159,479 research outputs found

    The Web as an Adaptive Network: Coevolution of Web Behavior and Web Structure

    No full text
    Much is known about the complex network structure of the Web, and about behavioral dynamics on the Web. A number of studies address how behaviors on the Web are affected by different network topologies, whilst others address how the behavior of users on the Web alters network topology. These represent complementary directions of influence, but they are generally not combined within any one study. In network science, the study of the coupled interaction between topology and behavior, or state-topology coevolution, is known as 'adaptive networks', and is a rapidly developing area of research. In this paper, we review the case for considering the Web as an adaptive network and several examples of state-topology coevolution on the Web. We also review some abstract results from recent literature in adaptive networks and discuss their implications for Web Science. We conclude that adaptive networks provide a formal framework for characterizing processes acting 'on' and 'of' the Web, and offers potential for identifying general organizing principles that seem otherwise illusive in Web Scienc

    Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    Get PDF
    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalised clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.Comment: 16 pages, 5 figure

    Epidemic spreading on preferred degree adaptive networks

    Get PDF
    We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ\kappa . Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erd\H{o}s-R\'{e}nyi or scale free networks. By letting κ\kappa depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either `blind' or `selective' -- depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λc/μ=/\lambda_{c}/\mu =/ and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With `blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The `selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.Comment: 21 pages, 7 figure

    Dynamical Systems on Networks: A Tutorial

    Full text link
    We give a tutorial for the study of dynamical systems on networks. We focus especially on "simple" situations that are tractable analytically, because they can be very insightful and provide useful springboards for the study of more complicated scenarios. We briefly motivate why examining dynamical systems on networks is interesting and important, and we then give several fascinating examples and discuss some theoretical results. We also briefly discuss dynamical systems on dynamical (i.e., time-dependent) networks, overview software implementations, and give an outlook on the field.Comment: 39 pages, 1 figure, submitted, more examples and discussion than original version, some reorganization and also more pointers to interesting direction

    Fermionic Networks: Modeling Adaptive Complex Networks with Fermionic Gases

    Full text link
    We study the structure of Fermionic networks, i.e., a model of networks based on the behavior of fermionic gases, and we analyze dynamical processes over them. In this model, particle dynamics have been mapped to the domain of networks, hence a parameter representing the temperature controls the evolution of the system. In doing so, it is possible to generate adaptive networks, i.e., networks whose structure varies over time. As shown in previous works, networks generated by quantum statistics can undergo critical phenomena as phase transitions and, moreover, they can be considered as thermodynamic systems. In this study, we analyze Fermionic networks and opinion dynamics processes over them, framing this network model as a computational model useful to represent complex and adaptive systems. Results highlight that a strong relation holds between the gas temperature and the structure of the achieved networks. Notably, both the degree distribution and the assortativity vary as the temperature varies, hence we can state that fermionic networks behave as adaptive networks. On the other hand, it is worth to highlight that we did not find relation between outcomes of opinion dynamics processes and the gas temperature. Therefore, although the latter plays a fundamental role in gas dynamics, on the network domain its importance is related only to structural properties of fermionic networks.Comment: 19 pages, 5 figure
    corecore