majority vote on the training set. The number of errors which arise from this
classification on an independent test set count the number of missed clusters, since
1% error roughly corresponds to one missed cluster.

Online Batch Online Batch Batch
NG NG SOM SOM k-Means

quantization error
train 0.0043 0.0028 0.0127 0.0126 0.0043
test 0.0051 0.0033 0.0125 0.0124 0.0050
classification error
train 0.1032 0.0330 0.2744 0.2770 0.1136
test 0.1207 0.0426 0.2944 0.2926 0.1376

Table 3.1: Quantization error and classification error on Checkerboard Data for
posterior labeling for training and test set (both are of size about 1800). The mean
over 5 runs is reported. The best results on the test set is depicted in boldface.

The results are collected in Tab. 3.1. The smallest quantization and classification
error is obtained by Batch NG. As beforehand, SOM and Batch SOM do not fully
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unfold the map in the data. In the same way online NG does not achieve a small
error because of a restricted number of epochs and a large data set which prevents
online NG from fully exploring the data space. K-means also shows a quite high
error (it misses more than 10 clusters) which can be explained by the existence of
multiple local optima in this setting, i.e. the sensitivity of k-means with respect to
initialization of prototypes. In contrast, Batch NG finds all but 3 to 4 clusters.
Hence, batch versions show much better behavior than their online correspondents,
due to a faster convergence of the algorithms. Here, SOM suffers from border effects,
whereby the topology mirrors precisely the data topology. Batch NG yields quite
good classification results which are even competitive to supervised prototype-based
classification results as reported in (Hammer et al., 2005).

Experimental Results on Supervised Methods

Artificial data

The main difference of Batch NG (BNG) with posterior labeling and Supervised
Batch NG (SBNG) consists in the fact that the rank assignments also take into
account whether the labels fit. This has the effect that the prototypes of SBNG
better account for cluster borders of labeled data points, whereas BNG only follows
the overall statistics. The parameter β controls the strength of the label contribu-
tion, β = 1 corresponds to the original BNG. This effect can be clearly observed
in the following example. We consider two Gaussian clusters labeled by 0 resp. 1,
whereby points with x-component at least 0 are dropped for class 0, and points
with x-component at most 0 are dropped for class 1. Hence, the classes are well
separated, whereby a couple of data points lies close to the decision boundary. Fig-
ure 3.2 shows a typical result of the receptive fields of the prototypes obtained by
BNG and SBNG with mixing parameter β = 0.1, respectively.

Thereby, prototypes of BNG are labeled by a majority vote within the receptive
field. Fuzzy labels for SBNG arise automatically during training, these are turned
into crisp classes based on the largest component of the label vector. Obviously,
SBNG well approximates the decision border, whereas BNG yields a couple of errors
at this region. This corresponds to the classification accuracy of 99.1% for SBNG
and 97.8% for BNG.

Iris data

We train batch BNG and SBNG using 9 prototypes on the well-known iris dataset,
which consists of 150 points characterized by 4 real-valued attributes coming from
three classes of equal size. Class 1 is well separated from class 2 and 3, but classes
2 and 3 slightly overlap. The task here is to train a classifier on a subset of the
data and assess the trained classifier with the remaining part. The accuracy, i.e.
the fraction of correctly classified data points, is measured. For each run, the set
is randomly divided into a training and test set of equal size, and averages of the
accuracy over 50 runs are reported. The neighborhood range λ is multiplicatively
annealed starting from 4.5 over 100 training epochs. Different values of the mixing
parameter β are reported.

The classification accuracy on the training and test set for SBNG and, in com-
parison, for BNG with posterior labeling can be observed in Fig.3.3. Obviously,
the classification accuracy becomes better for smaller β, i.e. more emphasis of the
given data labels. Thereby β must not become 0 which corresponds to a pure label
adaptation without adaptation of the prototypes. β = 1 corresponds to the original
BNG. The classification accuracy of the original BNG is inferior compared to the
supervised version due to the overlap of classes 2 and 3 which is not accounted for
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by the overall statistics of the input vectors. The algorithm reported in (Villmann
et al., 2006) (Gaussian approximation) achieves (in a single run with parameter
β = 0.5) a training set accuracy of 0.85 and test set accuracy of 0.91 using 9 pro-
totypes, thus it is better than post labeled NG, but worse compared to Supervised
Batch NG for this parameter choice.

Wisconsin breast cancer

The well-known Wisconsin breast cancer data (WDBC) consists of 569 data points
described by 30 real-valued input features. It originates from medical research
where fine needle aspiration biopsy was applied to suspicious breast masses and
microscope images of the tissues were analyzed. Ten real-valued features describing
characteristics of cell nuclei like radius, perimeter, fractal dimension, symmetry,
concavity, etc. were gathered. For every of the ten features the mean, standard
deviation, and the largest value over all observed cells were calculated leading to
30-dimensional data points. The task is to determine whether the sample is benign
or malignant. There are 357 benign and 212 malignant samples.

For training 20 prototypes were used and the same parameters as beforehand,
starting with an initial neighborhood range 10. The results are presented in Fig.3.4.
As before, a larger emphasis on the correctness of the labels yields a better classi-
fication accuracy which is superior to BNG. Interestingly, the approach presented
in (Villmann et al., 2006) which relies on a different supervised extension of NG
(Gaussian approximation of the rank) achieves an accuracy of 0.92 for the training
set and 0.91 on the test set for a mixing parameter 0.5, which is in this case worse
than the result obtained by BNG with posterior labeling.

Experimental Results on Magnification Control

For all experiments the initial neighborhood range λ0 is chosen as n/2 with n the
number of neurons used. The neighborhood range λ(t) is decreasing exponentially
with the number of adaptation steps t according to λ(t) = λ0 · (0.01/λ0)t/tmax (cf.
Martinetz et al., 1993). The value tmax is given by the number of epochs of a
training run.

Control experiment

In a first control experiment we use the setting as proposed e.g. in (Villmann and
Claussen, 2006). We use the distribution (x1, . . . , xd,

∏d
i=1 sin(π·xi)) for d ∈ {1, 2, 3}

and uniformly distributed xi in [0, 1]. Thus, the intrinsic data dimensionality in
these examples is d̂ = d. The number of stimuli is 2500 for d = 1, 5000 for d = 2,
and 10000 for d = 3. These numbers account for the fact that the necessary number
of data points to sufficiently sample a d-dimensional data space grows exponentially
with d. Due to computational complexity a k · 2d - scheme with a large constant
k = 2500 was chosen instead of kd.

Optimum information transfer for NG with magnification control can be ex-
pected for values which yield α′ = (c + 1) · d̂/(d̂ + 2) != 1, where c is the control
parameter and d̂ the intrinsic dimensionality of data. Hence, it is c = 2 (d̂ = 1),
c = 1 (d̂ = 2), and c = 2/3 (d̂ = 3). We train an NG network with magnification
control for control values c ∈ [−1.5, 3.5] (step size 0.25) such that the overall be-
havior of the local learning rule for different c can be observed. An NG network
with 50 neurons, initial neighborhood range 25 and 200 epochs per training run has
been used. The reported results have been averaged over 20 runs. The data density
p(v) has been estimated by a Parzen window estimator with bandwidth given by
the average training point distances divided by 3.
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The information theoretic quality of the information transfer of the map can be
judged by counting the balance of patterns in the receptive fields. For equal values,
optimum information transfer is achieved. We count the number of data points of
the training set in the receptive of a given prototype averaged over the number of
data points and report the entropy thereof. The resulting values are reported in
Fig. 3.5. The entropy should be maximum for optimum information transfer, i.e.
we expect the optimum for c = 2 (d̂ = 1), c = 1 (d̂ = 2), and c = 2/3 (d̂ = 3),
respectively. As indicated by the arrows, the experimental optimum of the curves is
very close to the expected theoretical values in all cases, thus confirming the theory
presented in this thesis.

Remote sensing image analysis

In geophysics, geology, astronomy, and many environmental applications airborne
and satellite-borne remote sensing spectral imaging has become one of the most
advanced tools for collecting vital information about the surface of the Earth and
other planets. Thereby, automatic classification of intricate spectral signatures has
turned out far from trivial: discrimination among many surface cover classes and
discovery of spatially small, interesting species proved to be an insurmountable chal-
lenge to many traditional methods. Usually, spectral images consist of millions of
data points such that clustering often becomes a necessary prerequisite for further
processing and inspection. Thereby, it is often crucial to preserve characteristics
from spatially small interesting regions which are easily oppressed by standard vec-
tor quantization. Here we show that magnification control can help to preserve the
characteristics of rare classes.

We consider a LANDSAT TM image from the Colorado area, U.S.A., for which
a manually generated label map of surface covers is available. The original image
covers an area of about 50x50 kilometers yielding approximately 2 million data
points which can be divided into 14 classes with different surface covers. Data
are 6-dimensional, the thermal band with low resolution was left away. An initial
Grassberger-Procaccia analysis yields the intrinsic dimensionality d̂ = 3.1414 (Vill-
mann et al., 2003). For the experiments, we randomly selected 17004 data points
with a representative class distribution. Tab. 3.2 shows the different surface cover
types and their respective percentage. As depicted in Tab. 3.3 dimensions 1, 2, 3,
5, and 6 are correlated.2

Therefore, we depict the projection onto dimensions 1 and 4. Data are approx-
imately unimodal with several small characteristics at the data borders, as can be
seen in Fig. 3.9. The second largest class (1-scotch pine) lies very close to the center
of gravity, the largest one (13-dry meadow) a bit off center. Small extremal classes
at the data borders are given by 9-water and 14-alpine vegetation.

We train a neural map with 60 neurons for 100 epochs. The local data density
is estimated by Parzen windows as before. Thereby, we use different control values.
The final location of neurons is depicted in Figs. 3.6-3.8 for α = 0.01, α = 0.61 (i.e.
standard neural gas), and α = 2. Thereby, the star denotes the center of gravity
of the data points. Obviously, the neurons focus on the common effects and move
towards the center of gravity for large values of α, whereas they sample rare effects
at the borders (e.g. class 14 at the upper right corner) for small values of α.

This behavior can be quantified by counting the number of neurons responsible
for a given class. Thereby, neurons are labeled according to a majority vote on
their receptive field. The number of hits for every class averaged over 10 runs is
depicted in Fig. 3.10. c = 0 corresponds to standard NG, c = 0.64 is close to the

2This observation is also stressed when training a SOM using the data: the gradients of the
component planes of dimensions 1, 2, 3, 5, and 6 look very similar, whereas the gradient of the
component plane for dimension 4 is perpendicular.
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class number percentage surface cover type
1 17.30% scotch pine
2 10.46% Douglas fir
3 5.32% pine/fir
4 7.93% mixed pine forest
5 4.26% supple/prickle pine
6 6.13% aspen/mixed pine forest
7 5.05% without vegetation
8 8.12% aspen
9 0.48% water
10 2.83% moist meadow
11 3.78% bush land
12 7.78% grass/pastureland
13 19.77% dry meadow
14 0.79% alpine vegetation

Table 3.2: Surface cover classes and their respective percentage

dim 1 2 3 4 5 6
1 1 0.9564 0.9493 0.4691 0.8162 0.8544
2 0.9564 1 0.9678 0.5858 0.8448 0.8682
3 0.9493 0.9678 1 0.4867 0.8339 0.8897
4 0.4691 0.5858 0.4867 1 0.5783 0.4417
5 0.8162 0.8448 0.8339 0.5783 1 0.9574
6 0.8544 0.8682 0.8897 0.4417 0.9574 1

Table 3.3: Correlation coefficients of the data dimensions: Correlated dimensions
1, 2, 3, 5, and 6 are shown in bold face.

information theoretic optimum. c → 0 focuses on rare events, whereas large values
c account for final prototype locations in typical regions, the center of gravity as
the limit. The depicted values are c ∈ {−0.9836,−0.91817,−0.59, 0, 0.64, 2.27, 3.9}
which corresponds to a magnification factor α ∈ {0.01, 0.05, 0.25, 0.61, 1.0, 2.0, 3.0}
assuming d̂ ≈ 3.1414. One can see that small classes at the borders of the data set
(classes 9-water and 14-alpine vegetation) are represented by neurons only for small
values c which emphasize rare events. In the limit of large c, class 1 (scotch pine),
which is the second largest class and located near the center of gravity, accumulates
most neurons. Thus, magnification control allows, depending on the control values,
to detect rare cover types or, conversely, to focus on the most representative surface
cover type in inspections.

Experimental Results on Patch Processing

We test patch and batch versions of k-means and NG for three different data sets, a
very simple four-mode clustering problem, a highly-multimodal benchmark dataset
from (Cottrell et al., 2006), and a large data set from the 1998 KDD cup data mining
contest which was also tested in (Farnstrom et al., 2000). For all experiments, cluster
centers are initialized at random positions close to the origin which, due to data
normalization, constitutes a reasonable center point for all data sets. It can be
observed that the exact position of the initial prototypes has hardly an influence on
the overall results and virtually no influence if averaged over several runs, as done
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Batch Patch Batch Patch
KM KM NG NG

Mean quantization error (Four Clouds)
1.25 1.28 1.25 1.26

Variance ·103

0.07 0.37 0.07 0.1

Mean classification accuracy in % (Checkerboard)
patch size 200

87.32 86.38 93.35 90.18
patch size 400

85.43 90.76
patch size 600

84.47 91.80

Mean quantization error (KDD)
patch size 1000

0.468 0.464 0.460 0.462
variance ·103

0.265 0.265 0.03 0.012
patch size 10000

0.468 0.461
variance ·103

0.114 0.011

Table 3.4: Quantization error or classification accuracy, respectively, as obtained by
the different clustering algorithms for the Four Clouds data set, the Checkerboard
data set, and the KDD data set for batch and patch clustering using different patch
sizes

in the experiments.

Four Clouds

Data stem from a mixture of four Gaussians with unit variance in two dimensions
as depicted in Fig. 3.11. The set consists of 40000 data points. Training is done
by ten-fold crossvalidation using four clusters and a random (i.i.d.) order of the
points. Thereby, the results on the training and test sets differ only slightly. We
use a crossvalidation to evaluate the robustness and sensitivity of the algorithm with
respect to noise. The patch size is 100, and each clustering of a patch includes 20
epochs, thereby annealing the neighbourhood of NG from n/2 = 2 to 0. The mean
value of the quantization error is given in Tab. 3.4. Obviously, the results are almost
identical for all runs due to the simplicity of the data set. Very slight differences of
the quantization error are due to the fact that the points at the (overlapping) cluster
borders are assigned differently. For all methods, the four cluster centers have been
found in every run, showing no differences between batch- and patch-clustering and
different patch sizes, respectively, in the principled location of the cluster centers.

Checkerboard

Data constitute a multimodal distribution with 100 clusters in two dimensions as
depicted in Fig. 3.12 separated into a training and test set. The overall number of
data points in both, training and test set is about 2000. Training is done using 100
neurons. The patch size is chosen as 200, 400, and 600, respectively. The initial
neighbourhood size of NG, 10, is annealed to 0 during training. The number of
epochs is 20 for each patch clustering. It is easily possible to evaluate the number
of missed clusters in this task by referring to the classification error of the under-
lying checkerboard: we assign the label 0 and 1 to the data points such that a
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checkerboard-pattern with 100 fields arises. We label the cluster centers based on
the training set and evaluate the classification error of this clustering on the test
set. Each percentage of misclassification corresponds to one missed cluster (of 100
total clusters). The mean correct classification (in percentage) obtained in ten runs
is reported in Tab. 3.4. In this case, the quantization error does not allow to infer
the quality of the clustering due to the large number of comparably small clusters:
it is around 0.055 for batch and patch variants of k-means and NG, hardly showing
any difference between batch and patch clustering.

The clustering results clearly show the following: the task is quite hard and
all methods miss a few cluster centers (ranging from 15 for k-means to 7 for NG).
Note that each of the 100 clusters is only represented, on average, by 20 data
points, and the number of neurons is chosen exactly as 100, i.e. every neuron must
represent exactly one center for optimum classification accuracy. In these cases,
a clear difference of patch and batch clustering can be observed: overall, patch
clustering finds about 3-4 clusters less compared to batch clustering. This effect
depends slightly on the size of the patches, as can be observed in particular for NG.
However, for reasonable patch size the loss in accuracy is only minor and it could
easily be accounted for by using a slightly larger number of cluster centers than
necessary. In this scenario the dependency of k-means on initialization pops out for
both, batch and patch clustering.

Due to the intuitive evaluation of the clustering result by means of the classi-
fication error, a comparison to online-neural gas, which can directly be applied to
large data sets since it adapts the prototypes directly after every pattern, is easily
possible in this scenario: After only one pass through the data, no convergence can
be observed in the sense that the neurons are not located in the cluster centers at
all. After about 5 epochs, convergence can be observed. On average, 15 clusters
are missed after 5 epochs, about 10 clusters are missed after 10 epochs, about 8
clusters are missed after 20 epochs (this setting is comparable to the setting tested
for batch NG, whereby batch NG obtains, on average, slightly better performance),
about 5 clusters after 50 epochs, and about 3 after 100 epochs. Thus, several passes
over the entire data set are necessary for online NG to show competitive results to
patch NG.

KDD Cup Data Mining Contest

This data set stems from the 1998 KDD cup data mining contest, and we use
the same setting as proposed in (Farnstrom et al., 2000). Data contains 95412
records with 481 statistical fields which describe statistical information about people
who made charitable donations in response to direct mailing requests. For our
experiments, 56 features from these fields have been selected, including numerical
features such as donation amount, income, age; date values, such as donation date,
date of birth; and binary values such as income category. Data are preprocessed such
that only numerical values with zero mean and unit variance result. The number of
clusters was set to 10, as proposed in (Farnstrom et al., 2000), and the number of
epochs is 20. The mean quantization error averaged in a ten-fold crossvalidation is
reported in Tab. 3.4 for two different patch sizes corresponding to roughly 1% and
10% of the data, respectively. Since the preprocessing in (Farnstrom et al., 2000)
has been described only qualitatively, we cannot compare to the results reported
there, but we test k-means in our setting. Obviously, a slight improvement of NG
compared to k-means can be observed, whereby patch clustering using 10% of the
data only slightly reduces the achieved results. Interestingly, the variance of the
results can be reduced by patch clustering compared to batch clustering, and – as
expected – NG compared to k-means. However, it is clearly demonstrated that for
all variants, patch optimization only slightly decreases the overall result whereby
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Batch Patch Ratio
Checkerboard
k-means

Accuracy 0.8707 0.8675 1.0037
Time (ms) 1053.4 452.5 2.3280

NG
Accuracy 0.9353 0.9074 1.0307
Time (ms) 102781.9 37074 2.7723

11 Clouds
k-means

Accuracy 0.9928 0.0.995 1
Time (ms) 76376.5 64465.6 1.18

NG
Accuracy 0.9984 0.9984 1
Time (ms) 94703.9 79134.5 1.2

Table 3.5: Classification results and time difference of batch and patch clustering
with 20 (for batch) and 5 (for patch) epochs and patch size 200 for the Checkerboard
data, and for batch and patch clustering with 8 (for batch) and 5 (for patch) epochs
for the simpler 11 clouds data set.

reducing the required buffer size to a fixed size and reducing the training to a single
run over the overall data set (combined with a small number of epochs for each
patch).

Comparison of the Clustering Times

Due to the smaller size of the data sets, patch clustering requires less iterations
until convergence compared to batch clustering. This effect can be measured in
experiments as follows:

For the Checkerboard data, we perform the same experiment as beforehand,
thereby using 20 iterations for batch clustering and 5 iterations for patch clustering
for a patch size 200. These numbers represent the necessary number of iterations
until convergence for the respective scenario. As can be seen from Tab. 3.5, the
quotient of the performance measured by means of the classification error is close
to one, whereby the gain of the efficiency accounts for a factor larger than 2.

For a simpler data set consisting only of 11 clouds and 44000 data points, the
effect is a bit less pronounced: for batch and patch clustering, the classification ac-
curacy is the same while obtaining an efficiency gain of about 1.2 for patch compared
to batch clustering. This gain is due to the reduced number of necessary epochs
until convergence, which are 5 for patch clustering and 8 for batch clustering, see
Tab. 3.5.

Nonstationary Distributions

So far, experiments were conducted using i.i.d. data. It can be expected that stream-
ing data usually displays a trend because of different times or modes of data acqui-
sition. Thus, it is crucial to test the behavior of patch clustering for nonstationary
distributions. When dealing with nonstationary distributions, two different objec-
tives can be specified: on the one hand, it can be desirable to only take the most
recent data into account, incorporating a ‘forgetting factor’ into the methods for
life-long learning. This can be achieved by means of a leaky weighting of data points
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or prototypes, respectively, for patch clustering. However, we are not interested in
the scenario of life-long learning in this contribution. Rather, we are interested in
the question whether patch clustering can achieve results competitive to full batch
clustering also if the consecutive patches are non i.i.d. but display a trend. Thus the
question is whether the representation of already seen data points by means of pro-
totype centers is sufficient even if the prototypes are not yet remotely representative
for the full data set.

We test this question by means of the 11 clouds distribution as beforehand, see
Fig. 3.13. We use a data set consisting of 11000 points. The patch size is 1000, i.e. it
corresponds to one mode of the data. We present the data set in three different ways
to patch clustering, for comparison: randomly permuted i.i.d. data, data which are
strictly sorted according to the modes (from left to right and bottom to top), and
data which are mixed in such a way that every patch comprises 56% of a specified
mode and 21% resp. 1% of the immediate two preceding and succeeding modes. We
train patch clustering using 100 epochs per patch. The exact data presentation for
every patch as well as the results of patch clustering after every patch are displayed
in Figs. 3.14,3.15,3.16. As can be seen, the behavior is very robust with respect to
the final results: in all runs, the final clustering is almost identical with respect to
the given data distribution. Interestingly, the third case, where modes are presented
consecutively subject to a diffusion process, seems the most difficult setting in this
case. The clustering is affected by this distribution in the form of a small shift of the
ideal center of cluster 7 to the right in the final result as can be seen in Fig.3.16 in
the last three patches. However, the receptive fields in the data set are not affected
by this small shift.

As it can be seen from the experiments, the batch variants of the prototype-based
methods generate results of the same quality as the standard online approaches but
much faster. Also the extensions to supervision, magnification control, and patch
processing have shown their benefits in the experiments.
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Figure 3.1: Mean quantization error of the methods for the synthetic data set (top)
and the segmentation data set (bottom)
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Figure 3.2: Receptive fields obtained by BNG (left) and SBNG (right) on an artifi-
cial two-dimensional data set. Obviously, the incorporation of the label information
for SBNG yields a better separation of the two classes; the prototype locations
follow the classification boundary.
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Figure 3.3: Accuracy on the training and test set achieved by Supervised Batch NG
(SBNG) and Batch NG (BNG) on the iris dataset for different mixing parameters
β.
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mixing parameters β.
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Figure 3.5: Entropy of map formation for different values c of magnification control
and training sets of intrinsic dimensionality d̂ ∈ {1, 2, 3}. The arrows indicate the
expected optima of the entropy according to the underlying theory.
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Figure 3.6: Final prototype location for α = 0.01

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Figure 3.7: Final prototype location for α = 0.61
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Figure 3.8: Final prototype location for α = 2.0.
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Figure 3.9: Location of the classes on the map: a large overlap of the classes can be
observed since many classes are centered around different kinds of forest. Classes 9
(water) and 14 (alpine vegetation) , respectively, constitute two extremal classes at
the borders.
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Figure 3.10: Number of neurons per class in dependence of the control parameter
c.
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Figure 3.11: Mixture of four Gaussian clusters

Figure 3.12: Checkerboard data
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Figure 3.13: 11 clouds data set given by a mixture of Gaussians.
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Figure 3.14: Results of patch clustering for i.i.d. data representations (randomly
sampled from all clusters) after the first (left) and last (right) patch. The data
presented in the patch are highlighted. Obviously, the cluster centers are almost
fixed after the first patch due to the nature of the problem.
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Figure 3.15: Results of patch clustering for data presented consecutively mode-wise
according to its location in the data set (from left to right and top to bottom)
after every patch. The data presented in each patch is highlighted. As can be
clearly observed, the cluster centers vary in every patch, however, they are located
at almost ideal position with respect to all already processed data, resulting in an
almost perfect clustering after the final patch.
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Figure 3.16: Results of patch clustering for data presented according to its location
in the data set subject to a diffusion process (from left to right and top to bottom,
mode-wise presentation with parts of the current, the two preceding, and the two
subsequent clusters) after every patch. The data presented in each patch is high-
lighted. As before, the cluster centers vary in every patch. After processing the full
data set, the cluster centers are located at almost ideal position with respect to all
already processed data. Apart from a small shift of the center of cluster 7 which
does not effect its receptive field in the given data set, an almost perfect clustering
after the final patch is achieved.



Chapter 4

Topographic Mapping of
Dissimilarity Data

In this chapter we are concerned with the processing of data that is in general not
of Euclidean nature, that means an explicit embedding into Euclidean spaces is not
available. The classical prototype-based topographic mapping methods introduced
above cannot handle these data since their original formulations are based on vector
operations in Euclidean spaces. In what follows, we will extend the principles of the
above introduced prototype-based methods to handle those non-vectorial datasets.
For the sake of clarity, the techniques are once again demonstrated exemplarily for
Neural Gas, but a transfer of the ideas to Self-Organizing Maps is obvious and shall
be sketched where necessary.

4.1 Introduction to Dissimilarity Data

As the name suggests, dissimilarity describes a certain degree of difference between
objects that might be measured by arbitrary values. Dissimilarities are not required
to be distances in a sense that they are metric. We only expect them to be symmet-
ric and nonnegative, what is certainly a natural demand.1 Also an object should
be self-similar, so we require the dissimilarity to itself to be zero. We formalize
dissimilarities by the following definition of dissimilarity measures.

Dissimilarity Measures Given a set of data points V from an arbitrary space.
A function d : V × V →� is a dissimilarity measure on V , if it is non-negative,
reflexive, and symmetric. That is, for all v, v′ ∈ V it holds

• d(v, v′) ≥ 0 (non-negativity),

• d(v, v′) = 0 (reflexivity), and

• d(v, v′) = d(v′, v) (symmetry).

For convenience, we denote the dissimilarity measure d(vi, vj) defined on a finite
dataset V = {v1, v2, . . . , vm} also as dij in the following when it can be done without
ambiguity. �

So by definition, the Euclidean metric is obviously a dissimilarity measures.
Further examples of dissimilarity measures used in practical applications are, for
instance,

1Although in the context of psychological experiments there are different opinions whether the
demand of symmetry might be too restrictive.

55
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• alignment distances from bioinformatics,

• Levenshtein metric from string processing,

• Hamming distance from information theory,

• geodesic distance from geometry,

• Jaccard index and Tanimoto coefficient from statistics, and

• normalized compression distance from algorithmic information theory.

Note that for a finite set V = {v1, v2, . . . , vm} of data points the dissimilarity
measure can be written as a dissimilarity matrix D = (dij)ij . Typically, we will
use this representation in the following. The set of data points and the structure of
the underlying mathematical space is in general unknown, in almost all cases only
a dissimilarity matrix is given. For historical reasons, dissimilarity datasets are also
called relational data (cf. Hathaway and Bezdek, 1994), because relations between
objects are described.

It is to be understood here, that dissimilarity data does not necessarily originate
from a Euclidean vector space. Even if given data stems from a metric space, like
data gained from Levenshtein metric or alignment distances for instance, it is in
general not isometrically embeddable into any Euclidean space (Matoušek, 2002;
Indyk and Matoušek, 2004; Pekalska and Duin, 2005). So almost all of the above
presented dissimilarity measures are in general non-Euclidean. It is still an active
field of mathematical research which structures are isometrically embeddable into a
Euclidean space and which are not, and if they are not, the question arises what are
the bounds on the distortion that has to be accepted for any embedding (cf. Ma-
toušek, 2007).

Gram Matrices Given a finite dataset X ⊂ �m×d from a Euclidean space,
the corresponding Gram matrix G = XXT = (〈xi xj〉)ij containing the pairwise
standard inner products is always positive definite.

In the following, Gram matrices of indefinite inner products for non-Euclidean
spaces are constructed and their eigenspectra are analyzed. It will turn out that
dissimilarity datasets are characterized by the eigenspectra of their corresponding
Gram matrices, namely the respective number e+ and e− of positive and negative
eigenvalues indicate the ratio between Euclidean and non-Euclidean character of
the data.

Let Im denote the identity matrix of order m, 1m = (1, 1, . . . , 1)T the vector
of order m, and let J = I − 1

m · 1m1T
m. Furthermore, we denote the element-wise

square operation on a matrix A by A�2 =
(
a2

ij

)
ij

.
The corresponding Gram matrix G of a dissimilarity matrix D is then defined

to be

G = −1
2
JD�2J. (4.1)

The inertia of Gram matrix G is defined to be the triple (e+, e−, e0) in which
e+, e−, and e0 are the respective number of positive, negative, and zero eigenvalues,
counting algebraic multiplicities. The inertia is invariant under congruence trans-
formations and it can be shown that if G has inertia (p, q, z) then there exists a
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basis transformation with basis S such that SGST = H , written G � H , where

H =

⎛
⎜⎝ Ip

−Iq

0z

⎞
⎟⎠ (cf. Meyer, 2000). (4.2)

It should be mentioned here, that the corresponding Gram matrix G with inertia
(p, q, z) of a given dissimilarity dataset, as an indefinite inner product matrix, can
always be represented by a set of points X in a suitable Euclidean space �p+q

such that G = ((xi|Hxj))ij = XHXT , where H � G is defined as above, and (.|.)
denotes the standard inner product (cf. Gohberg et al., 2005). This representation
leads to the theory of pseudo-Euclidean spaces (Goldfarb, 1984), that shall not be
considered further within this work.

Later on in the experimental section, Table 4.2 shows the inertia of several
non-Euclidean datasets that are used in the experiments. Moreover, the sorted
eigenspectra of the Gram matrices can be visualized as it is done on page 82 to gain
deeper insights into the structure of the non-Euclidean datasets.

Obviously, the prototype-based topographic mapping methods introduced in the
previous chapter cannot handle dissimilarity data since they are based on vectorial
updates. At first feel, a solution would be the prior embedding of given dissimilarity
data into a Euclidean space accepting some distortion. But this approach is most
of the times impracticable because embeddings of good quality are often computa-
tionally hard to get (cf. Matoušek, 2007).

Spread Transform An alternative approach proposed by Hathaway and Bezdek
(1994) for their NERF c-means algorithm relies on a spread transformation of the
dissimilarity matrices that converts them to Euclidean distance matrices by

Dγ = D + γ · (1m1T
m − Im)

for a suitable parameter γ > 0. Their method then operates directly on the gen-
erated Euclidean distances. However, as discussed later on, the spreading transfor-
mation alters the data space significantly in an unprofitable way.

It can be shown, see (Gower and Legendre, 1986), that the minimum spreading
value to make a given dissimilarity matrix D Euclidean is given by the largest
eigenvalue of the matrix(

0m −JD�2J

−Im −2JDJ

)
,

where Im denotes the identity matrix of order m, and J = I − 1
m · 1m1T

m.

This technique is also used by Roth et al. (2003) to transform dissimilarities into
squared Euclidean distance matrices. Let emin(.) denote the minimum eigenvalue
of a given matrix. To make D squared Euclidean, the minimum spreading value is
2 · emin(1

2JDJ).

In the experimental section, Table 4.3 shows the minimum spreading values for
the used datasets to become squared Euclidean or Euclidean, respectively.

It should be noted here, that the spreading transformation distorts the original
dissimilarities in a way that the structure of the data space can change considerably.
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Figure 4.1: Implications of the Spread-Transformation: Local optima of cost func-
tion (4.3) reached by repeated runs of Relational Neural Gas (left column) and
Deterministic Annealing (right column) on Cat Cortex dataset. First row is on
untouched data, second row on squared-Euclidean spreaded data, and third row on
Euclidean spreaded data. The parameters were 5 clusters, 1000 runs, 100 epochs
RNG and 300 epochs DA

To empirically demonstrate this effect, we consider the intra-cluster distance, a
well-known clustering measure, given by the cost function

E(δ, d) =
∑

i

1∑
j δij

·
∑

j

∑
k

δijδikdjk (4.3)

with crisp cluster assignments δij ∈ {0, 1}. It was shown by Roth et al. (2003) that
the spreading transformation does not alter the local optima of the cost function
(4.3), only a constant is added. The global optimization of the cost function is NP-
hard (Brucker, 1978), the methods used in the simulation are trying to find good
local optima.

As it can be seen from the simulations (cf. Figure 4.1 and Figure 4.2), the
algorithms cannot explore the space efficiently any longer. The distribution of local
optima found by the algorithms over time is altered towards worse local optima.
The algorithms even might fail to find the best local optima that they have found
before the transformation.

Here, the need for methods arises that are able to process dissimilarity data
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directly. In the subsequent sections, we will focus on topographic mapping tech-
niques for dissimilarity datasets that are based on prototypes and perform exactly
as desired.

Before going into details, we consider briefly a related stochastic approach deal-
ing with dissimilarity data that is very popular. A stochastic formulation of Self-
Organizing Maps for dissimilarity data was introduced by Graepel and Obermayer
(1999). It is based on a cost function which was derived in analogy to the one
that has been proposed by Luttrell (1994) in a general stochastic framework utiliz-
ing a folded Markov chain approach and comprising in particular Kohonen’s Self-
Organizing Maps. The optimization of the cost function is done by an Expectation
Maximization algorithm (Jaynes, 1957a,b) in combination with a deterministic an-
nealing scheme (Rose et al., 1990, 1992; Rose, 1998). A mathematical framework for
deterministic annealing and mean-field approximations in the context of dissimilar-
ity data was presented by Hofmann and Buhmann (1999). Successful applications
of the stochastic approach have been made by Saalbach et al. (2005) to medical data
measured by the Earth Mover’s Distance utilizing a hyperbolic lattice structure.

4.2 Prototype-based Methods in
Non-Euclidean Spaces

Up to this point, the introduced methods were based exclusively on Euclidean
spaces. But unlike data originating from vector spaces, the important class of rela-
tional data is characterized only by pairwise dissimilarities d(vi, vj) given for some
underlying (and in general unknown) data points vi, vj ∈ V . Recall from section 4.1
that the only demands made on dissimilarity measures are non-negativity dij ≥ 0,
reflexivity dii = 0, and symmetry dij = dji. They are not necessarily metric by
nature, and even if given data stems from a metric space, the space might not be
isometrically embeddable into any Euclidean space at all (cf. Matoušek, 2002).

Obviously, all the classical processing methods as introduced above cannot han-
dle relational data since their original formulation is based on prototype updates in
a vector space. Now, we are restricted to a discrete space whose structure is char-
acterized only by pairwise dissimilarities between its elements. In general, there
are no linear combinations possible and potential prototypes cannot be settled in
between the data points.

A possible way to circumvent these issues would be accepting a certain degree
of distortion and embed the relational data into a Euclidean space anyway. Among
other techniques, this non-isometrical embedding can be achieved by transforming
the data using a spreading technique (cf. Hathaway and Bezdek, 1994). That way,
we end up with Euclidean data points but as discussed above, the structure of the
data space is changing and optimization is getting harder.

In this section, we will follow another way by keeping the given dissimilarities
as they are and find better suited methods to work directly on them. It will turn
out that, for this first approach, we also have to sacrifice a certain amount of ac-
curacy. But later on, we will overcome these restrictions by introducing continuous
prototype updates.

The key idea of the so-called median approach (Cottrell et al., 2006) is the re-
striction of prototype locations to given data points, such that prototype locations
are well defined in the given space.
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Figure 4.2: Implications of the Spread-Transformation: Local optima of cost func-
tion (4.3) reached by repeated runs of Relational Neural Gas (left column) and
Deterministic Annealing (right column) on Protein dataset. First row is on un-
touched data, second row on squared-Euclidean spreaded data, and third row on
Euclidean spreaded data. The parameters were 10 clusters, 500 runs, 100 epochs
RNG and 250 epochs DA. Note that the dataset is almost squared Euclidean, so
the distribution of local optima on untouched and squared Euclidean spreaded data
is similar.

Median Neural Gas

Given a dataset V characterized solely by a dissimilarity matrix D, we introduce a
finite collection of median prototypes W = (wi)i∈{1,...,n}, where for all wi ∈ W it
holds wi = vki with vki ∈ V . In literature, techniques that restrict the location
of prototypes to data positions are also called exemplar-based approaches (cf. e.g.
Frey and Dueck, 2007).

In analogy to the original Neural Gas, we can define ranks on these median
prototypes by setting

ki(W, v) = |{wk : d(v, wk) < d(v, wi)}|

with the same properties required in Definition 2.4.1. The cost function of Median
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Neural Gas is then given by

Eλ(W ) =
n∑

i=1

m∑
j=1

hλ(ki(W, vj)) · d(wi, vj)2. (4.4)

For the same reason as given for Batch Neural Gas, we now introduce hidden vari-
ables kij to replace the rank function and apply alternating optimization. As before-
hand, the optimal assignments are given by the ranks kij = ki(W, v). The optimal
prototype locations, however, are now determined by the so-called generalized me-
dian (cf. Kohonen and Somervuo, 2002)

w∗
i = argmin

vk

∑
j

hλ(kij) · d(vj , vk)2 (4.5)

and can be found by exhaustive search. A sketch of the algorithm is given in table
Algorithm 4.2. It has been shown in (Cottrell et al., 2006) that Median Neural Gas
converges to a (local) optimum of the cost function.

Algorithm 4.1: Median Neural Gas

Input

Dissimilarity matrix D ∈ �m×m

Begin

(* Initialize prototypes *)

Init wi randomly for all i ∈ {1, . . . , n} and λ0 = n/2, λ = λ0

(* Repeat for a given number of epochs. . . *)

for t := 1 to epochs do

Determine ranks (break ties deterministically). . .

ki(W, vj) = |{ l ∈ {1, . . . , n} : d(wl, vj) < d(wi, vj)}|
Update prototype locations by generalized median. . .

wi = argminvk

∑
j hλ(kij) · d(vj , vk)2

Decrease neighbourhood range. . .

λ = λ0 · (0.01/λ0)t/epochs

endfor;

(* Return representative prototypes *)

Return wi

End.

Despite our focus on Median Neural Gas, it should be noted here, that the me-
dian approach can easily be transferred to Self-Organizing Maps (El Golli et al.,
2004; Cottrell et al., 2005).

Obviously, the median approach features the inherent drawback that only dis-
crete adaptation steps can be performed which can dramatically reduce the repre-
sentation quality of the mapping. Furthermore, the complexity of the median batch
approaches is quadratic in the number of data points, what sets up a great obstacle
when dealing with very large datasets. We will see later on in section 4.2 that this
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obstacle can be overcome by an elegant patch processing method. For Batch SOM
there are also faster approaches than exhaustive search (Conan-Guez et al., 2006),
exploiting characteristics of the grid structure for pre-calculations, reusing earlier
results, and applying early stopping among other intelligent techniques to speed up
processing.

Another drawback of the median approach is its incapacity to separate proto-
types that have been collapsing onto a single location in data space. A quick solution
to the problem consists in adding some noise term to the update rule provoking a
separation by chance. More sophisticated strategies to tackle the issue of collapsing
prototypes in median approaches are addressed in (Rossi, 2007) utilizing a branch
and bound approach.

Also the integration of additional information can be achieved the same way as
done before. This is realized more precisely in the next section:

Supervised Median Neural Gas

Following Section 3.3, we can also incorporate additional information in form of la-
bels given for each data point into the processing of Median Neural Gas (cf. Hammer
et al., 2006a). The concept can also easily be migrated to other prototype-based
median methods like Median SOM (cf. Hammer et al., 2006a).

Let a dataset V = {v1, v2, . . . , vm} be given indirectly by a dissimilarity measure
d on V . In addition, there shall be a collection of labels

(
vL

i

)
i∈{1,...,m} from �c

corresponding to an unary encoding of the classes the data points belong to.
Now, we define a new dissimilarity measure

d∗β(vi, vj)2 = (1 − β) · d(vi, vj)2 + β
∥∥vL

i − vL
j

∥∥2

based on d incorporating also the label space L. Replacing the original dissimilarity
measure d in the original cost function (4.4) by d∗ yields an extended cost function,
namely

E∗
λ(W, WL) =

n∑
i=1

m∑
j=1

hλ(ki(W, vj)) · d∗β(wi, vj)2

= (1 − β) ·
n∑

i=1

m∑
j=1

hλ(ki(W, vj)) · d(wi, vj)2

+ β ·
n∑

i=1

m∑
j=1

hλ(ki(W, vj)) ·
∥∥wL

i − vL
j

∥∥2
.

(4.6)

This extended cost function can be optimized by alternating optimization treating
the different parts separately as shown in Section 3.3.

Note that it can be shown in the same way as presented in (Hammer et al.,
2006a) that the Supervised Median Neural Gas algorithm converges.

The introduced modification now allows to incorporate additional information
into the learning process which turns the original unsupervised methods into super-
vised ones. This supervision helps to improve the quality of the results because the
receptive fields are influenced by the underlying class information. Especially, when
the prototypes are used as a classifier, this leads to a better generalization ability.

As observed beforehand, an important drawback of the median approaches is
their quadratic time complexity in the size of input data. For the processing of
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very large datasets, arising in numerous fields of applications today, this fact poses
a severe limitation of applicability or even the uselessness of the median approaches.

In what follows, we are concerned with an alternative processing scheme that
circumvents the quadratic time complexity of the median approaches.

Processing of Very Large Dissimilarity Datasets

One of the greatest challenges in data mining today (Yang and Wu, 2006), arising
especially in the fields of web mining and bioinformatics, is the topographic mapping
of very large dissimilarity datasets to explore their structure and gain information
that otherwise would remain concealed, buried due to the sheer amount of data.
These large non-Euclidean datasets cannot be held at once within random-access
memory during computation, so the batch variants presented above like Median
Self-Organizing Maps or Median Neural Gas cannot be applied.

Here, we present fast approximate (semi-)supervised versions of SOM and NG
for non-Euclidean data that are able to handle large text datasets by a single pass
technique. The introduced methods are based on patches that can be chosen in
accordance to the size of the available random-access memory. These algorithms
are running in constant space and linear time and provide different visualizations of
the data space. Moreover, the patch technique opens the way for long-term learning
and scalability, what is especially suited for information systems where the database
is updated perpetually, e.g. in visual search engines etc.

For an illustration of one of the several issues to deal with, we show the storage
needed for dissimilarity matrices due to their quadratic growth in the number of
data points. The following table shall demonstrate the obvious demands that are
posed by some real world large datasets.

Size of Dissimilarity Matrix (Double Precision)

n Size Name of Dataset

5000 190MB Copenhagen Chromosome Dataset
10,000 763MB
20,000 3.0GB 20 Newsgroup Dataset
50,000 18.6GB
200,000 300.0GB Large 13 Newsgroup Dataset

Unfortunately, also the time complexity of the Median methods is quadratic. To
cope with very large datasets, it is therefore necessary to accelerate the methods
and reduce their space usage. Fast variants of Median approaches that are able to
handle very large datasets by a single pass technique based on patches chosen in
accordance to the size of the available random-access memory were first introduced
by Hasenfuss and Hammer (2008). In the upcoming section, we will introduce these
variants on the basis of Median Neural Gas, whereby an extension to Median SOM
is obvious.

Assume data are given as a dissimilarity matrix D = (dij)i,j=1,...,m with entries
dij = d(vi, vj) representing the dissimilarity of the datapoints vi and vj .

During processing of Patch Median NG, np disjoint patches of fixed size p =
�m/np� are taken from the dissimilarity matrix D consecutively,2 where every patch

Pi = (dst)s,t=(i−1)·p+1,...,i·p ∈ �p×p

2The remainder is no further considered here for simplicity. In the practical implementation
the remaining datapoints are simply distributed over the first (M − p · np) patches.
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is a submatrix of D.
The idea of the patch scheme is to add the prototypes from the processing of

the former patch Pi−1 as additional datapoints to the current patch Pi, forming an
extended patch P ∗

i to work on further.
The additional datapoints – the former prototypes – are weighted according to

the size of their receptive fields, i.e. how many datapoints they have been represent-
ing in the former patch. Therefore, every datapoint vj , as a potential prototype, is
equipped with a multiplicity mj, that is at first initialized with mj = 1.

But unlike the situation of Patch NG in Euclidean space (Alex et al., 2009),
where inter-patch distances can always be recalculated with help of the Euclidean
metric, we are now dealing with an unknown mathematical space. We have to
construct the extended patch from given dissimilarity data.

Let n be the fixed number of prototypes and let Nk denote the index set of
prototypes of step k pointing onto elements of the dissimilarity matrix D. The
extended patch P ∗

i is then defined as

P ∗
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(Ni−1) d(Ni−1, Pi)

d(Ni−1, Pi)T Pi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

d(Ni−1) = (dst)s,t ∈ Ni−1
∈ �n×n

d(Ni−1, Pi) = (dst)s ∈ Ni−1,t=(i−1)·p+1,...,i·p ∈ �n×p

denote the inter-distances of former prototypes and the distances between former
prototypes and current patch points, respectively.

Now, the original Median Batch Neural Gas method must be modified to handle
the weighted datapoints. Incorporating the multiplicities into the cost function
yields

E(W ) =
n∑

i=1

m∑
j=1

hλ(kij) · mj · d(wi, vj)2,

since every datapoint vj is weighted with multiplicity mj . The multiplicity m(wi)
of a prototype wi ∈ Wt is given by

m(wi) =
∑

v∈P∗
t ∩Vi(Wt)

m(v),

the sum of multiplicities of all data points in the receptive field. The new update
rule for the prototypes derived from the modified cost function is

wi = argmin
vk

p∑
j=1

hλ(kij) · mj · d(vj , vk)2.

Picking up the pieces, we yield Algorithm 4.2.



4.2 Prototype-based Methods in Non-Euclidean Spaces 65

Algorithm 4.2: Patch Median Neural Gas (Hasenfuss and Hammer, 2008)

Begin

Cut the first Patch P1

Apply Median Neural Gas on P1 −→ Prototypes N1

Update Multiplicities mj

Repeat for i = 2, . . . , np

Cut patch Pi

Construct Extended Patch P ∗
i using Pi and Ni−1

Apply modified Median Neural Gas with Multiplicities

−→ Prototypes Ni

Update Multiplicities mj

Return final prototypes Nnp

End.

Analysis of Complexity

For an analysis of the complexity, we assume at first a fixed patch size p independent
of the number of datapoints, as it would be the case when the patch size is chosen
according to memory limitations. The algorithm then works only on O(m

p · p2) =
O(m · p) = O(m) entries of the dissimilarity matrix, compared to O(m2) in the
original Median NG method. Moreover, the algorithm uses at most O(p2) = const
entries at a specific point in time.

In case of a fixed patch size, also the time complexity is linear, because the
Median NG step is O(p2) what results in O(p2 · m

p ) = O(p · m) = O(m), an
advantage compared to the O(m2) time complexity of the original Median NG.

For a fixed dataset the total number of dissimilarity matrix elements touched
during processing, compared to an imaginary application of Median NG, is de-
creasing in a reciprocal manner for an increasing number of patches. For sake of
simplicity, we assume here w.l.o.g. that m is completely divisible by p. In detail,
for a patch size p chosen independent of the size of the dataset m, the algorithm
performs m

p · p · n log n + p2 = m(n log n + p) ∈ O(m) steps. The original Median
NG in contrast would require m · (n log n + m) ∈ O(m2) processing steps. So the
ratio

m(n log n + p)
m · (n log n + m)

=
n logn + m

pn

n log n + m
= const + const′ · 1

pn

is a reciprocal function in the number of patches pn.
Therefore the method does not only overcome the problem of limited memory,

it also accelerates the processing of datasets, what might be useful in time critical
applications.

These advantages in space and time complexity are obviously paid back by a
loss of accuracy, what is also affirmed in the experiments later on, but the loss turns
out to be small on realistic datasets. Theoretical bounds are not easily obtainable,
this is still subject of ongoing research.

Obviously, the above argumentation does not hold if the patch size depends on
the number of datapoints.
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4.3 Continuous Prototype Updates for Dissimilar-

ity Data

The restriction of prototypes to data point locations as used for the Median tech-
niques may induce additional distortion particularly when the data space is sparse.
This effect can easily be observed in comparative experiments versus the original
Batch Neural Gas on Euclidean datasets. This drawback of the Median approaches
motivates further research on the possibilities of continuous updates in non-vector
spaces.

First steps towards a continuous update of prototypes were made by Hasen-
fuss et al. (2007) with the intention to represent prototypes as combinations of
data points. Later on, the same authors introduced Relational Neural Gas (RNG)
(Hammer and Hasenfuss, 2007) that overcomes the problem of discrete adaptation
steps by using convex combinations of Euclidean embedded data points as proto-
types. That way, distance calculations between prototypes and data can be done
without any knowledge about the embedding. The idea of relational prototypes was
extended to Relational SOM by Hasenfuss and Hammer (2007).

In what follows next, we are concerned with an overview about the relational
approach. Later on, in the succeeding sections we shall discuss the concepts in more
detail.

For that purpose, we assume that there exists a set of (in general unknown and
presumably high dimensional) Euclidean points V such that dij = ‖vi − vj‖ for all
vi, vj ∈ V holds, i.e. we assume there exists an (unknown) isometric embedding
into a Euclidean space. The key observation is based on the fact that, under the
assumptions made, the squared distances ‖wi − vj‖2 between (unknown) embed-
ded data points and optimum prototypes can be expressed just in terms of known
distances dij .

The prototypes in the relational approach are expressed as wi =
∑

j αijvj

with
∑

j αij = 1. Given a coefficient matrix (αij) ∈ �n×m and a matrix D�2 =(
d2

ij

) ∈ �m×m of squared distances, it then holds

‖wi − vj‖2 = (αi∗ · D�2)j − 1
2
· αi∗D�2αT

i∗ (4.7)

what is verified later on in Section 4.3. It should be emphasized here, that thanks to
(4.7) the squared distances can be calculated without explicit knowledge of points
from V . Because of this fact, we are able to substitute all terms ‖wi − vj‖2 in
Batch NG and Batch SOM by (4.7) and derive new update rules working only on
distances. This allows to reformulate the batch optimization schemes in terms of
relational data.

Note that, if an isometric embedding into Euclidean space exists, these schemes
are exactly equivalent to the batch schemes and will yield identical results. Oth-
erwise, the consecutive optimization scheme can still be applied on non-Euclidean
data that is not isometrically embeddable into any Euclidean space.

By now, relational methods have been shown beneficial in the field of bioinfor-
matics (cf. Hammer et al., 2007a), text processing (cf. Hasenfuss et al., 2008a), and
visualization of discrete musical data (cf. Mokbel et al., 2009).

In the upcoming sections, we will introduce the relational approach in more
details.
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Representation of Distances

In what follows, a representation of distances between relational prototypes and
data points is derived that does not include any knowledge about the data but the
distance matrix. The section is based on the work of Hathaway and Bezdek (1994)
who relied on earlier works of Torgerson (1958) and Young and Householder (1938).

Theorem 4.3.1 (Distances between Convex Combinations) Let V be a real
inner-product space and V = {v1, v2, . . . , vm} a finite subset of V . Let ‖�‖ =

√〈� �〉
denote the canonical norm on V . Furthermore, we denote the matrix of squared
pairwise distances of V by

D�2 =
(‖vi − vj‖2

)
ij

∈ �m×m.

(a) For the squared pairwise distances between convex combinations over V , i.e.
for elements

wi =
m∑

j=1

αijvj (where αij ≥ 0 for all i,j and
m∑

j=1

αij = 1 for all i),

the following identity holds

‖wi − wj‖2 = αi∗D�2αT
j∗ −

1
2
αi∗D�2αT

i∗ −
1
2
αj∗D�2αT

j∗. (4.8)

(b) For an element v ∈ V , the distance to a convex combination wi =
∑m

j=1 αijvj

over V is given by

‖v − wi‖2 =
∑

j

αij‖v − vj‖2 − 1
2
αi∗D�2αT

i∗. (4.9)

Remark Note that the squared distances to convex combinations over V can be
expressed without using the elements from set V directly, only the squared distances
and the coefficients are considered. Thus, the theorem provides a way to handle
distance calculations for a set of unknown underlying points, only the squared dis-
tances have to be known. Since this situation occurs most of the times in real
applications dealing with non-vectorial datasets, Theorem 4.3.1 turns out to be the
key to sophisticated methods on dissimilarity data.

Proof. (a) In the first step, ‖wi − wj‖2 will be expressed by inner-products.
Then, these inner-products will be replaced by distances of elements from V ap-
plying the technique of completing the square and using the identity ‖x − y‖2 =
〈x − y x − y〉 = 〈x x〉−2 · 〈x y〉+ 〈y y〉. Converting the terms into matrix notation
using D�2

ij = ‖vi − vj‖2 will complete the proof.
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It directly follows

‖wi − wj‖2 = ‖
∑

k

αikvk −
∑

k

αjkvk‖2

=

〈∑
k

αikvk

∑
k

αikvk

〉
− 2 ·

〈∑
k

αikvk

∑
k

αjkvk

〉
+

〈∑
k

αjkvk

∑
k

αjkvk

〉
=

∑
k

∑
l

αikαil 〈vk vl〉︸ ︷︷ ︸
=: A(i,j)

−2 ·
∑

k

∑
l

αikαjl 〈vk vl〉 +
∑

k

∑
l

αjkαjl 〈vk vl〉︸ ︷︷ ︸
=: B(i,j)

= A(i, j) + B(i, j) − 2 ·
∑

k

∑
l

αikαjl 〈vk vl〉 +
∑

k

∑
l

αikαjl 〈vk vk〉

+
∑

k

∑
l

αikαjl 〈vl vl〉−
∑

k

∑
l

αikαjl 〈vk vk〉︸ ︷︷ ︸
=: C(i,j)

−
∑

k

∑
l

αikαjl 〈vl vl〉︸ ︷︷ ︸
=: D(i,j)

=
∑

k

∑
l

αikαjl‖vk − vl‖2 + (A(i, j) + C(i, j)) + (B(i, j) + D(i, j))

=
∑

k

∑
l

αikαjl‖vk − vl‖2 − 1
2

∑
k

∑
l

αikαil‖vk − vl‖2 − 1
2

∑
k

∑
l

αjkαjl‖vk − vl‖2

= αi∗D�2αT
j∗ −

1
2
αi∗D�2αT

i∗ −
1
2
αj∗D�2αT

j∗.

Because, it holds

−(A(i, j) + C(i, j)) =
∑

k

∑
l

αikαjl 〈vk vk〉 −
∑

k

∑
l

αikαil 〈vk vl〉

=
1
2

∑
k

∑
l

αikαjl 〈vk vk〉 −
∑

k

∑
l

αikαil 〈vk vl〉 +
1
2

∑
k

∑
l

αikαjl 〈vk vk〉

(∗)
=

1
2
·
[∑

k

∑
l

αikαjl 〈vk vk〉 − 2 ·
∑

k

∑
l

αikαil 〈vk vl〉 +
∑

k

∑
l

αikαil 〈vl vl〉
]

=
1
2

∑
k

∑
l

αikαil ( 〈vk vk〉 − 2 〈vk vl〉 + 〈vl vl〉 )

=
1
2

∑
k

∑
l

αikαil‖vk − vl‖2

=
1
2
αi∗D�2αT

i∗

and similar −(B(i, j) + D(i, j)) = 1
2αj∗D�2αT

j∗.

In step (∗), the following identity was used,

C(i, j) =
∑

k

∑
l

αikαjl 〈vk vk〉 =
∑

k

αik 〈vk vk〉 =
∑

k

∑
l

αikαil 〈vk vk〉 ,

that holds because it is
∑

t αst = 1 for all s ∈ {1, 2, . . . , n} and therefore it can be
left away or substituted arbitrarily in the above situation.

(b) Applying the same technique as in part (a), it is

‖v − wi‖2 = ‖v −
∑

j

αijvj‖2 =
∑

j

αij [〈v v〉 − 2 · 〈v vj〉 + 〈vj vj〉]

+

⎛
⎝∑

k

∑
l

αikαil 〈vk vl〉 −
∑

j

αij 〈vj vj〉
⎞
⎠ =

∑
j

αij‖v − vj‖2 + (A(i, j) + C(i, j))

=
∑

j

αij‖v − vj‖2 − 1
2
αi∗D�2αT

i∗.
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�

Corollary 4.3.2 (Simplified Representation) For the squared distance of an
element vk of a set V = {v1, v2, . . . , vm} to any convex combination wi =

∑m
j=1 αijvj

over V , the following simplified identity holds:

‖wi − vk‖2 = (αi∗ · D�2)k − 1
2
· αi∗D�2αT

i∗ (4.10)

Proof. A point vk of the set V = {v1, v2, . . . , vm} can be seen as a convex combi-
nation vk =

∑m
j=1 δkjvj , where δij denotes the Kronecker delta.

Let δk∗ = (0, . . . , 0, 1, 0, . . . , 0) denote the corresponding coefficient vector. It

then holds ‖wi−vk‖2 = ‖∑m
j=1 αijvj−

∑m
j=1 δkjvj‖ (4.8)

= αi∗D�2δT
k∗− 1

2 ·αi∗D�2αT
i∗−

1
2 · δk∗D�2δT

k∗ = (αi∗ · D�2)k − 1
2 · αi∗D�2αT

i∗, since (δk∗ · D�2) · δT
k∗ = D�2

k∗ · δT
k∗ = 0

and also D�2
kk = 0. �

Having proved the above theorems for real inner product space, naturally the
question arises whether there are interesting real inner product spaces to deal with in
Machine Learning. Since every normed vector space can be completed to a Banach
space, every real inner product space (as a normed space) can be completed to a
real Hilbert space. In turn, every finite dimensional real Hilbert space is norm-
isomorphic to a Euclidean space of the same dimension. That means, every real
inner product space is isometrically embeddable into a Euclidean space. For that
reason, we will focus our further discussion on Euclidean spaces and non-Euclidean
spaces, leaving away the subtleties of norm-isomorphic abstract spaces in between.

Relational Duals of Prototype-based Methods

In the following, we will establish a dual formulation of Batch Neural Gas for dis-
similarity data. If given data is isometrically embeddable into a Euclidean space,
the dual formulation will generate exactly the same results as Batch NG would do
when applied to the corresponding points in Euclidean space.

Furthermore, if no Euclidean embedding exists, the algorithm can still be applied
successfully.

Relational Neural Gas (Hammer and Hasenfuss, 2007)

Let there be unknown Euclidean data points V = {v1, v2, . . . , vm} described only
by squared distances D�2 =

(‖vi − vj‖2
2

)
ij

. For a dual formulation of Batch Neural
Gas given only distances, we assume that relational prototypes are expressed as
convex combinations of data points. Without loss of generality, we define

wi =
m∑

j=1

αijvj (4.11)

with coefficients αij ≥ 0 for all i,j and
∑m

j=1 αij = 1 for all i ∈ {1, . . . , n}.

Due to the nature of the update rule (cf. Eq. (3.5)), prototypes generated by
any processing step of Batch Neural Gas are always situated in the convex hull of
data, so the definition includes all potential prototype locations in the embedding
space.
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Also note, that relational prototypes are always defined on a set of points which
we will refer to as the spanning set, because all possible relational prototype loca-
tions are situated in the convex hull spanned by those points.

The update rule of the dual formulation is now given by

αij =
hλ(kij)∑
j hλ(kij)

(4.12)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, because inserting Eq. (4.12) into the
relational prototype definition Eq. (4.11) yields the same outcome as the original
update rule Eq. (3.5), it is

wi =
m∑

k=1

αikvk
(4.12)
=⇒ wi =

m∑
k=1

(
hλ(kik)∑
j hλ(kij)

)
vk =̂ Eq. (3.5).

Relational Neural Gas, the dual formulation of Batch NG, handles data given
only as distances by performing an alternating optimization using the identity from
equation (4.10) to determine the ranks and the dual update rule (4.12) to update
the relational prototypes, see table Algorithm 4.3 for a sketch of the algorithm.

Algorithm 4.3: Relational Neural Gas

Input

Matrix D�2 ∈ �m×m of squared dissimilarities for (unknown) data points v1, . . . , vm

Begin

(* Initialize relational prototypes wi =
∑

j αijvj *)

Init αij ∈ �n×m randomly,

where
∑

j αij = 1 for all i ∈ {1, . . . , n} and λ0 = n/2, λ = λ0

(* Repeat for a given number of epochs. . . *)

for t := 1 to epochs do

Compute squared dissimilarities. . .

d(wi, vj) = (αi∗ · D�2)j − 1
2 · αi∗D�2αT

i∗
Determine ranks (break ties deterministically). . .

ki(W, vj) = |{ l ∈ {1, . . . , n} : d(wl, vj) < d(wi, vj)}|
Update prototype locations. . .

αij = hλ(ki(W, vj))/
∑

l hλ(ki(W, vl))

Decrease neighbourhood range. . .

λ = λ0 · (0.01/λ0)t/epochs

endfor;

(* Return representative prototypes *)

Return αij

End.
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Convergence Properties of Relational Neural Gas

In the Euclidean case the convergence properties transfer from the standard batch
variants to the relational approach. That is given data points V = {v1, v2, . . . , vm},
a dissimilarity measure d, and let D�2 =

(
d(vi, vj)2

)
ij

. If (V, d) is isometrically
embeddable into a Euclidean space, Relational NG on D�2 will generate exactly
the same sequence {Wt}t of prototypes while processing as Batch NG does on V as
discussed above.

Even if we replace the metric ‖x− y‖ by a general dissimilarity measure d(x, y)
in all preceding formulas, i.e. a general dissimilarity dataset is given, the relational
methods will still generate meaningful results as can be seen best from a dual
formulation of the cost function (4.14) introduced in the following section. But it
must be stated here that the relational methods might converge to a saddle point
of the cost function, and not always end up in a local optimum like for Euclidean
embeddable data. A theoretical framework of convergence and optimality in the
non-Euclidean case is still subject of ongoing research and will not be considered
here further.

Complexity Issues

Like the median techniques, the serious drawback of the relational approach is its
quadratic time complexity. One solution utilizing a sparse prototype representation
was presented by Rossi et al. (2007). It reduces time complexity by approximat-
ing relational prototypes by fewer spanning points and therefore slightly raises the
quantization error. Another technique that also accelerates the relational methods
is discussed in a subsequent section. It is based on patches of fixed size and is
capable of processing very large datasets that do not fit into memory at once.

The space needed to store the prototypes of the relational methods is O(n ·m),
what is higher compared to the standard approach.

Dual Cost Functions

As introduced in section 3.1, Batch Neural Gas is based on an alternating optimiza-
tion scheme, alternately optimizing rank assignments and prototype locations. In
the following section, we will demonstrate that the original cost function of BNG can
be related to a dual formulation that can be interpreted as a dual constrained opti-
mization problem of the intra-cluster distance. For converged prototypes of Batch
Neural Gas the original cost function and the dual one with corresponding assign-
ments have the same outcome. Moreover, the dual formulation also relates Neural
Gas to Deterministic Annealing (Hofmann and Buhmann, 1999) which optimizes
the dual formulation. We derive the dual formulation as follows:

For fixed ranks ki(W, vj) the optimal prototypes w∗
i are given by

w∗
i =

∑
j hλ(ki(W, vj))vj∑
j hλ(ki(W, vj))

. (4.13)

For convenience, we abbreviate ki(W, vj) in the following part by kij . Later on in
our argumentation, kij will be considered as free parameters of the objective func-
tion.

Replacing wi in the cost function (3.1) of BNG by the corresponding optimal
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prototypes (4.13) of given kij directly yields

E(W ∗, kij) =
1
2

∑
i

∑
j

hλ(kij)‖w∗
i − vj‖2 (4.13)

=
1
2

∑
i

∑
j

hλ(kij)
∥∥∥∥
∑

l hλ(kil)vl∑
l hλ(kil)

− vj

∥∥∥∥2

=
1
2

∑
i

∑
j

hλ(kij)
(
∑

l hλ(kil))
2

∥∥∥∥∥∑
l

hλ(kil)vl −
∑

l

hλ(kil)vj

∥∥∥∥∥
2

=
1
2

∑
i

∑
j

hλ(kij)
(
∑

l hλ(kil))
2 ·⎡

⎣∥∥∥∥∥∑
l

hλ(kil)vl

∥∥∥∥∥
2

− 2 ·
〈∑

l

hλ(kil)vl

∑
l

hλ(kil)vj

〉
+

∥∥∥∥∥∑
l

hλ(kil)vj

∥∥∥∥∥
2
⎤
⎦

=
1
2

∑
i

1
(
∑

l hλ(kil))
·
[∑

s

∑
t

hλ(kis)hλ(kit) · (〈vs vt〉 − 2 · 〈vs vt〉 + 〈vt vt〉)
]

=
1
2

∑
i

1
(
∑

l hλ(kil))
·
[∑

s

∑
t

hλ(kis)hλ(kit) ·
(

1
2
〈vs vs〉 − 〈vs vt〉 +

1
2
〈vt vt〉

)]

=
1
4

∑
i

1
(
∑

l hλ(kil))
·
[∑

s

∑
t

hλ(kis)hλ(kit) · ‖vs − vt‖2

]
.

Thus, the dual of the cost function (3.1) of Batch NG is given by

1
4

∑
i

1
(
∑

l hλ(kil))
·
[∑

s

∑
t

hλ(kis)hλ(kit) · ‖vs − vt‖2

]
. (4.14)

From the construction it directly follows that for given prototype locations wi and
their corresponding optimal assignments kij the dual cost function (4.14) has the
same value as the original one (3.1). Note, that the dual formulation is based solely
on the assignments kij and no longer on the distances. The assignments kij can
now be seen as free parameters of a new objective function with the constraint that
{k1j , k2j , . . . , knj} is a permutation of {0, 1, . . . , n − 1} for every j ∈ {1, 2, . . . , m}.

As a side effect, the dual cost function constitutes also a descriptive error mea-
sure for dissimilarity data to replace the quantization error in non-vectorial spaces.
This is an advantage, since only the assignments are needed that could be derived
directly from the relational coefficients αij without utilizing the prototype locations
wi.

Incorporating Additional Information

Following Section 3.3, we can also incorporate additional information in form of la-
bels given for each data point into the relational variants (Hammer and Hasenfuss,
2007). As a showcase, we will concentrate on Relational Neural Gas but incorpo-
rating additional information into Relational SOM is similar.

Let a dataset V = {v1, v2, . . . , vm} be given indirectly by a dissimilarity measure
d on V . In addition, there shall be a label vL

j ∈ �c attached to each datapoint vj

corresponding to an unary encoding of the classes the data points belong to.
In the context of relational methods as explained above, we assume that the

dataset V is isometrically embeddable into a Euclidean space X = �k for some k.
We define a new dissimilarity measure

d∗β(xi, xj)2 = (1 − β) · d(xi, xj)2 + β
∥∥xL

i − xL
j

∥∥2
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on the underlying space X based on d that also incorporates the label space L. It
is based on the original dissimilarity measure d and the Euclidean metric in label
space L, and that way connects data space X and label space L. Moreover, the new
dissimilarity measure d∗β depends on a weighting parameter β ∈ [0, 1], which shall
allow us later on to control the influence of the label information on the learning
process.

In the relational approach, distances between the relational prototypes, between
relational prototypes and data points, and also between data points regarded as
convex combinations are according to (4.8) given by

d(xi, xj)2 = αi∗D�2αT
j∗ −

1
2
αi∗D�2αT

i∗ −
1
2
αj∗D�2αT

j∗,

where D�2 is the matrix of squared dissimilarities.
Using this expression to calculate the dissimilarity measure d∗ leads to Algorithm
4.3, introduced by Hammer and Hasenfuss (2007).

Algorithm 4.4: Supervised Relational Neural Gas

Input

Matrix D�2 ∈ �m×m of squared dissimilarities for (unknown) data points v1, . . . , vm

Labels
{
vL
1 , vL

2 , . . . , vL
m

} ⊂ �c

Begin

(* Initialize relational prototypes wi =
∑

j αijvj *)

Init αij ∈ �n×m randomly,

where
∑

j αij = 1 for all i ∈ {1, . . . , n} and λ0 = n/2, λ = λ0

(* Repeat for a given number of epochs. . . *)

for t := 1 to epochs do

Compute squared dissimilarities. . .

d∗β(wi, vj) = (1 − β) · ((αi∗ · D�2)j − 1
2 · αi∗D�2αT

i∗
)

+ β
∥∥wL

i − vL
j

∥∥2

Determine ranks (break ties deterministically). . .

ki(W, vj) =
∣∣∣{ l ∈ {1, . . . , n} : d∗β(wl, vj) < d∗β(wi, vj)

}∣∣∣
Update prototype locations. . .

αij = hλ(ki(W, vj))/
∑

l hλ(ki(W, vl))

Update prototype labels. . .

wL
i =

∑
j hλ(kij) · vL

j /
∑

j hλ(kij)

Decrease neighbourhood range. . .

λ = λ0 · (0.01/λ0)t/epochs

endfor;

(* Return representative prototypes and prototype labels *)

Return αij and wL
i

End.

With the introduced modification it is now possible to incorporate additional
information into the learning process which turns the original unsupervised meth-
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ods into supervised ones. This supervision helps to improve the quality of the
results because the receptive fields are influenced by the underlying class informa-
tion. Especially, when the prototypes are used as a classifier, this leads to a better
generalization ability.

In what follows, another interesting modification of the relational approach is
introduced that is utilizing the popular kernel technique. Particularly complex
structured data can be treated by this technique.

Kernelizing the Relational Methods

Prototype based methods in Euclidean spaces are somewhat restricted by the linear
boundaries between the Voronoi regions generated by the prototypes (Aurenham-
mer, 1991; Graf and Luschgy, 2000). Although non-linear structures in the data can
be approximated by using more prototypes, this might not be satisfying. Here the
kernel approach comes into play, a very popular approach that gained a lot of at-
tention in the last decade. By linearizing non-linearities in a kernel-defined feature
space, kernelized methods can handle various complex structured data. The reader
has probably heard of kernels in the context of Support Vector Machines where they
are mainly utilized, but there are a variety of other kernelized methods, e.g. Kernel
PCA (Schölkopf et al., 1998), Kernelized NERF c-Means (Hathaway et al., 2005),
Online Kernel SOM (MacDonald and Fyfe, 2000), Batch Kernel SOM (Villa and
Rossi, 2007), Online Kernel NG (Qinand and Suganthan, 2004), and the like. For
a recent overview see the survey of Filippone et al. (2008). In what follows we are
concerned with kernelizing the above introduced relational methods.

Let us first introduce briefly the principles and basic terminology used in the ker-
nel approach. For an detailed introduction to kernel methods see e.g. the excellent
book of Shawe-Taylor and Cristianini (2004).

The key idea of the kernel approach is a mapping φ : V ⊇ V � v �−→ φ(v) ∈ F of
input data V from input space V into an (high-dimensional) inner product space F
which is called the feature space. The motivation for such an embedding comes with
the hope that non-linear input data is linearized in feature space making it more
accessible for algorithmic approaches. Kernelized methods process the embedded
data points in feature space utilizing only the pairwise inner products 〈· ·〉F . The
clou of the kernel approach, also known as the kernel trick, is that there is no need
to determine the embedding φ and the inner product 〈· ·〉F explicitly, what would
often be a costly operation for complex data structures. The efficient computation
of the inner product in feature space can be done indirectly by applying a kernel
function k : V × V → F , satisfying k(v, v′) = 〈φ(v) φ(v′)〉 for all v, v′ ∈ V , on the
original data points from input space.

Hence, to kernelize a method, it has to be reformulated in a way that it is
dealing only with pairwise inner products instead of any norm or metric. For
instance, this can be done by utilizing the canonical representations ‖v‖ =

√〈v v〉
or d(v, v′) = ‖v− v′‖ =

√〈v − v′ v − v′〉, respectively (cf. Meyer, 2000). That way,
the method is able to operate directly on any inner product space, whereby finite
datasets would be given by Gram matrices. In a last step, the inner product can be
substituted by an arbitrary kernel function enabling the method to work efficiently
on a (possibly high-dimensional and hopefully linearized) feature space. Here, a
finite dataset can be given as a kernel matrix (k(vi, vj))ij generated by pairwise
applications of a kernel function k(·, ·) on the input data V , what is nothing else
than pairwise inner products 〈φ(vi) φ(vj)〉F from a corresponding feature space F ,
and hence a Gram matrix.
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As it can be seen, kernelizing a method transforms it in a sense into an uni-
versal method able to process arbitrary complex structured data via kernel func-
tions. Kernel functions proposed for complex structured data are, for instance,
Edit distance-based kernel functions for strings and graphs (Neuhaus and Bunke,
2006), Fisher Kernel (Saunders et al., 2003) and String Kernel (Lodhi et al., 2002)
for text processing, Graph Kernel (Kashima et al., 2004; Bach, 2008), Kernel on
pointsets (Parsana et al., 2008), and Alignment Kernel from bioinformatics (Qiu
et al., 2007). General approaches dealing with kernelizing of dissimilarity measures
were proposed by Pekalska et al. (2001), and Haasdonk and Bahlmann (2004).

Now kernelizing of the relational methods can be accomplished as discussed
above by replacing the norm in the distance calculations by the corresponding inner-
product, enabling the method to operate in a feature space. Then the inner product
can be substituted by a kernel function circumventing the need to calculate map-
pings into feature space. In the following we will derive a representation of squared
distances that just depends on entries of a given kernel matrix. These squared
distances between relational prototypes and data points are part of all introduced
relational algorithms. Hence, the substitution provides kernelized relational vari-
ants, namely Kernelized Relational k-Means, KRSOM, and KRNG (Hammer and
Hasenfuss, 2007).

Kernelized Distance Representation Assume that there is a finite dataset
V = {v1, v2, . . . , vm} ⊆ V given. Let F be a real inner-product space with in-
ner product 〈· ·〉F and φ : V → F a mapping as defined above. We denote the
corresponding Gram matrix of V by K = (kij)ij where kij = 〈φ(vi) φ(vj)〉F . As-
sume further that prototypes are convex combinations of projected points in feature
space. Then the identity

‖wi − φ(vj)‖2 = kjj − 2αi∗kT
j∗ + αi∗KαT

i∗ (4.15)

holds for any convex combination wi =
∑m

j=1 αijφ(vj) over F .

Proof. It is easy to verify, that

‖wi − φ(vj)‖2
F =

〈φ(vj) φ(vj)〉 − 2
∑

s αis 〈φ(vj) φ(vs)〉 +
∑

s

∑
t αisαit 〈φ(vs) φ(vt)〉

= kjj − 2
∑

s αiskjs +
∑

s

∑
t αisαitkst = kjj − 2αi∗kT

j∗ + αi∗KαT
i∗.

�

Hence in this section we have sketched how to kernelize Relational Neural Gas
and Relational SOM. First successful applications of Kernelized Relational SOM
have been made by Boulet et al. (2008) to social network analysis. In the following
section we are concerned with magnification control for relational methods to pave
the way for outlier suppression, information-optimal transfer, rare event emphasis,
and the like also in the relational approach.

4.4 Magnification Control for Relational Methods

In this section we will explore the possibility of magnification control for the rela-
tional methods and show how to transfer the ideas from Section 3.2 in the context
of Batch Neural Gas. Especially the behavior of magnification control on non-
Euclidean datasets is of great interest, because the established theory does not
cover this case. It shall be demonstrated empirically that magnification control is
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also possible in the non-Euclidean case. The theoretical analysis seems to be difficult
or even impossible by adapting the established mathematical techniques and proofs.

As demonstrated by Hasenfuss et al. (2008b), the localized learning technique
can easily be transferred to RNG by integrating the local density – in analogy to
Section 3.2 – into the prototype updates rule (4.12) as follows

αij = (hλ(ki(vj)) · p(vj)m) /
∑

j

(hλ(ki(vj)) · p(vj)m) . (4.16)

If a Euclidean embedding of data points exists, this learning rule is equivalent to
localized learning for Batch Neural Gas (3.13) as it can be seen by inserting the
rule (4.16) into the prototype representation wi =

∑
j αijvj . Thus, the theoretical

guarantees as derived in (Hammer et al., 2007b) hold for this case.
For the non-Euclidean case, the theoretical effect of the localized learning rule is

not clear a priori, this issue is still in the focus of ongoing work. We are nevertheless
able to see from the experiments that magnification control in this case is surely
possible.

Note that, for optimum αij , the cost function is equivalent to the extended
relational dual cost function

1
2
·
∑

i

∑
l,l′

hλ(kil)hλ(kil′ )p(vl)mp(vl′ )md2
ll′

/∑
l′′

hλ(kil′′ )p(vl′′ )m, (4.17)

which measures the dissimilarities of data points assigned to the same clusters,
weighted according to p(vl)m. The denominator accounts for the fact that the size
of clusters per se is not important.

Obviously, the control parameter m allows to control the relevance of the value
d2

ll′ of data points vl in certain regions of the data space. Assume p(vl) measures the
relative number of similar points (or local data density, if defined). Then a control
parameter m > 1 emphasizes regions which contain a large number of pairwise sim-
ilar data points, whereas m < 1 emphasizes regions with only few pairwise similar
points.

Hence, the presented modification of the relational methods paves the way to
better control of their behaviour, what comes in handy for the problem of out-
lier suppression and emphasis of rare events, and what could also be utilized in a
framework allowing for user interactions to magnify local areas of the data space in
real-time data inspection.

As discussed above, the major drawback of the relational methods is their
quadratic time and space complexity that prevents the usage of the methods in
many real-world applications today. In what follows, we present a technique to
process also very large non-Euclidean datasets, meaning hundred of thousands or
even millions of objects, by relational methods.

4.5 Processing of Very Large Dissimilarity Datasets

As discussed before in Section 4.2, very large dissimilarity datasets require spe-
cial processing schemes for Median methods due to their demands on space and
processing time, what is also true for Relational approaches.

In the following, we will discuss a special processing scheme for Relational Neu-
ral Gas that was introduced by Hasenfuss et al. (2008c). The presented scheme can
easily be migrated to Relational SOM as done by Hasenfuss et al. (2008a).
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Assume as before that data are given as a dissimilarity matrix D = (dij)i,j=1,...,m

with entries dij = d(vi, vj) representing the dissimilarity of the datapoints vi and
vj . During processing of Patch Relational NG, np patches of fixed size p = �m/np�
are cut consecutively from the dissimilarity matrix D,3 where every patch

Pi = (dst)s,t=(i−1)·p+1,...,i·p ∈ �p×p

is a submatrix of D centered around the matrix diagonal.
The idea of the original patch scheme is to add the prototypes from the pro-

cessing of the former patch Pi−1 as additional datapoints to the current patch Pi,
forming an extended patch P ∗

i which includes the previous points in the form of
a compressed statistics. The additional datapoints – the former prototypes – are
weighted according to the size of their receptive fields, i.e. how many datapoints
do they represent in the former patch. To implement this fact, every datapoint
vj is equipped with a multiplicity mj , which is initialized with mj = 1 for data
points from the training set and it is set to the size of the receptive fields for data
points stemming from prototypes. This way, all data are processed without loss of
previous information which is represented by the sufficient statistics. Moreover, in
contrast to dynamic approaches such as (Prudent and Ennaji, 2005) the number of
prototypes can be fixed a priori.

Unlike the situation of original Patch NG (Alex et al., 2009), where prototypes
can simply be converted to datapoints and the inter-patch distances can always be
recalculated using the Euclidean metric, the situation becomes more difficult for
relational clustering. In Relational NG prototypes are expressed as convex com-
binations of unknown Euclidean datapoints, only the distances can be calculated.
Moreover, the relational prototypes gained from processing of a patch cannot be
simply converted to datapoints for the next patch. They are defined only on the
datapoints of the former patch. To calculate the necessary distances between these
prototypes and the datapoints of the next patch, the distances between former and
next patch must be taken into account, as shown in Section 4.3. But that means
touching all elements of the upper half of the distance matrix at least once dur-
ing processing of all patches, what foils the idea of the patch scheme to reduce
computation and memory-access costs.

In this contribution, another way is proposed. In between patches not the re-
lational prototypes itselves but representative datapoints obtained from a so called
k-approximation are used to extend the next patch. As for standard patch cluster-
ing, the points are equipped with multiplicities. On each extended patch a modified
Relational NG is applied taking into account the multiplicities.

k-Approximation

Assume there are given n relational prototypes by their coefficient matrix (αij) ∈
�n×m defined on Euclidean datapoints V . These prototypes are taken after con-
vergence of the Relational NG method, i.e. these prototypes are situated at optimal
locations.

As can be seen from the update rule (4.12), after convergence in the limit λ → 0
it holds

αij −→
{

1/|Ri| : vj ∈ Ri

0 : vj �∈ Ri
, because

{
hλ(kij) = 1 for vj ∈ Ri

hλ(kij) → 0 for vj �∈ Ri

}
,

where Ri = {vj ∈ V : ‖wi − vj‖ ≤ ‖wk − vj‖ for all k} denotes the receptive field
of prototype wi. That means, in the limit only datapoints from the receptive fields

3The remainder is no further considered here for simplicity. In the practical implementation
the remaining datapoints are simply distributed over the first (M − p · np) patches.
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have positive coefficients and equally contribute to the winning prototype that is
located in the center of gravity of its receptive field.

A k-approximation of an optimal relational prototype wi is a subset R′ ⊆ Ri

with |R′| = min{k, |Ri|} such that
∑

r′ ∈ R′ ‖wi−r′‖2 is minimized. That means, we
choose the k nearest points from the receptive field of a prototype as representatives.
If there are less than k points in the receptive field, the whole field is taken. This
computation can be done in time O(|Ri|·k). For a set W of relational prototypes, we
refer to the set containing a k-approximation for each relational prototype wi ∈ W
a k-approximation of W .

These k-approximations in combination with their corresponding coefficients can
be interpreted as a convex-combined point in the relational model, defined just over
the points of the k-approximation. Therefore, if merged into the next patch, the
number of the prototype coefficients remains limited, and the distances of these
approximated prototypes to points of the next patch can be calculated using the
original equations. This way, only a fraction of the inter-patch distances needs to
be considered.

Construction of Extended Patches

Let Wt be a set of optimal relational prototypes gained in a step t. Assume Nt

denotes the index set of all points included in the union of a k-approximation of
Wt pointing onto elements of the dissimilarity matrix D. The extended patch P ∗

t

is then characterized by the distance matrix

P ∗
t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(Nt−1) d(Nt−1, Pt)

d(Nt−1, Pt)T Pt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

d(Nt−1) = (duv)u,v ∈ Nt−1
∈ �nt×nt

d(Nt−1, Pt) = (duv)u ∈ Nt−1,v=(t−1)·p+1,...,t·p ∈ �nt×p

denote the inter-distances of points from the k-approximation and the distances
between points from the k-approximation and current patch points, respectively.
The size nt is bounded by |Wt| · k.

Integrating Multiplicities

The original Relational Neural Gas method has to be modified to handle data-
points vj equipped with multiplicities mj . If these data points originate from a
k-approximation of prototypes of the previous patch, the multiplicities are given by

m(wi) =
1
k
·

∑
v∈P∗

t ∩Vi(Wt)

m(v),

the sum of multiplicities of all data points in the receptive field divided by k.
Incorporating multiplicities into the cost function yields the update rule

ᾱij =
mj · hλ(ki(vj))∑
t mt · hλ(ki(vt))

for prototype coefficients. The computation of distances is not changed.



4.6 Experimental Results and Applications 79

Patch Relational Neural Gas

Assembling the pieces, we obtain Algorithm 4.5.

Algorithm 4.5: Patch Relational Neural Gas

Begin

Cut the first Patch P1

Apply Relational NG on P1 −→ Relational prototypes W1

Use k-Approximation on W1 −→ Index set N1

Update Multiplicities mj according to the receptive fields

Repeat for t = 2, . . . , np

Cut patch Pt

Construct Extended Patch P ∗
t using Pt and index set Nt−1

Apply modified RNG with Multiplicities −→ Relational prototypes Wt

Use k-Approximation on Wt −→ Index set Nt

Update Multiplicities mj according to the receptive fields

Return k-approximation of final prototypes Nnp

End.

Complexity

Obviously, the size of extended patches is bounded by the size of the new patch read
from the distance matrix and the distances of the at most k · n points representing
the n prototypes of the last run by their k approximation. Assume a bounded
extended patch size p independent of the number of datapoints, as it would be the
case when the patch size is chosen according to memory limitations. The algorithm
then works only on O(m

p ·p2) = O(m ·p) = O(m) entries of the dissimilarity matrix,
compared to O(m2) in the original RNG method. Moreover, the algorithm uses at
most O(p2) = const entries at a specific point in time.

In case of fixed patch size, also the time complexity is linear, because the RNG
step is O(p2) what results in O(p2 · m

p ) = O(p ·m) = O(m), an advantage compared
to the O(m2) time complexity of the original RNG. Furthermore, the algorithm can
be run in a single pass over the data.

These advantages in space and time complexity are obtained by an approxima-
tion of the prototypes. As we will see in experiments, this leads only to a small loss
in accuracy.
Hence one of the key findings of this section is that the relational methods, despite
their original quadratic time complexity, can now be applied successfully to the very
large datasets arising in almost all fields of science today.

In the last section, we will focus on experiments and simulations that shall
demonstrate the benefits of the above presented methods on non-Euclidean datasets.

4.6 Experimental Results and Applications

In this section, we will demonstrate the benefits of the introduced methods on
non-Euclidean datasets.
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Class No. Count Percentage
HA 72 31.86%
HB 72 31.86%
MY 39 17.26%
GG/GP 30 13.27%
Others 13 5.75%

Table 4.1: Class Statistics of the Protein Dataset

Description of Datasets

In the following, we give a brief description of the datasets that are used throughout
the experiments. A small collection of datasets has been carefully chosen, in a way
that these datasets cover very different aspects, so the experimental results can be
generalized to real-world applications as well.

Cat Cortex The Cat Cortex Data Set originates from anatomic studies of cats’
brains. A matrix of connection strengths between 65 cortical areas of cats was
compiled from literature (Graepel et al., 1999). There are four classes corresponding
to four different regions of the cortex. For our experiments a preprocessed version
of the data set from Haasdonk et al. (Haasdonk and Bahlmann, 2004) was used.
The matrix is symmetric but the triangle inequality does not hold.

Chicken Pieces Silhouettes The task is to classify 446 silhouettes of chicken
pieces into 5 categories (wing, back, drumstick, thigh and back, breast). Data
silhouettes are represented as a string of the angles of consecutive tangential line
pieces of length 20, including appropriate scaling. The strings are then compared
using a (rotation invariant) edit distance, where insertions/deletions cost 60, and
the angle difference is taken otherwise.

Copenhagen Chromosomes The Copenhagen chromosomes database is a bench-
mark from cytogenetics (Lundsteen et al., 1980). A set of 4200 human chromosomes
from 22 classes (the autosomal chromosomes) are represented by the gray levels of
their images. These images were transferred to strings representing the profile of
the chromosome by the thickness of their silhouettes. The strings were then com-
pared using edit distance with substitution costs given by the signed difference of
the entries and insertion/deletion costs given by 4.5 (Neuhaus and Bunke, 2006).
The edit distance is a typical distance measure for two strings of different length,
as described in (Juan and Vidal, 2000).

Protein Data The evolutionary distance of 226 globin proteins is determined
by alignment as described in (Mevissen and Vingron, 1996). These samples origi-
nate from different protein families: hemoglobin-α, hemoglobin-β, myoglobin, etc.
Here, we distinguish five classes as proposed in (Haasdonk and Bahlmann, 2004):
HA, HB, MY, GG/GP, and others. Unlike the other datasets considered here, the
protein dataset has a highly unbalanced class structure. Table 4.1 shows the class
distribution of the dataset. Note that the class Others combines small classes from
the original dataset and represents only a small fraction of the whole dataset.

Macroarray Data An important topic in bioinformatics is the gene expression
analysis. For this dataset, the temporal development of barley seeds was analyzed,
what is an main issue for the derivation of key metabolic processes during different
stages of growth. Extensive gene expression measurements at 14 time points from
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day zero after flowering to day 26 in steps of two days were carried out using cDNA
macroarray technology. High signal to noise ratios and high reproducibility between
two independently taken experimental series led to a selection of 4824 genes out of
11786 genes available on the 12k macroarrays. Thus, a data matrix of 4824 (genes)
by 14 (time points) is considered. As common in gene expression analysis, log2-
transformed final expression values are considered. Coexpression analysis of the
available 4824 gene expression time series is required to identify groups of commonly
regulated genes that may have temporal impact on each other. Such a clustering
helps to extract candidate genes responsible for triggering later events like, for
example, the influence of cell wall degradation factors for lateral tissue nutrition or
subsequent starch accumulation processes.

Wisconsin Diagnostic Breast Cancer The Wisconsin Diagnostic Breast Can-
cer database (WDBC) is a standard benchmark set from clinical proteomics (Wol-
berg et al., 1995). This dataset is only Euclidean chosen to serve as benchmark.
It consists of 569 Euclidean data points described by 30 real-valued input features:
digitized images of a fine needle aspirate of breast mass are described by character-
istics such as form and texture of the cell nuclei present in the image. The data are
labeled into two classes, benign and malignant.

Analysis of non-Euclidean Datasets

In the following the non-Euclidean datasets are analyzed regarding their Euclidean-
ity. For that reason, characteristical properties like eigenvalues of the corresponding
Gram matrices are shown that have been discussed before in the last section.

The signatures of the dissimilarity matrices (inertia of corresponding Gram ma-
trices) for the datasets is shown in Table 4.2. Except for the Protein dataset, all
dissimilarity matrices feature a large value e− meaning there are many negative
eigenvalues in the spectra of the corresponding Gram matrices what indicates that
they might be highly non-Euclidean.

Signature of Non-Euclidean Datasets

Cat Cortex (41,23,1)
Chicken Pieces (240,205,1)
Copenhagen Chromosomes (1951,2206,43)
Macroarray Data (2450,2374,0)
Protein Data (218,4,4)

Table 4.2: Inertia (e+, e−, e0) of corresponding Gram matrices

A more detailed view on the structure of the datasets is given by the magnitude
of the eigenvalues. Here, the non-Euclidean datasets used in the experiments are
analyzed by means of their sorted eigenspectra of the respective Gram matrices.
The eigenvalues were normalized by the average dissimilarity before visualization
to make them more comparable.

As it can be seen, all datasets feature a few dominant positive eigenvalues and
many eigenvalues around zero, meaning that most structural information is con-
tained only in a few dimensions. The negative eigenvalues are of a lower magnitude
for most datasets. It should be noted that the non-Euclidean part cannot be larger
than the Euclidean part, because the dissimilarities are constrained to be positive.
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Finally, we draw the reader’s attention to the Cat Cortex dataset (see Figure 4.3)
which has a strong negative part in its eigenspectrum, so its non-Euclideanity is
high.
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Figure 4.3: Cat Cortex Dataset: Eigenspectrum of Gram Matrix
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Figure 4.4: Chicken Pieces Dataset: Eigenspectrum of Gram Matrix

Just to give an idea, Table 4.3 shows how large the spreading values have to be
chosen to transform the dissimilarity into Euclidean or squared Euclidean distances,
respectively.

Experimental Results on Dissimilarity Datasets

We demonstrate the performance of the relational algorithms in different scenarios
given by the above described datasets covering a variety of characteristic situations.

Note that, for all median versions, prototypes situated at identical points of
the data space do not separate in subsequent runs. Therefore constellations with
exactly identical prototypes should be avoided. For the Euclidean and relational
versions this problem is negligible, presumed prototypes are initialized at different
positions. However, for median versions it is likely that prototypes move to an
identical locations due to the limited number of different positions in data space,
in particular for small data sets. To cope with this fact in median versions, we
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Figure 4.5: Copenhagen Chromosome Dataset: Eigenspectrum of Gram Matrix
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Figure 4.6: Protein Dataset: Eigenspectrum of Gram Matrix

add a small amount of noise to the distances in each epoch in order to separate
identical prototypes. In all runs, the methods have been applied directly without
any correction of the given dissimilarity matrices.

For all experiments the initial neighborhood range λ0 is chosen as n/2 with n the
number of neurons used. The neighborhood range λ(t) is decreased exponentially
with the number of adaptation steps t according to λ(t) = λ0 · (0.01/λ0)t/tmax

(cf. (Martinetz et al., 1993)). The value tmax is chosen as the number of epochs.

Wisconsin Diagnostic Breast Cancer For training we used 40 neurons and
150 epochs per run. The dataset was z-transformed beforehand. The results were
gained from repeated 2-fold cross-validations averaged over 100 runs. The mixing
parameter of the supervised methods was set to 0.5 for the simulations reported in
Table 4.4. Moreover, the data set is contained in the Euclidean space therefore we
are able to compare the relational versions introduced in this article to the standard
Euclidean methods. These results are shown in Table 4.4. The effect of a variation
of the mixing parameter is demonstrated in Fig. 4.7. The results are competitive to
supervised learning with the state-of-the-art-method GRLVQ as obtained in (Schleif
et al., 2007).

As one can see, the results of Euclidean and relational clustering are identical, as
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Minimum Spread Transform

Dataset sq. Euclidean Euclidean
Cat Cortex 4.9321 (1.4105) 12.7616 (3.6495)
Chicken Pieces 36.5429 (1.7107) 98.5631 (4.6142)
Copenhagen Chromosomes 851.7972 (6.9389) 1865.9 (15.20)
Macroarray Data 0.0028 (0.0031) 23.8977 (24.1545)
Protein Data 0 (0) 12.6932 (1.2366)

Table 4.3: Minimum spreading value for the datasets to become squared Euclidean
and Euclidean. In parentheses, the spreading value normalized by the average
dissimilarity is given.

k-Means Supervised Median Relational Supervised
k-Means k-Means k-Means Relational

k-Means

Accuracy
Mean 93.6 93.0 93.0 93.4 93.5
StdDev 0.8 1.1 1.0 1.2 1.1

Batch Supervised Median Relational Supervised
NG Batch Batch Batch Relational

NG NG NG Batch NG

Accuracy
Mean 94.1 94.7 93.1 94.0 94.4
StdDev 1.0 0.8 1.0 0.9 1.0

Table 4.4: Classification accuracy on the WDBC database for posterior labeling.
The mean accuracy over 100 repeats of 2-fold cross-validation is reported.

expected by the theoretical background of relational clustering. Relational cluster-
ing and supervision allow to improve the more restricted and unsupervised median
versions by more than 1% classification accuracy.

Cat Cortex The algorithms were tested in 10-fold cross-validation using 12 neu-
rons (three per class) and 150 epochs per run. The results presented show the
mean accuracy over 250 repeated 10-fold cross-validations per method. The mixing
parameter of the supervised methods was set to 0.5 for the simulations reported in
Table 4.5. Results for different mixing parameters are shown in Figure 4.8.

Haasdonk and Bahlmann (2004) gained an accumulated error over all classes
of at least 10% in leave-one-out experiments with SVMs. Graepel et al. (1999)
obtained virtually the same results with the Optimal Hyperplane (OHC) algorithm.
In our experiments, the improvement of restricted median clustering by relational

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy
Mean 72.8 71.6 89.0 88.7 77.9 89.2 91.3
StdDev 3.9 4.0 3.3 3.0 3.5 3.0 2.8

Table 4.5: Classification accuracy on the Cat Cortex Data Set for posterior labeling.
The mean accuracy over 250 repeats of 10-fold cross-validation is reported.
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Figure 4.7: Results of the supervised methods for the WDBC data set with different
mixing parameters applied.

extensions by more than 10% classification accuracy can clearly be observed. Note
that relational clustering works quite well in this case although an interpretation
by means of prototypes is not directly possible.

Proteins For training we used 45 neurons and 150 epochs per run. The results
were gained from repeated 10-fold cross-validations averaged over 100 runs. The
mixing parameter of the supervised methods was set to 0.5 for the simulations
reported in Table 4.6.

Unlike the results reported in (Haasdonk and Bahlmann, 2004) for SVM which
uses one-versus-rest encoding, the classification in our setting is given by only one
clustering model. Depending on the choice of the kernel, (Haasdonk and Bahlmann,
2004) reports errors which approximately add up to 4% for the leave-one-out error.
This result, however, is not comparable to our results due to the different error
measure. A 1-nearest neighbor classifier yields an accuracy 91.6 for our setting (k-
nearest neighbor for larger k is worse; (Haasdonk and Bahlmann, 2004)) which is
comparable to our results.

The Self-Organizing Map variants for dissimilarity datasets were tested against
the Neural Gas variants. For training we use 29 neurons for Relational Batch NG
and Relational Hyperbolic SOM, and a 5x5 grid for standard Relational SOM,
respectively. The number of neurons is derived from the hyperbolic grid of depth
three (cf. Figure 4.10). The neighborhood range is annealed starting from N/2 to

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy
Mean 76.1 76.3 88.0 89.9 89.4 88.2 90.0
StdDev 1.3 1.8 1.8 1.3 1.4 1.7 1.0

Table 4.6: Classification accuracy on the Protein Data Set for posterior labeling
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Figure 4.8: Results of the supervised methods for the Cat Cortex Data Set with
different mixing parameters applied.

0, N being the number of neurons, in all experiments. The results reported in
Table 4.7 are gained from repeated 10-fold stratified cross-validation averaged over
100 repetitions and 150 epochs per run. Supervision is included in the cost function
with mixing parameter 0.5.

Note that the different clusters can easily be identified. The Relational SOM
provides an improved technique to explore dissimilarity data, revealing the struc-
tures of interest.

The projections of a Relational SOM with hyperbolic grid structure and of Re-
lational BNG with non-metric multidimensional scaling using Kruskal’s normalized
stress1 criterion are shown in figure 4.10 and 4.9. The neurons are depicted accord-
ing to majority vote. Obviously, the neurons arrange according to the associated
class and a very clear two-dimensional representation of the data set is obtained.

Copenhagen Chromosomes The Neural Gas variants for dissimilarity datasets
were tested in 2-fold stratified cross-validation using 100 neurons and 100 epochs
per run (cf. (Cottrell et al., 2006)). The results presented are the mean accuracy
over 10 times 2-fold cross-validation per method. The mixing parameter of the
supervised methods was set to 0.9.

As it can be seen from Table 4.8, supervised relational neural gas achieves an
accuracy of 0.914 for α = 0.9. This is an improvement by 8% compared to the
median variants.

Median Relational Standard Relational
Batch Batch Relational Hyperbolic
NG NG SOM SOM

Accuracy Protein Data set
Mean 89.5 92.4 91.5 91.5
StdDev 1.0 0.9 0.8 1.2

Table 4.7: Classification accuracy on the Protein Data Set with posterior labeling
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Figure 4.9: Mapping of the non-euclidean Protein dataset by Relational BNG with
non-metric multidimensional scaling.

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy
Mean 82.3 82.8 90.6 91.3 89.4 90.1 91.4
StdDev 2.2 1.7 0.6 0.2 0.6 0.6 0.6

Table 4.8: Classification accuracy of the Neural Gas variants on the Copenhagen
Chromosome Database with posterior labeling

The Self-Organizing Map variants for dissimilarity datasets were tested in a
repeated 2-fold stratified cross-validation using 85 neurons for Relational BNG and
Relational HSOM (corresponding two three rings), and a 9x9 grid for the standard
Relational SOM. The results presented in Table 4.8 are the mean accuracy over 10
repetitions per method and 100 epochs per run. Supervision is incorporated using
the mixing parameter 0.9. Again, an improvement of 2% can be observed compared
to the median variants.

Macroarray Data In Figure 4.11 a topographic mapping is shown which was ob-
tained by training a HSOM with 85 neurons for 150 epochs. Here, a transformation
of Pearson correlation of the expression patterns was used as a dissimilarity mea-
sure which better accounts for the overall principled shape as described in (Strickert
et al., 2006). Obviously, the map organizes the data according to the evolution of
up- and down-regulation of the genes over time. Due to the hyperbolic structure, the
map clearly separates opposite shapes and preserves the data topology. It should be
noted here that the map nicely captures the relevant classes of up-regulated (upper
and left half of the diagram) and down-regulated (lower and right half) as well as
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Figure 4.10: Mapping of the non-euclidean Protein dataset by a Relational SOM
with hyperbolic grid structure.

shapes in between.

Experimental Results on Magnification Control

We test local learning for a Euclidean benchmark, and four non-Euclidean settings
as described in (Neuhaus and Bunke, 2006; Haasdonk and Bahlmann, 2004). In
the latter cases, local learning can be applied and it can be expected that ‘dense’
or ‘sparse’ regions, respectively, of the data are emphasized depending on m due
to the optimized costs (4.17). However, the exact theoretical law of the prototype
density and its information theoretic optimum is not known. Note that, if D�2

stems from a metric, the concept of dimensionality can be defined for the underly-
ing data manifold and the intrinsic data dimensionality can been estimated using a

Median Relational Standard Relational
Batch Batch Relational Hyperbolic
NG NG SOM SOM

Accuracy Copenhagen Chromosome Database
Mean 88.8 90.7 89.9 89.4
StdDev 1.2 0.5 0.6 0.7

Table 4.9: Classification accuracy of the SOM variants on the Copenhagen Chro-
mosome Database with posterior labeling
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Figure 4.11: Visualization of the macroarray dataset by Relational SOM with hy-
perbolic grid structure.

Grassberger-Procaccia analysis (Grassberger and Procaccia, 1983). Similarly, den-
sity estimation is possible for separable metric spaces and uniformly continuous
densities by means of histogram estimators (Geffroy, 1974). For simplicity, we com-
pute P (v) using a simple Parzen window with bandwidth chosen as a third of the
average point distance, which gives a rough approximation to the underlying density
for Euclidean and metric settings, respectively.

For all experiments the initial neighborhood range λ0 was chosen as n/2, n being
the number of neurons. The neighborhood range λ(t) at epoch t was decreased
according to λ(t) = λ0 · (0.01/λ0)t/tmax (cf. (Martinetz et al., 1993)), tmax being the
number of epochs. If not indicated otherwise, the number of epochs was 100.

Control experiment At first, the experiment from (Hammer et al., 2007b) for
Euclidean data was repeated for RNG as control. Data were sampled from the
distribution

(v1, . . . , vd,

d∏
j=1

sin(π · vj))
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Figure 4.12: Left: Euclidean benchmark data – Entropy of map formation for dif-
ferent values c of magnification control and training sets of intrinsic dimensionality
d̂ ∈ {1, 2, 3} — Right: Chicken Pieces Dataset – Entropy for different magnification
control parameter values c
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Figure 4.13: Protein Dataset – Left: Entropy for different magnification control
parameter values c, Right: true positives rates

for d ∈ {1, 2, 3} and uniform vi ∈ [0, 1]. The number of data points was chosen as
2500 for d = 1, 5000 for d = 2, and 10000 for d = 3. We trained RNG for control
values m ∈ [−1.5, 3.5] and step size 0.25. A NG network with 50 neurons has been
used. The reported results have been averaged over 20 runs.

The information theoretic quality of the map can be judged by computing the
balance of patterns in the receptive fields. For equal values, an optimum information
transfer is achieved. The values of the map entropy are reported in Fig. 4.12. The
entropy should be maximum for optimum information transfer, i.e. for c = 2 (d̂ = 1),
c = 1 (d̂ = 2), and c = 2/3 (d̂ = 3). As indicated by the arrows, the experimental
optima of the curves are closely situated to the expected theoretical values.

Protein Dataset For the experiment RNG with magnification control parameter
c ∈ [−1.5, 3.5] (step size 0.1) and 50 neurons was trained. The results presented in
Fig. 4.13 are the average over 100 runs. The theoretical optimum c∗ ≈ 0.63 for the
Euclidean case as indicated by the arrow in Fig. 4.13 was derived from the estimated
intrinsic dimension d̂ ≈ 3.18. Note that magnification control by localized learning
is obviously possible for this non-Euclidean setting. Interestingly, the information
theoretic optimum of the curve is closely situated to the Euclidean one.

To demonstrate the magnification effect on exterior (small) classes, the true
positives rate for each class is depicted in Fig. 4.13. Apparently, the classification
rate is getting better when focusing on rare events, i.e. for small control parameter
c.

Chicken Pieces Silhouettes Dataset We trained a RNG network with mag-
nification control using 50 neurons and control parameter c ∈ [−1.5, 3.5] (step size
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Figure 4.14: Chromosome Dataset (left) and CatCortex Dataset (right) – Entropy
for different magnification control parameter values c

0.1). The average over 100 runs for each different value c was taken.
The arrow in Fig. 4.13 indicates the theoretical optimum c∗ ≈ 0.54 for the

Euclidean case that was derived from the estimated intrinsic dimension d̂ ≈ 3.72.

Copenhagen Chromosome Database Relational Neural Gas with magnifica-
tion control has been trained using 80 neurons for control parameter c ∈ [−1.5, 3.5]
(step size 0.25).

The results shown in Fig. 4.14 present the average over 10 runs for each different
value c. The figure shows very smooth control of the map entropy by localized learn-
ing. The observed optimum for the considered metric differs from the corresponding
optimum c∗ ≈ 0.68 (d̂ ≈ 2.93) in the Euclidean case.

Cat Cortex Dataset For the experiment, Relational Neural Gas with magnifica-
tion control has been trained using 12 neurons for control parameter c ∈ [−1.5, 3.5]
(step size 0.1). The results shown in Fig. 4.14 (right) present the average over 100
runs. A Grassberger-Procaccia analysis cannot be applied due to the data statistics
such that the theoretical optimum in the Euclidean case is not known. However,
magnification control is clearly possible also in this case.

Experimental Results on Very Large Datasets

To show the overall performance of the proposed patch methods, we have chosen
some representative very large dissimilarity datasets. Due to limited computing
power and hardware available, the chosen datasets do not represent real-life huge
datasets, they should be understood as a proof-of-concept that nevertheless can
instantly be transferred to the real problems.

We evaluate the clustering results by means of the classification error for su-
pervised settings, whereby class labels are obtained by posterior labeling of proto-
types. Note, however, that the goal of the algorithms is meaningful clustering of
data based on a chosen similarity measure and cost function. Hence, the classi-
fication error gives only a hint about the quality of the clustering, depending on
whether the class labels are compatible to the data clusters and chosen metric or
not. We accompany this supervised evaluation be the standard quantization error
of the clustering.

Synthetic Dataset To analyze the relation between the number of patches and
the quantization error on one hand, and the effect of k-approximation of relational
prototypes on the other hand, an artificial dataset from (Cottrell et al., 2006) was
taken. It consists of 1250 datapoints in the Euclidean plane gained from three
Gaussian clusters.
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Effect of k-Approximation For an empirical study of the effect of k-approxima-
tion on the quantization error, we trained 50 neurons with the original Relational
NG for 100 epochs, i.e. on average every neuron represents 25 datapoints. On
the outcoming relational neurons, k-Approximation for k = 1, . . . , 20 were applied.
Figure 4.15 shows a comparison of the quantization errors yielded with the different
approximations to the quantization error gained by the original relational neurons.
For each step the average over 10 runs is reported.

As expected, the quantization error decreases with higher numbers k of data-
points used to approximate each relational neuron. Concerning the patch approach,
applying a k-approximation to the relational neurons of each patch clearly results
in a loss of accuracy depending on the choice of parameter k. But as can be seen
later on, even with k-approximation the quality of the results is still convincing.
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Figure 4.15: Quantization error (i.e. E(W ) for λ → ∞) of original relational neurons
compared to different k-approximations on a synthetic dataset

Effect of Patch Sizes Analyzing the relation between the number of patches
chosen and the quantization error, we trained median and relational NG with 20
neurons for 50 epochs. The results presented in figure 4.16 show the quantization
error averaged over 10 runs for each number of patches. As expected, the quantiza-
tion error increases with the number of patches used. But compared to the Median
Patch NG approach the presented Patch Relational NG performs very well with
only a small loss even for a larger number of patches used.

Chicken Pieces Silhouettes For training we used 30 neurons. For Patch Me-
dian NG the dataset was divided into 4 patches, i.e. a patch size of around 111
datapoints. The results reported in Table 4.10 are gained from a repeated 10-fold
stratified crossvalidation averaged over 100 repetitions and 100 epochs per run. The
k-approximation for Patch Relational NG was done with k = 3.

Protein Classification The Protein Dataset as described on page 80 is processed
by the patch variants of Neural Gas. For training we used 20 neurons. The dataset
was divided into 4 patches, i.e. a patch size of around 57 datapoints. The results
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Figure 4.16: Quantization error for different patch sizes on a synthetic dataset

reported in Table 4.11 are gained from a repeated 10-fold stratified crossvalidation
averaged over 100 repetitions and 100 epochs per run.

Despite the small size of this dataset – acting more as a proof-of-concept example
– the results clearly show a good performance. Nevertheless, the price of reduced
accuracy is obvious, but faster computation and less space requirements are gained
in return. The k-approximation for Patch Relational NG was done with k = 3.

Wisconsin Diagnostic Breast Cancer Here, dissimilarities were derived by
applying the Cosine Measure

dcos(vi, vj) = 1 − vi · vj

‖vi‖ · ‖vj‖ .

We trained 40 neurons for 100 epochs. As result the accuracy on the test set
for a repeated 10-fold stratified crossvalidation averaged over 100 runs is reported.
The number of patches chosen for Patch Median NG and Patch Relational NG was
5, i.e. around 114 datapoints per patch. The k-approximation for Patch Relational
NG was done with k = 2.

Also on this dataset, Patch Relational NG acts marginally worse than the orig-
inal Relational NG. Though, the reduction in accuracy is clearly observable.

Accuracy on Chicken Pieces Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 84.7 85.4 66.4 68.8 72.9
StdDev 1.0 1.1 1.9 2.3 1.7

Table 4.10: Classification accuracy on Chicken Pieces Dataset gained from repeated
10-fold stratified crossvalidation over 100 repetitions, four patches were used.
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Copenhagen Chromosome Database The methods have been trained using
60 neurons for 100 epochs. As result the accuracy on the test set for a repeated
2-fold stratified crossvalidation averaged over 10 runs is reported. The number of
patches chosen for Patch Median NG and Patch Relational NG was 10, i.e. around
420 datapoints per patch. The k-approximation for Patch Relational NG was done
with k = 3.

Also on this dataset, Patch Relational NG acts well. Though, the reduction in
accuracy is clearly observable.

Experiments on Very Large Text Datasets

Here, the patch relational methods were applied to very large text datasets (Hasen-
fuss et al., 2008a). For all text datasets, the extracted texts were pre-processed
by removing stop words and applying word stemming (Porter, 1980). The text
documents were then compared by the popular Normalized Compression Distance
(NCD) (Cilibrasi and Vitáni, 2005), a measure based on approximations of the Kol-
mogorov Complexity from algorithmic information theory (Li and Vitányi, 1997).
The NCD is defined as

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}

where x and y are the document strings, C(x) denotes the compressed size of x and
C(xy) the compressed size of the concatenation of x and y using a real compressor.
For our experiments the bzip2 compression method was used.

Reuters Dataset The popular Reuters-21578 dataset is a collection of 21578
documents that appeared on the Reuters newswire in 1987. The data was split
according to the common ’Modified Apte’ split and the most important class of
each datapoint’s multilabel was taken as single class label. For the experiment the
7 most prominent classes were taken (cf. Ontrup and Ritter, 2001). We trained
a Supervised Patch Relational SOM with a hyperbolic grid of 85 neurons on 10
patches for 100 epochs using a 5-approximation and a control parameter β = 0.5.
Figure 4.17 shows the visualization as a simple projection of the hyperbolic grid
into the Euclidean plane.

20 Newsgroup Dataset The 20 Newsgroups dataset from the UCI repository
consists of 20000 newsgroup articles collected from twenty UseNet newsgroups dur-
ing 1993, 1000 articles of each newsgroup. The newsgroups were grouped by their
overall topics into 7 classes. We processed the data by a Supervised Patch Rela-
tional SOM with a hyperbolic grid structure of 29 neurons on 60 patches. Training

Accuracy on Protein Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 92.62 92.61 79.9 77.7 80.6
StdDev 0.92 0.88 1.5 2.4 1.3

Table 4.11: Classification accuracy on Protein Dataset gained from repeated 10-fold
stratified crossvalidation over 100 repetitions, four patches were used.
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Accuracy on Wisconsin Breast Cancer Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 95.0 94.8 94.7 94.4 94.6
StdDev 0.6 0.7 0.7 0.7 0.7

Table 4.12: Classification accuracy on Wisconsin Breast Cancer Dataset with Cosine
Measure gained from repeated 10-fold stratified crossvalidation over 100 repetitions,
five patches and a 2-approximation were used.

was done for 100 epochs with a 1-approximation and a supervision control parame-
ter β = 0.2. Figure 4.18 shows the outcome of the method projected into Euclidean
plane.

Large Newsgroup Dataset As an example for a very large dataset, we gath-
ered 183,546 newsgroup articles from 13 different newsgroups in analogy to the 20
Newsgroup dataset.

The full dissimilarity matrix of normalized compression distances for this dataset
would occupy approx. 251 GB (!), so it were no option to process it with standard
batch methods. Instead, we precalculated NCDs for 183 patches of around 1000
documents each, these dissimilarity matrices were stored to files on hard disk. We
then applied the novel Patch Relational SOM with 3-approximation and a hyper-
bolic grid of 85 neurons. That way, only around 274 megabytes of dissimilarities
have to be considered by the algorithm and computation time was around 18h in-
stead of an extrapolated half a year! Also the computation required only a constant
space of around 12 megabytes (plus some overhead) and could be performed on a
common workstation.

Most time consuming part of the calculation was the construction of the ex-
tended patch, here we had to determine the normalized compression distances be-
tween neurons and datapoints on the fly. Due to the size of the problem it is not
possible to calculate and store those distances in advance.

The outcome is a mapping into 2-dimensional hyperbolic space, that can be
projected to the Euclidean plane for visualization and data inspection (see fig. 4.19).

Conclusions

Throughout this section it has been demonstrated that the introduced prototype-
based methods perform very well on very different non-Euclidean datasets. The ex-
periments cover topographic mapping as well as clustering and classification tasks.

Accuracy on Copenhagen Chromosome Image Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 89.6 87.0 80.0 67.9 77.1
StdDev 0.6 0.8 1.4 3.1 2.2

Table 4.13: Classification accuracy on Copenhagen Chromosome Image Dataset
gained from repeated 2-fold stratified crossvalidation over 10 repetitions, 10 patches
and a 3-approximation were used.
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Figure 4.17: Visualization of the 7 most important classes of the Reuters Dataset

The results confirm that the prototype-based methods are very well suited for a
broad range of problems. Especially for the topographic mapping of dissimilar-
ity datasets, where concurrent approaches are rare, they pose a promising novel
approach.

Also the extensions like supervision, magnification control, and patch processing
proved their strength. For instance, the large Newsgroup dataset with 180,000
pairwise dissimilarities was processed what is simply impossible if only the original
batch algorithms were available. It was also shown that the supervised variants can
help to improve the topographic mappings significantly, and that important regions
can be magnified, what is very useful in data visualization.
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Figure 4.18: Visualization of the UCI 20 Newsgroups Dataset
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Figure 4.19: Visualization of 183,546 newsgroup articles whose full dissimilarity
matrix would occupy approx. 251 GB, instead Patch Relation SOM was applied to
183 patches of around 1000 documents each, reducing drastically the computation
time and space needed.



Chapter 5

Summary and Outlook

The concern of the thesis at hand was the processing of data for topographic map-
ping as well as for clustering and classification. Throughout this work we were
exclusively concerned with prototype-based methods because these approaches of-
fer very intuitive learning techniques and their outcomes are meaningful in a way
that they can be easily interpreted and visualized. We especially focused on the
popular prototype-based methods Neural Gas and Self-Organizing Maps, two rep-
resentative approaches that have shown their benefits in many applications. Neural
Gas is a very robust and reliable vector quantization technique that distributes
representative prototypes over a given data manifold in a topology-preserving way.
Self-Organizing Maps are a very successful topographic mapping technique that
map high-dimensional data into a low-dimensional structure where the data can
be visualized. Originally, these methods operate on vectorial data in Euclidean
spaces. The ultimate goal of this thesis was the application of Neural Gas and Self-
Organizing Maps to data given as pairwise dissimilarities between objects which
means in general that there is no vectorial representation available.

In the first part of the thesis, we reformulated the original standard methods
Neural Gas and Self-Organizing Maps to run in a so-called batch mode. In this
mode, all the data points of a finite dataset are considered at once during each
update step of the algorithm. It could be demonstrated that the batch variants
achieve a higher order of convergence, i.e. they perform much faster while obtaining
the same outcome. These fast batch variants can always be used in place of the
original ones if the datasets are given in advance.

Next, a few useful extensions of Batch Neural Gas and Batch Self-Organizing
Maps were introduced. The first extension aimed for a better control on how the
prototypes are distributed according to the data density. We discussed a modifi-
cation of the update rules that allows for an arbitrary control of the magnification
behaviour. This opened the way for outlier suppression, emphasis of rare events,
and information optimal maps. In future work, the concept could also be extended
to user-interactive magnification of local regions, what would be particularly suited
for sophisticated visualization tools in visual analytics.

If further information about the data in form of class labels is available, the
additional information can be incorporated into the learning process. It was shown
that this supervision helps to improve the classification ability as well as the quality
of the topographic maps for visualization.

Especially for the handling of very large datasets, we applied a special process-
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ing scheme that is based on patches. In principle this scheme can be applied to all
prototype-based methods what is still subject of ongoing work. By taking patches
of fixed size one by one, this extension is able to process arbitrary large datasets.
Beyond that, the scheme can also be applied to non-stationary distributions in
the context of life-long learning systems e.g. in pattern recognition for vision and
robotics, or in clustering of data streams.

The main part of the thesis deals with the processing of dissimilarity datasets
that are in general of non-Euclidean character. In particular, we adapted the
prototype-based methods Neural Gas and Self-Organizing Maps to be able to work
on non-vectorial datasets. In a first step, we introduced exemplar-based variants
that use datapoints as representative prototypes. Unfortunately, the exemplar-
based techniques feature the inherent drawback that the prototypes can only be
placed on fixed discrete locations what are in general suboptimal positions, partic-
ularly if the data space is sparse. Therefore the main result of the thesis dealt with
a further variant that overcomes those limitations.

How to do continuous updates in non-vectorial discrete spaces is not obvious at
first feel. For that reason, we assumed an existing embedding into an Euclidean
space and introduced prototypes as convex combinations of data points. Based on
this assumption, we were able to derive update rules that only rely on the dissim-
ilarities between data objects, and not on any vectorial representation. This led
straightforward to Relational Neural Gas and Relational SOM which showed an ex-
cellent performance on non-Euclidean dissimilarity datasets in the experiments. We
also proposed extensions for magnification control and supervision. Furthermore,
the patch scheme was adapted to the relational approach what rendered it possi-
ble to generate prototype-based topographic mappings of very large dissimilarity
datasets that are far too large to compute all the pairwise dissimilaritites in ad-
vance. To present viewable prototypes to the practitioner, the relational prototypes
can be approximated by one or more nearest data points which are then presented
instead as representatives.

All in all, the relational methods that were developed within this thesis are
very well suited for a broad range of applications in bioinformatics, experimental
physics, web mining, robotics, and many other fields of science. Because of their
simplicity, the practitioner only needs to define a dissimilarity measure for the data
objects at hand and yet she has a collection of tools available providing her with
intuitive prototype-based topographic mapping and clustering techniques. It should
be noted here that the crucial point in that process is the evaluation of the defined
dissimilarity measures. This evaluation has to be done by experts in the field who
can be supported by proper visualizations of prototypes and data generated by the
relational methods.

The research that was done in this thesis opens the way to interesting research
directions. We would like to mention just a few:

Since the proposed relational methods showed excellent performance in practise
also on non-Euclidean datasets, it would be very interesting to accompany the
algorithms by a deeper mathematical investigation of their behaviour in pseudo-
Euclidean spaces.

Obviously, for all relational methods the choice of an appropriate metric or
dissimilarity measure is crucial for their performance. Since an optimum choice de-
pends very much on the application at hand, it would be valuable to study whether
an adaptation of the metrics is possible in this framework. Alternatively, an al-
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gorithm to pick an appropriate metric from a given finite set of metrics could be
fruitful, which could be based on general principles like clustering quality, for in-
stance. Moreover, experts could be provided with a toolbox of metrics for common
data structures or application areas such as they are already partially available in
bioinformatics. A combination of these three approaches in an interactive frame-
work seems to be very promising for the next generation of data analysis tools.

As it was demonstrated, the patch paradigm constitutes an intuitive and effi-
cient tool which turns standard prototype-based methods into an applicable model
for huge datasets. Unfortunately, it seems that formal guarantees for the approxi-
mation quality are difficult to obtain. Since the parameter k of the k-approximation
is important for the quality of the results, heuristical approaches are imaginable to
automatically determine k such that a proper balance between accuracy and effi-
ciency is obtained according to the application at hand. Also a variation of the
patch size over the course of learning seems to be useful, since more information
should be preserved in earlier stages of the process. It has been demonstrated that
non-stationary distributed incoming data can be handled using the patch scheme.
Thus, the patch methods contribute not only to the processing of very large datasets
but they also opens the way to life-long learning.

The methods developed within this thesis provide one of the rare linear prototype-
based schemes for the processing of dissimilarity datasets which are suitable for data
analysis in many different fields of science. To finally prove this claim it remains
to apply and evaluate the methods together with experts from different application
fields. For this reason, the methods should be integrated into a toolbox that pro-
vides nearly parameter free and robust access to the proposed algorithms for the
practitioners.
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