4,383 research outputs found

    Shared versus distributed memory multiprocessors

    Get PDF
    The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors

    Avoiding core's DUE & SDC via acoustic wave detectors and tailored error containment and recovery

    Get PDF
    The trend of downsizing transistors and operating voltage scaling has made the processor chip more sensitive against radiation phenomena making soft errors an important challenge. New reliability techniques for handling soft errors in the logic and memories that allow meeting the desired failures-in-time (FIT) target are key to keep harnessing the benefits of Moore's law. The failure to scale the soft error rate caused by particle strikes, may soon limit the total number of cores that one may have running at the same time. This paper proposes a light-weight and scalable architecture to eliminate silent data corruption errors (SDC) and detected unrecoverable errors (DUE) of a core. The architecture uses acoustic wave detectors for error detection. We propose to recover by confining the errors in the cache hierarchy, allowing us to deal with the relatively long detection latencies. Our results show that the proposed mechanism protects the whole core (logic, latches and memory arrays) incurring performance overhead as low as 0.60%. © 2014 IEEE.Peer ReviewedPostprint (author's final draft

    Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Get PDF
    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored
    corecore