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Abstract

The trend of downsizing transistors and operating voltage

scaling has made the processor chip more sensitive against

radiation phenomena making soft errors an important chal-

lenge. New reliability techniques for handling soft errors

in the logic and memories that allow meeting the desired

failures-in-time (FIT) target are key to keep harnessing the

benefits of Moore’s law. The failure to scale the soft error

rate caused by particle strikes, may soon limit the total num-

ber of cores that one may have running at the same time.

This paper proposes a light-weight and scalable architec-

ture to eliminate silent data corruption errors (SDC) and de-

tected unrecoverable errors (DUE) of a core. The architec-

ture uses acoustic wave detectors for error detection. We pro-

pose to recover by confining the errors in the cache hierarchy,

allowing us to deal with the relatively long detection laten-

cies. Our results show that the proposed mechanism protects

the whole core (logic, latches and memory arrays) incurring

performance overhead as low as 0.60%.

1. Introduction

The large amount of transistors have fueled the growth of

big, in-memory data applications that were not feasible sev-

eral years ago. Moreover, because of the lower voltages and

the shrinking feature size, the vulnerability of the current and

future processors towards transient errors caused by particle

strikes is expected to increase rapidly [6].

With increased core counts per chip and larger memory ar-

rays, the total failure-in-time (FIT) per chip (or package) in-

creases. Decrease in the supply voltage to increase number

of cores results in even higher FIT rate [33]. Most of the

large memory blocks are already protected with error correct-

ing codes against both hard and soft errors. But logic ele-

ments and small arrays, which are the main contributors to

the majority of the soft error FIT budget [49], are largely un-

protected due to the huge cost of using hardened latches or

codes. Hardened latches and parity/error correction codes

have 20-30% overhead in terms of extra logic dedicated for

error detection and recovery [15, 44]. Hence, meeting the de-

sired FIT budget for current and future multicore systems is a

major challenge.

Architecturally, soft error detection and correction mecha-

nisms create two categories of errors: silent data corruption

(SDC) and detected unrecoverable errors (DUE). Chip design-

ers have fixed SDC- and DUE-FIT budgets for different appli-

cation segments similar to power or performance budgets. To

fulfill the SDC budget, designers may deploy simple error de-

tection schemes (i.e., parity). However adding parity converts

the SDC-FIT into DUE-FIT, adding pressure to the DUE bud-

get. To reduce the DUE, once the error has been detected the

system should be able to restore the normal state of operation.

For instance, error correction codes (i.e., single error correc-

tion) are used to provide recovery in memory.

Instead of relying on redundancy to detect errors (e.g.,

re-execution techniques or information redundancy), a new

direction that is growing in interest among researchers is

to detect the actual particle strike rather than its conse-

quence [16, 23, 36, 47].

This paper proposes a light-weight architectural framework

that can completely eliminate SDC- & DUE-FIT of a core.

The architecture uses acoustic wave detectors for dynamic

particle strike detection. Moreover, the architecture does not

allow errors to escape to user (i.e., updating main memory or

i/o devices) before detection, eliminating SDC. Eliminating

DUE of core is more involved and our proposal relies on a

novel and cantilever-specific checkpointing for recovery.

Another benefit of employing acoustic wave detectors is

that since detectors trigger timely, latent particle strikes do

not accumulate and hence reduces the odds of temporal mul-

tiple bit errors.

In summary, the principal contributions of this paper are:

• We propose an architectural framework to completely elim-

inate the SDC- and DUE-FIT related to soft errors in a core.

It relies on acoustic wave detectors as a unified error detec-

tion mechanism to detect errors in both memory and cur-

rent unprotected logic components in a processor core.

• The Proposed recovery solution is novel and specific to

acoustic wave detectors. It relies on a light-weight check-

pointing mechanism. It requires just one counter for entire

cache to validate checkpoints. We discuss different design

parameters and evaluate cost of checkpointing & recovery.

• The Proposed architecture, besides providing a highly reli-

able core, is able to recover a significant part of the over-

heads associated with current reliability techniques by po-

tentially eliminating error codes and radiation hardened

latches for soft errors. It also significantly reduces the de-
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sign complexity compared to other mainstream reliability

solutions.

• We evaluate the impact of error detection latency on the

cost and complexity of the required recovery technique.

We present different trade-offs related with complexity of

detectors deployment, detection latency and complexity of

recovery mechanism.

The rest of the paper is structured as follows: Section 2

reviews the physics behind the soft errors and how we can

detect particle strikes. Section 3 gives an overview of our pro-

posed architecture while explaining the relevance of detection

latency for better error containment and recovery. Section 4

discusses the implementation of the architecture for a base-

line core. Section 5 presents a discussion about how the pro-

posed architecture scales to multicore architectures. We carry

out a detailed evaluation of our proposed architecture in terms

of coverage and overheads in Section 6. Section 7 discusses

related work. Finally, a summary of our main conclusions is

presented in Section 8.

2. Background: Physics of Particle Strikes and

their Detection

Alpha and neutron particles can cause soft errors in semicon-

ductor devices. Upon a collision of a particle with a sili-

con nucleus, the ionization process creates a large number

of electron-hole pairs, which subsequently produce phonons

and photons.

Generation of phonons and photons indicate that a parti-

cle strike results into a shockwave of sound, a flash of light

or a small amount of heat for a very small period of time.

Therefore, we may try to detect particle strikes by detecting

the sound, light or heat.

Phonons and photons gradually result into cascade of car-

riers resulting into either drift current, diffuse current or a

voltage glitch. Therefore, we can detect particle strikes also

by detecting current or voltage glitches.

Several detector-based techniques have been studied in the

past. These detectors work by detecting particle strikes via de-

tection of voltage or current glitches [16, 23, 36] or via detec-

tion of the sound [47]. Comparing the techniques based upon

the area and power overheads, false alarms, type of particles

it can detect, fault coverage in terms of what kind of struc-

tures it can protect (memory or logic blocks), and the intru-

siveness of the design, we decided to use cantilever like struc-

tures [18, 19] as an acoustic wave detector to detect particle

strikes through the sound they generate as proposed in [47].

2.1. Acoustic Wave Detectors: Detection of Particle

Strikes

A typical acoustic wave detector is a cantilever beam like

structure. The particle strike is detected by the change in the

capacitance of the gap between the cantilever and the ground

pad of the detector structure. The cantilevers occupy an area

of one square micron [20], which is roughly the area of one

memory bit (i.e., a typical 6T SRAM cell). It has a detection

range of 5mm. It takes 500ns (i.e., 1000 cycles at 2 GHz) to

detect a strike that is 5mm away from the detector [47]. It is

worth mentioning that detectors do not detect the exact loca-

tion of strikes.

Acoustic detectors adopt silicon based fabrication that is

similar to IC fabrication technology. Placement of detectors

on active silicon can be done without much complications,

making it feasible for detectors to be integrated with the rest

of the circuitry [19]. Cantilever based detectors have been

developed and used extensively to study bio-interactions at

atomic level [26].

Detecting the right particle: Recent studies [20, 47] show

that the cantilever structure can be calibrated in such a way

that it only detects particle strikes that are capable of generat-

ing single even transient (SET) in logic or a single event upset

(SEU) in memory. The same detectors can be used for memo-

ries as well as logic components [6, 12]. Current studies show

that only the particles that have energies larger than 10MeV

when they hit can cause soft-errors [6, 21].

Impact of wrong calibration: Failing to properly cali-

brate the detectors would result into false positives (i.e., detec-

tors’ trigger for the particles that do not carry enough charge

to create a soft error). Considering that the flux of ener-

getic particles at sea level is approximately 25 neutrons/(cm2-

hr), an improbable scenario of detectors triggering for every

harmless particle strike would imply detecting 1 false positive

every 1.3 minutes for a modern general-purpose multi-core

processor.

3. "SDC & DUE 0" Architecture

The main objective of the proposed architecture is to achieve

0 SDC- and DUE-FIT per core. SDC occurs when errors es-

cape and become visible to the user. DUE occurs when error

is detected but we do not have any error recovery mechanism.

Error correction is handled by either moving the system to a

state that does not contain the error (e.g., using checkpoint-

ing) or by an on-the-fly error correction method. Next, we

will see how error detection latency plays an important role

in deciding the overall cost of SDC and DUE handling solu-

tions.

3.1. Effect of Detection Latency on SDC & DUE

Acoustic wave detectors detect all soft errors due to alpha and

neutron strikes. However, not only the detection of the error

but how soon the error is detected is also very important. De-

tection latency defines the degree of error containment. De-

pending on the detection latency, errors can be contained at

various granularities in a processor (i.e., within pipeline or

caches etc.). Efficient error containment is essential for avoid-

ing SDC (e.g., error is visible to the user before its detection)

and it also has an impact on the recovery process.
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Detection Mechanism
Post Consumption Containment Size of Protected Detection Area Performance

Detection Latency Cost Checkpoint Structure Coverage Overhead Overhead

Redundant

execution

Lockstep [45, 46], DMR [1],
DCC [27]

Cycle-by-cycle
detection

Low Small Core 100%
100% [1, 45,
46], 1% [27]

>1.5−2×

RMT [17], CRT [34],
AR-SMT [43]

Hundreds of cycles
& unbounded

High Large Core ∼100%† Low >2×

Instruction

duplication
EDDI [37], SWIFT [42],

CRAFT [41]
Low & unbounded Low Small

Core & Main
memory [37]

<100%∗ [42] Low >150% [37]

Symptom

checks

Error Codes [33],
Hardened latches†† [44]

0 cycles &
bounded

Low –
Main memory [33],

Logic [44]
100% [33]

12.5% [33],
∼55% [44]

Low

BIST [10],
Bulletproof [11]

Periodic & bounded High Large Core
Only harderrors

90% [11]
5%-6% 5%-25%⋆

SWAT [28], Shoestring [14],
Restore [50], Perturbation [38]

Millions of cycles &
unbounded

High Large Core <100%⋆⋆ [14] Low 5-16%

Monitoring

invariants
DIVA [3], Argus [31] Low & bounded Low Small

Core Backend [3],
Core [31]

100% [3],
<100% [31]

6% [3],
17% [31]

5-15%

Sensor

based

Acoustic detectors [47] 100 cycles∓ (configurable)
& bounded

Low – Cache 100% <1% Low

(V-I) detectors [16, 23, 36]
3-4 cycles &

bounded
Low –

Main memory
& Logic

– High Low

Proposed Architecture
30-100 cycles∓

(configurable) & bounded
Low Small Core

100% detection &
recovery

<1% <0.60%

Table 1: Comparison of different error detection schemes († vulnerability holes in LSQ logic (i.e., MOB logic), ∗ cannot detect

errors in stores, †† does not detect but prevents error, ⋆ only for simple in-order cores, ⋆⋆ cannot detect if fault does not manifest

a symptom, ∓ latency from actual strike instance)

Table 1 reviews the detection latencies for different error

detection techniques once the error is consumed. Bounded la-

tency means the error is detected within a fixed number of cy-

cles, that is known a-priori or can be set by the designer (e.g.,

periodic BIST). Longer detection latency enforces the error

containment to be done at a higher degree of abstraction in a

processor, and results in more complex hardware and/or soft-

ware checkpointing/recovery mechanisms. Excessively long

detection latencies may not be even recoverable. Long detec-

tion latencies can also prevent the fault diagnosis due to weak

correlation between the fault and its symptoms or due to the

limited on-chip tracing storage (i.e., log sizes [9]).

Error detection mechanisms with low detection latency pro-

vide the best tradeoff. Therefore, to achieve SDC-& DUE 0

at a minimum cost we next explore error containment and

recovery for minimum latency (i.e., containment before the

error updates architectural state).

3.2. Achieving SDC-& DUE 0 per Core

In order to achieve 0 SDC, we can equip a processor core

with acoustic wave detectors so it detects all particle strikes

that may cause an error. To have DUE 0 per core, the archi-

tecture must be able to recover from all the errors and restore

correct processor state; this includes architectural register file,

register allocation table (RAT), program counter (PC) etc.

Previous work [47] proposed using acoustic wave detec-

tors in combination with error correction codes to detect and

locate errors in memories. In this section, we extend it and

assess its detection latency and capabilities to address chal-

lenges in achieving SDC-& DUE 0 for an entire core.

Achieving SDC 0 per core: The first option that we ex-

plore is protecting the core for the minimum error detection
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Figure 1: Number of detectors vs. detection latency at 2GHz

latency. It requires that the error is captured before the wrong

value is committed.

Given the dimensions of current core designs, a single de-

tector would suffice to detect all the particle strikes. As men-

tioned in Section 2.1, using just 1 detector implies a worst-

case detection latency of 1000 cycles at 2 GHz, which may

give time for the erroneous instructions to commit before be-

ing detected.

In order to reduce the detection latency, more detectors can

be deployed. Multiple detectors can be deployed in different

topologies, e.g., a mesh formation. Figure 1 shows the detec-

tion latency and complexity for various mesh configurations.

Complexity in terms of increased number of wires is calcu-

lated. It is clear that the detection latency varies exponen-

tially with number of detectors. Also complexity increases

with number of detectors.
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Figure 2: Pipeline of a state of the art processor and the la-

tency of stages

According to Figure 1, we will need need more than 68,000

detectors to guarantee that no instruction will be committed

before it is checked for errors (error detection latency of 1

cycle).

Achieving DUE 0 per core: With 68K detectors we con-

tain the errors before they are committed. If the strike hap-

pened in speculative state, a nuke and retry would suffice to

recover. However, if the strike was in the architectural state,

recovery would be somewhat more involved. One option is

to use error correcting codes. However, majority of the struc-

tures that hold the architectural state (i.e., architectural regis-

ter file) do not have error correcting codes. Therefore, we opt

to take checkpoints periodically (that include shadow copies

of the architectural state).

In a nutshell, for having an SDC- & DUE 0 core we will

need 68K detectors. This implies an area overhead equiv-

alent to having 68K bits of SRAM (∼7KB cache). More-

over, as shown in Figure 1 the interconnects to the micro-

controller from 68K detectors increases the complexity and

require more than 5 metal layers which pose significant chal-

lenges in place and route [4, 35].

Next, we will explore an optimized architecture that re-

duces the number of detectors without compromising the re-

liability coverage.

3.3. Divide and Conquer for SDC- & DUE 0

We made the observation that errors in different stages of

pipeline take different time until they propagate outside the

containment area (i.e., before they commit). To reduce the

number of detectors for containment before an erroneous in-

struction is committed, we study the pipeline structures and

analyze the time each instruction spends in traversing through

the pipeline. We collect the latency requirements for all the

structures to provide coverage to all instructions. This gives

Pipeline stage #Detectors

Fetch + Decode (including I-Cache, D-Cache, TLBs) 1787
Rename + Schedule 170

Execute 461
Writeback + Commit 139

Total 2561

Table 2: Required number of detectors for containment in core

us an insight of the required detection latency for each struc-

ture in the core.

Figure 2 shows the pipeline of our base core running at

2GHz. It shows the latency for the different stages of the

pipeline up to the commit stage. We identified four differ-

ent paths with different latency: (i) fetch/decode to commit

takes 20 cycles, (ii) rename/scheduler to commit takes 15 cy-

cles, (iii) execute to commit takes 8-10 cycles, and (iv) write-

back/retire to commit takes 4-6 cycles.

From this initial observation, we identified that some data-

flow paths are more critical (i.e., writeback to commit) and

will need stricter detection latency requirements for error con-

tainment. So, instead of protecting all the functional units in

the pipeline for a common detection latency we propose to

put detectors for individual functional units. By protecting

each functional unit for its allowable detection latency we

can reduce the number of detectors and still achieve 0 SDC.

In order to have 0 DUE we keep low cost shadow copies of

architecture state as described in Section 3.2.

Up to this point, we contain errors before they commit and

as shown in Table 2, it requires 2.5K detectors for functional

blocks in the pipeline for their allowable detection latency

requirements.

Overhead: 2.5K detectors incur an area overhead equiva-

lent to 2.5K bit SRAM. Complexity for accommodating 2500

(low latency) interconnects occupy ∼ 4 metal layers causing

an unacceptable area overhead as shown in Figure 1. More-

over, control circuit for handling 2500 logic inputs is complex

and requires a tree of logic-OR gates (∼22K extra CMOS

cells).

3.4. Containment in Core: Recap

We realized that achieving DUE 0 by recovering within the

core demands 68K detectors. To reduce the area overhead,

we explore a modification that protects each pipeline stage

based on its allowable detection latency. By relaxing error

detection latency requirement, the number of detectors for ef-

ficient error containment goes down to 2.5K. However, the

resulting design is complex and the area overhead of 2.5K

interconnects is still unacceptable.

Hence, we propose to extend the error containment area

beyond the commit stage to the cache hierarchy.

3.5. Proposed Architecture

Including caches in the error containment boundary implies

that we can further relax the detection latency requirement
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Figure 3: Error Containment Architecture

which in turn reduces the required number of detectors. Ac-

cording to Figure 1 relaxing detection latency constraint by

10× (i.e., from 10 cycles to 100 cycles) reduces the number of

required detectors by 90× and this reflects in 100× decrease

in complexity and interconnects overhead. We believe that a

good trade-off between detection latency, area overhead and

complexity lies within 30-300 detectors, which means 30-100

cycles latency at 2GHz.

Our proposed architecture to provide DUE 0 core consists

of the following steps:

Error detection: We use acoustic wave detectors to detect

particle strikes in the core. We opt for a simple configura-

tion with a number of detectors in the range of 30-300, which

provides a detection latency in the range of 30-100 cycles run-

ning at 2GHz.

Data error containment: We choose our containment

area to be the cache hierarchy. Figure 3 shows the different

error containment boundaries for an architecture with a sin-

gle core and three levels of cache. Notice that the boundary

of the containment area can be configured to be at any cache

level. We assume that the caches themselves are protected by

some mechanism. A datum will be correct once it has spent

more time than the worst-case error detection latency in the

cache (this way, we guarantee that the datum was produced

correctly). In order to guarantee containment, we do not al-

low any data to go out of containment region before making

sure that data is error free.

Data checkpointing: Containment boundary helps to de-

cide the checkpoint boundary. By definition, containment

boundary lies within the checkpoint boundary. Otherwise,

there is a possibility of corrupting the checkpoints. Every

conceptual checkpoint will consist of the architectural state

(e.g., register file, program counter, etc) and the memory data.

Process of checkpointing would include saving register val-

ues and flushing cache block values within the checkpoint

boundaries that have been modified since the last checkpoint.

Data recovery: Upon an error, data recovery consists of

invalidating all temporal data within the checkpoint boundary,

and resume the execution from the latest checkpoint. Notice

that this checkpoint will consume the data from outside the

checkpoint area (and therefore, the containment area), that is

guaranteed to be correct.

Next, we will discuss implementation aspects of proposed

architecture.

4. Implementation

Without loss of generality, we will use as a running example a

system comprising a single core and two levels of cache, with

LLC as the boundary of the containment and checkpoint area.

For instance, a system with three levels of cache, and L3 as

the boundary would be implemented exactly the same way,

with L3 acting as our described LLC, and L1 & L2 collec-

tively acting as our L1 cache. For the rest of the text, we as-

sume that worst-case detection latency for the acoustic wave

detectors is ErrorDetectionLatency.

4.1. Error Containment Mechanism

The purpose of the containment mechanism is to make sure

that only error free data goes beyond the containment area.

In our implementation, where we use acoustic wave detectors

as error detection mechanism, only data that has spent more

than ErrorDetectionLatency cycles within the containment

boundary has been produced in the right way.

We propose to add one counter for entire cache within the

containment area. The counter monitors the modified data

in the cache and keeps track of the correctness by counting

ErrorDetectionLatency cycles.

Initially, the counter is set to force unknown state (i.e.,

counter = "X") as there is no modified data in the cache. We

reset the counter (i.e., counter = "0") once any cache line

in the given cache is modified following a write operation.

Until counter finishes counting ErrorDetectionLatency cy-

cles, the cache is in quarantine as we are not sure if it con-

tains erroneous data or correct data. Once counter reaches

ErrorDetectionLatency cycles the cache is said to be verified.

Read operations do not affect the state of counter.
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Figure 4: Timeline of the events in cache

Example: Figure 4 shows the basic events for a cache line

in the cache. Before the write operation the line is clean (i.e.,

dirty bit, D = "0") and counter = "X". Following a write opera-

tion at time t, D = "1" and counter is reset (i.e., counter = "0").

After ErrorDetectionLatency cycles the entire cache is veri-

fied. Now, we will discuss how the normal cache operation is

carried out in the proposed architecture. For that purpose we

will be using Figure 5, which shows different events that may

happen to cache lines within the cache of containment area.
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Figure 5: Containment for evictions caused by read and write

operations

4.1.1. Dealing with Verified Cache. Figure 5(ii) shows the

case of evictions of dirty cache lines in a verified cache, which

are allowed to make forward progress and leave the contain-

ment boundary. Later, they can be part of the new checkpoint.

4.1.2. Dealing with Not-Verified Cache. Not-verified cache

is in quarantine. Read operations from the core do not alter

the state of counter, since potentially erroneous data will not

leave the containment area.

Evictions from L1 cache: Figure 5(i) shows the actions

to be taken upon an eviction of a dirty cache line when the

L1 cache is not verified. First, we will evict the cache line to

LLC. The counter could be inherited or pessimistically reset

at LLC. Alternatively, we could stall until the L1 cache is

verified before evicting modified cache line to LLC. In this

work, we do not stall the processor as it can have negative

impact on the performance.

Evictions from LLC cache: Evictions of dirty cache lines

from LLC (i.e., containment boundary) when LLC is not ver-

ified are not allowed as is the case of Figure 5(iii). In such

event we will stall until LLC is verified.

In Section 6 we analyze all the cases discussed above for

their impact on performance and observe the tradeoff between

error containment area and cost of containment using real life

workloads.

4.2. Creating Checkpoints

The checkpointing process should include:

• Copying the architectural state.

• Saving the program counter.

• Waiting for all caches to be verified.

• Writing back all dirty data in lower (verified) caches to

main memory.
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Figure 6: Checkpointing for evictions caused by read and

write operations

For checkpointing the architectural state we suggest to use

shadow structures as proposed in [13]. The copy of the pro-

gram counter is stored in a special register. All these struc-

tures are assumed to have error recovery capabilities (e.g.,

ECC).

We anticipate that writing all dirty data present in all caches

to memory may be expensive. Similar to previous works [24,

30], we adopt an incremental checkpointing where only dirty

lines from the caches closest to the core (L1 in our running

example) are written back to the cache in the boundary of the

checkpoint area (LLC in our running example). Dirty lines in

the LLC are now part of the checkpoint. In this configuration,

the data part of the checkpoint will be split between the LLC

and main memory.

In order to implement such optimization, we add a check-

point bit (CH) in every cache line of the cache in the check-

point boundary (i.e., every cache line of LLC). Initially the

checkpoint bit is set to "0", which means that the line is not

part of the checkpoint.

Periodicity: In this proposal we take periodic incremental

checkpoints. The frequency of checkpoints and its implica-

tions are further discussed in Section 6. Next, we discuss how

we handle the events to cache lines of cache in the checkpoint

boundary (LLC in our running example).

Figure 6(i) shows the case of a dirty cache line in LLC that

is part of the checkpoint. In that case we allow any eviction

since the cache lines are already part of the checkpoint and do

not affect the recovery of the correct architectural state. More-

over, write hits to a cache line that is part of the checkpoint

will result into an eviction as the cache line cannot be modi-

fied without having a safe copy in main memory. Therefore,

we evict the cache line to memory, reset the checkpoint bit

and then serve the write as shown in Figure 6(ii). Finally, in

6



the case of Figure 6(iii) an eviction of a dirty line that is not

part of a checkpoint in LLC will force a checkpoint before

being evicted to memory.

Waiting for verified data: It is important to note that in or-

der to take a checkpoint, we need to stall until the caches (L1

and LLC) are verified. Once they are verified, we can start

writing back all the cache lines to the checkpoint boundary.

4.2.1. Validating the Checkpoint. Checkpointing process is

not free from suffering particle strikes. Therefore, we need to

pay careful attention to guarantee that the checkpoint is valid.

To avoid the creation of corrupted checkpoints, we also

add one global counter CheckpointValid to LLC (i.e., cache

in the checkpoint boundary). As soon as the checkpoint pro-

cess is finished the checkpoint bit is set. At the same time

the counter CheckpointValid is set to ErrorDetectionLatency,

and we let it decrement. After ErrorDetectionLatency cycles,

when CheckpointValid reaches 0, it asserts the valid signal in-

dicating a valid checkpoint as no error was detected.

CheckpointValid counter guarantees the correctness of the

checkpoint in the LLC. However, in order to be able to re-

cover we must keep two copies of the state (one for the yet-

to-be-valid checkpoint, and the other of previous valid check-

point) of RAT, RF and PC. If an error was detected before

the CheckpointValid reaches 0, we would just rollback to last

valid checkpoint, ignoring the checkpoint bit of all cache lines

in LLC.

4.3. Recovering from Error

Upon a particle strike, one of the detectors would trigger de-

tecting the error. Recovering from an error requires a few

steps:

1. Once we know the checkpoint is valid (CheckpointValid =

"0") the recovery may begin. If not, we have to discard

current checkpoint as explained earlier, and apply the re-

covery algorithm.

2. Restore architectural state from shadow copy.

3. Invalidate all the dirty lines and set the counter of L1 cache

to force unknown state (i.e. counter = "X").

4. Invalidate all the dirty lines of LLC that are not part of the

checkpoint.

5. Set the counter of LLC to force unknown state (i.e. counter

= "X").

4.4. Intrusiveness of Design

The proposed architecture is extremely simple. It achieves

SDC- & DUE 0 core using just one counter for caches within

the containment area (i.e., L1 and LLC). It also requires one

checkpoint bit for every cache line in the cache that is the

checkpoint boundary (i.e., LLC). To validate the checkpoint

we have one global counter CheckpointValid for LLC.

Regarding the checkpoint itself, we maintain 2 of the most

recent copies of RAT, RF and PC, encoded using ECC. Hav-

ing a shadow register file for checkpointing register files and

keeping the log of register alias table incurs little area and

power overhead [13]. Besides their impact on performance is

minimal as retrieving and saving the data can be done simul-

taneously and in 1 cycle.

Also during the recovery process, invalidation of cache

lines and clearing the checkpoint bits and counters can be

done in one cycle as proposed in [8].

5. Scalability of Solution

In this section, we discuss the scalability of the proposed ar-

chitecture in multicore systems and describe the interaction

with the processor during normal operation. We also define

the most important challenges for achieving high levels of er-

ror protection and error containment.

5.1. Shared Memory Architecture

In a shared memory architecture, the LLC is physically dis-

tributed in multiple banks but logically unified among all

cores. As data are shared among different cores, the allocated

blocks and all cache accesses are controlled via a coherency

protocol. For our baseline core, we have chosen a MOESI

protocol [22].

5.1.1. MOESI Protocol for Error Containment. The

MOESI protocol allows several copies of cache lines across

multiple processors to be different from the copy in shared

LLC. Owned (O) cache lines are responsible to share data

among the requesting processors. Owned state also writes

back the data in the case of replacement. All other cache line

copies remains in Shared (S) state. Moreover, cache lines in

Modified (M) and Owned (O) states hold dirty data. The most

important issue in a shared memory architecture is that a dirty

block can be directly read by another processor without writ-

ing back to the shared memory.
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Figure 7: Shared memory accesses for DUE 0 architecture

Let us show the potential issue through an example. We

consider 2 cores with shared memory. Figure 7 shows a

scenario in which “core 0” has taken a checkpoint at time

Tc. At instance t1 “core 0” writes in cache. At time t2
“core 1” requests a read from the cache in “core 0” follow-

ing a cache miss in local cache. Now, if there is an error at

time tstrike in “core 0”, detectors from “core 0” trigger after

ErrorDetectionLatency cycles at time t3. Now, as soon as

“core 0” recovers using the local checkpoint taken at time Tc,

“core 1” will have invalid data. To avoid such cases we pro-

pose to stall all the read requests coming from other cores

7
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Figure 8: MOESI protocol: Transitions are shown in the trig-

ger ->action format. Underlined transition triggers and actions

are the same as uniprocessor architecture. The transition trig-

gers in gray boxes are extensions for multicore shared mem-

ory architecture. "Wr" stands for write and "Rd" stands for

read operation. "Stall" -> ErrorDetectionLatency cycles.

and once the cache is verified, it can service read requests

from other cores.

5.1.2. MOESI Protocol for Checkpointing. We adopt an in-

cremental checkpointing, similar to the case of uniprocessor

architecture explained in Section 4.

Compared to uniprocessor system, shared memory intro-

duces a new situation that needs to be handled to properly

create checkpoints: when one processor invalidates dirty data

from another processor that is not part of the checkpoint. If

it turns out that the requestor processor suffers an error, and

triggers a recovery, it has to trigger another recovery in the

owner processor in such a way that invalidated data can be

recovered. In order to deal with this case, we employ previ-

ously proposed solutions that keep track of the sharing his-

tory [25, 39]. We summarize the adapted MOESI protocol in

Figure 8.

5.1.3. Recovering from Error. If a core triggers an error,

data recovery takes place in the same way as described for

uniprocessor. The only caveat is that we will have to check

the sharing history in order to initiate the recovery process in

other processors cores [25].

5.2. Dealing with Interrupts and Exceptions

In this section we will discuss how we can handle I/O requests

and exceptions.

5.2.1. Handling Interrupts. Interrupts are asynchronous

events coming from the core and external devices (i.e., disk

controller). Interrupts are crucial, as the requestor is outside

the error containment area.

Similar to [40], we allow only error free stores to propagate

to memory. We propose to buffer the requests in local mem-

ory, protected with ECC for ErrorDetectionLatency cycles.

This assures the correctness of each outgoing store and all its

Parameter Value

Number of Processors 1-16

Instr Window / ROB 16/48 entries

Frequency 2GHz

L1 I/D Cache per Core 16 KB, 4-way, 64B

LLC Cache per bank 256 KB, 4-way, 64B (distributed 1-16 banks)

L1 access Latency 2 cycles

LLC access Latency 6 cycles

Table 3: Configuration Parameters

preceding instructions. The size of the buffer should be large

enough to hold the I/O requests for ErrorDetectionLatency

cycles. Also, in order to facilitate successful recovery, as we

allow all the error free stores to commit to memory after the

last checkpoint, we must keep the load values issued so far

in the buffer. Upon recovery we replay the loads so all the

committed stores are correctly reproduced.

We propose to have one buffer for each I/O device to facil-

itate successful recovery, with an expected interrupt response

time penalty of 30 to 1000 ns, which is acceptable for typical

asynchronous interrupts.

5.2.2. Dealing with Exceptions. Exceptions are synchronous

events such as a "div 0" instruction or a page fault on instruc-

tion fetch. When the exception occurs, the corresponding en-

try of ROB is marked. Since in modern processors excep-

tions are rare events [22], we propose to delay the exception

service by ErrorDetectionLatency cycles until all potential

errors have been detected. In case of no error detection, we

assume the exception to be genuine and invoke the respective

handler and handle it precisely.

5.2.3. Context switching and Multi-programming. In order

to handle context-switching, we allow the preempted thread

to swap out and we propose to stall for ErrorDetectionLa-

tency to make sure the preempted thread is error-free. Af-

ter the context switch we take a checkpoint of the incoming

thread. This is to make sure that in an event of error due to par-

ticle strike the thread can recover its state from the instance

after the context switch.

6. Evaluation

In this section, we analyze how error detection latency im-

pacts the choice of error containment boundary. Next, we

study the trade-off between checkpoint period and checkpoint

boundary. Finally, we evaluate the performance impact of the

selected configuration for uniprocessor and multicore system

with data sharing and non-data sharing applications.

6.1. Experimental Setup

To evaluate the proposed architecture, we use a full-system

execution-driven simulator extended with OPAL and GEMS

tool-set [29]. We modified the memory hierarchy model to

adapt it to the proposed architecture. Table 3 enlists the im-

portant configuration parameters.
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(a) Forced checkpoints (b) Eviction due to write hits (c) Writeback from L1 to LLC

Figure 9: Checkpoint events in LLC checkpoint boundary

We simulate two different configurations as follows:

6.1.1. Single core system. All caches are private to the pro-

cessor. All the LLC misses are served by the main mem-

ory. We evaluate the performance of single core system using

SPEC CPU2006 benchmark set with the reference input set.

6.1.2. Multicore system. We implement a 16-core multicore

system. We perform our analysis based on the following cat-

egories of applications, with a trace run of 20M cycles.

• Non-data sharing applications: To obtain various trade-

off details for Non-data sharing applications we replicate

the same application for all 16 cores (i.e., all 16 cores run-

ning the same application independently). We evaluate the

performance of this configuration using SPEC CPU2006

benchmark set with reference input set.

• Shared Memory Applications: For our 16 core system,

we use the SPEC OMP2001 benchmark set with an appro-

priate input set in order to evaluate the trade-offs.

6.2. Error Detection Latency vs Containment Area

We first analyze the trade-off between the error detection la-

tency and the size of the error containment area. As we men-

tioned in Section 4.1, non-verified data is not allowed to leave

the error containment and we need to stall until data is guaran-

teed to be correct, which degrades performance. We evaluate

the range of detection latency 30 to 100 cycles as proposed in

Section 3.5.

Detection latency Total #Stalls Avg. Wait cycles

10 cycles 6111 3.45

30 cycles 15729 25.99

100 cycles 38049 40.67

1000 cycles 55164 108.2

Table 4: Containment cost (i.e., #Stalls and wait cycles for

each stall) for containment boundary limited to L1

Table 4 shows result for having one counter for entire L1

cache. It shows total number of evictions that create stalls

when L1 is not verified. With increase in detection latency

the average wait cycles also increase, which in turn increase

the cost of containment. For a detection latency of 100 cycles

the total stalls (i.e., over a period of 20M cycles) are more

than 35K, i.e., having one stall every 1K cycles. It also shows

the average number of cycles that we need to stall for the non-

verified L1 cache to be verified.

Overall, we observe that for an ErrorDetectionLatency of

100 cycles, we experience a 7% slowdown only due to con-

tainment in L1. Even for 30 cycles, slowdown is 2%.

For the sake of comparison, we also experimented with

more expensive solutions: (i) having one counter for each

line, and (ii) one counter per set. Compared to having a

counter per line, we observe an increase in total stalls by 5%

for one counter per set, and 21% to one counter for the whole

cache. Unfortunately, the slowdown due to containment is

still high when having a counter per line, with 5.4% slow-

down for 100 cycles of ErrorDetectionLatency, and 1.6% for

30 cycles.

When moving containment boundary to LLC, we observed

only a handful of stalls. Therefore, we conclude that the best

option is to have LLC as containment boundary, with an error

detection latency of 100 cycles (which requires 30 detectors)

and a slowdown of 0.01%.

6.3. Checkpoint Length vs Checkpoint Area

Now, we observe the tradeoff between the checkpoint length

and the cost of the checkpointing. LLC is the checkpoint

boundary. In our adopted architecture as described in Sec-

tion 4.2, we have identified the major factors that affect the

performance as follows:

1. Wait cycles to guarantee that caches in containment bound-

ary are verified.

2. The write-back of dirty cache lines to the checkpoint

boundary upon checkpoint creation.

3. Forced checkpoint events due to evictions of dirty lines

that are not part of checkpoint.

4. Evictions to memory due to write hits on dirty and check-

pointed lines.

Notice that factors 3-4 are runtime factors, and will largely

depend on the footprint of the application (and therefore, the

size of the selected checkpoint boundary and the checkpoint

period). On the other hand, factors 1-2 are the overhead that

is paid at checkpoint creation.

Figure 9(a) shows the number of forced checkpoints, per

checkpoint length, for different checkpoint periods. As one

9
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Figure 10: Average number of dirty lines to be written back

from L1 to LLC
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Figure 11: Average number of wait-cycles until LLC is verified

can see, the number of extra checkpoints is negligible, and

therefore we can opt for long checkpoints in the order of mil-

lions of cycles. Figure 9(b) shows the number of extra evic-

tions to main memory caused by write hits on checkpointed

lines. Numbers are relative to the length of the checkpoint

period. Regarding the cost of creating a checkpoint, we show

in Figure 9(c) the extra write-backs we have to perform when

taking a checkpoint. As shown in the figure, increasing the

checkpoint period from 100K cycles to 2M cycles brings

down the write-back traffic by more than 10×, and after that

benefits flatten. Therefore, we opt for a checkpoint length of

2M cycles.

We detail the results for a 2M checkpoint period for our

workloads in Figure 10. The results indicate that, for every

2M cycles we have to write-back 97 dirty cache lines from

verified L1 cache to LLC.

Finally, we assess how much time we need to wait until we

can create the checkpoint. Figure 11 shows the average wait

cycles for the LLC to be verified before taking a checkpoint

for a checkpoint period of 2M cycles. For a detection latency

of 100 cycles, every 2M cycles we have to wait 50 cycles to

take a checkpoint in LLC.
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Figure 12: Impact of containment and checkpointing LLC

cache in unicore architecture
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Figure 13: Slowdown due to containment and checkpointing

LLC cache in multi-core system for shared memory applica-

tions

Next, we will see how the performance is impacted in the

proposed architecture.

6.4. Uniprocessor Performance

Figure 12 evaluates the proposed single core architecture in

terms of performance vs. cost of containment and recov-

ery. The experimentation shows that the average performance

slowdown is 0.17%. We notice that the average performance

degradation due to containment is almost 0, since there are

no eviction of dirty lines from non-verified LLC cache. The

performance degradation due to checkpointing is 0.15%.

6.5. Performance of Multicore for Non-data Sharing Ap-

plications

We observe similar results for 16 core system for non-data

sharing workloads. Figure is omitted due to lack of space.

Notice, that we depict the results for the slowest core of the

16 running. The total degradation in performance is 0.19%.
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6.6. Multicore Shared Memory Performance

Figure 13 shows the impact on performance for 16 cores

shared memory architecture. Again, we collect data for the

slowest core to reach the 20M cycles. As one can see, the

average slowdown is 0.3%. Again even in the case of shared

memory we do not have any dirty evictions from LLC before

LLC is verified. Hence, the slowdown due to containment

is zero. In shared memory architecture we have more cache

lines evicting after the LLC is verified. This results into in-

creased forced checkpoints.

6.7. Summary and Hardware Cost

The proposed architecture is extremely light-weight. It uses

30 detectors (i.e., area is 30 SRAM memory cells) for er-

ror detection, for a worst-case detection latency of 100 cy-

cles. The area overhead of 30 interconnects is also reasonably

small. Controller circuit to signal error detection is extremely

simple and requires 6 3-input and 2 2-input logic-OR gates.

We implement the containment boundary at the LLC. Con-

tainment architecture consists of L1 and LLC with one

counter each, to count 100 cycles. Additionally, we will need

one counter for LLC to check the checkpoint validity. All 3

counters are 7-bit, non-repeating word counters.

Checkpointing requires a physical Checkpoint bit for every

cache line in LLC. We propose to use a checkpoint length of

2M cycles, which guarantees a good trade-off between check-

point overhead and recovery time. For recovery of architec-

ture state it requires 2 shadow copies of the architectural state

(register files, RAT and PC). We also use a trivial control cir-

cuit for clearing the Checkpoint bit and counters in one cycle.

7. Related Work

Several popular error detection mechanisms have been com-

pared and summarized in Table 1. The most effective method

of dealing with soft errors in memory components is to use

codes like parity, or ECC [33]. Execution redundancy is a

widely used technique to detect errors in the logic, either us-

ing the multithreading capabilities [34, 43] or hardware re-

dundancy [45, 46]. DIVA [3] uses a simple in-order core as a

checker for an out-of-order core. Triple redundancy systems

are used in commercial processors (i.e., HP NonStop archi-

tecture [7]) and "Pair & spare" systems [5] and can achieve

0 DUE without roll-back. The work of [48] shows how to

handle the DUE problem in L1 caches.

Current work focuses more on detection latency and its

impact on containment and cost of recovery unlike [47].

CARER [24], Cherry(-MP) [25, 30] & others [2, 11, 25,

27, 39, 51] are popular for speculation recovery. The

proposed solution is extremely simple and uses only one

counter per cache (i.e., one counter for L1 and one for LLC).

CARER [24], Cherry(-MP) [25, 30] and others do not benefit

from this optimization. Moreover, CARER-like implementa-

tion (i.e., containment in L1) causes 7% slowdown as shown

in Section 6.2. In contrast to solutions similar to [11], the

proposed architecture protects the entire CMP system.

8. Conclusions

This paper presents a novel architecture to eliminate particle

strike induced SDC & DUE FIT. The architecture uses acous-

tic wave detectors to detect errors. The proposed architec-

ture minimizes hardware overhead and performance cost. We

showed that even in the worst case scenario, the proposed ar-

chitecture detects only 1 false positive every 1.3 minutes for

current general purpose multi-core systems. Next, we pro-

posed an error containment mechanism within the cache hi-

erarchy to manage the detection latency. Finally, we achieve

DUE-FIT 0 by enabling a low cost checkpointing mechanism.

Our proposed architecture eliminates particle strike in-

duced SDC & DUE FIT, for systems ranging from one core to

16-core with shared memory with the worst-case performance

overhead is 0.60% for shared memory systems.
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