365 research outputs found

    Joint Image Reconstruction and Segmentation Using the Potts Model

    Full text link
    We propose a new algorithmic approach to the non-smooth and non-convex Potts problem (also called piecewise-constant Mumford-Shah problem) for inverse imaging problems. We derive a suitable splitting into specific subproblems that can all be solved efficiently. Our method does not require a priori knowledge on the gray levels nor on the number of segments of the reconstruction. Further, it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the suitability of our method for joint image reconstruction and segmentation. We focus on Radon data, where we in particular consider limited data situations. For instance, our method is able to recover all segments of the Shepp-Logan phantom from 77 angular views only. We illustrate the practical applicability on a real PET dataset. As further applications, we consider spherical Radon data as well as blurred data

    Jump-sparse and sparse recovery using Potts functionals

    Full text link
    We recover jump-sparse and sparse signals from blurred incomplete data corrupted by (possibly non-Gaussian) noise using inverse Potts energy functionals. We obtain analytical results (existence of minimizers, complexity) on inverse Potts functionals and provide relations to sparsity problems. We then propose a new optimization method for these functionals which is based on dynamic programming and the alternating direction method of multipliers (ADMM). A series of experiments shows that the proposed method yields very satisfactory jump-sparse and sparse reconstructions, respectively. We highlight the capability of the method by comparing it with classical and recent approaches such as TV minimization (jump-sparse signals), orthogonal matching pursuit, iterative hard thresholding, and iteratively reweighted â„“1\ell^1 minimization (sparse signals)

    Fast Quasi-Newton Algorithms for Penalized Reconstruction in Emission Tomography and Further Improvements via Preconditioning

    Get PDF
    OAPA This paper reports on the feasibility of using a quasi-Newton optimization algorithm, limited-memory Broyden- Fletcher-Goldfarb-Shanno with boundary constraints (L-BFGSB), for penalized image reconstruction problems in emission tomography (ET). For further acceleration, an additional preconditioning technique based on a diagonal approximation of the Hessian was introduced. The convergence rate of L-BFGSB and the proposed preconditioned algorithm (L-BFGS-B-PC) was evaluated with simulated data with various factors, such as the noise level, penalty type, penalty strength and background level. Data of three 18F-FDG patient acquisitions were also reconstructed. Results showed that the proposed L-BFGS-B-PC outperforms L-BFGS-B in convergence rate for all simulated conditions and the patient data. Based on these results, L-BFGSB- PC shows promise for clinical application

    An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

    Full text link
    We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary pre-assigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted l^p-penalties on the coefficients of such expansions, with 1 < or = p < or =2, still regularizes the problem. If p < 2, regularized solutions of such l^p-penalized problems will have sparser expansions, with respect to the basis under consideration. To compute the corresponding regularized solutions we propose an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. We also review some potential applications of this method.Comment: 30 pages, 3 figures; this is version 2 - changes with respect to v1: small correction in proof (but not statement of) lemma 3.15; description of Besov spaces in intro and app A clarified (and corrected); smaller pointsize (making 30 instead of 38 pages

    Learning and inverse problems: from theory to solar physics applications

    Get PDF
    The problem of approximating a function from a set of discrete measurements has been extensively studied since the seventies. Our theoretical analysis proposes a formalization of the function approximation problem which allows dealing with inverse problems and supervised kernel learning as two sides of the same coin. The proposed formalization takes into account arbitrary noisy data (deterministically or statistically defined), arbitrary loss functions (possibly seen as a log-likelihood), handling both direct and indirect measurements. The core idea of this part relies on the analogy between statistical learning and inverse problems. One of the main evidences of the connection occurring across these two areas is that regularization methods, usually developed for ill-posed inverse problems, can be used for solving learning problems. Furthermore, spectral regularization convergence rate analyses provided in these two areas, share the same source conditions but are carried out with either increasing number of samples in learning theory or decreasing noise level in inverse problems. Even more in general, regularization via sparsity-enhancing methods is widely used in both areas and it is possible to apply well-known ell1ell_1-penalized methods for solving both learning and inverse problems. In the first part of the Thesis, we analyze such a connection at three levels: (1) at an infinite dimensional level, we define an abstract function approximation problem from which the two problems can be derived; (2) at a discrete level, we provide a unified formulation according to a suitable definition of sampling; and (3) at a convergence rates level, we provide a comparison between convergence rates given in the two areas, by quantifying the relation between the noise level and the number of samples. In the second part of the Thesis, we focus on a specific class of problems where measurements are distributed according to a Poisson law. We provide a data-driven, asymptotically unbiased, and globally quadratic approximation of the Kullback-Leibler divergence and we propose Lasso-type methods for solving sparse Poisson regression problems, named PRiL for Poisson Reweighed Lasso and an adaptive version of this method, named APRiL for Adaptive Poisson Reweighted Lasso, proving consistency properties in estimation and variable selection, respectively. Finally we consider two problems in solar physics: 1) the problem of forecasting solar flares (learning application) and 2) the desaturation problem of solar flare images (inverse problem application). The first application concerns the prediction of solar storms using images of the magnetic field on the sun, in particular physics-based features extracted from active regions from data provided by Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). The second application concerns the reconstruction problem of Extreme Ultra-Violet (EUV) solar flare images recorded by a second instrument on board SDO, the Atmospheric Imaging Assembly (AIA). We propose a novel sparsity-enhancing method SE-DESAT to reconstruct images affected by saturation and diffraction, without using any a priori estimate of the background solar activity

    BM3D Frames and Variational Image Deblurring

    Full text link
    A family of the Block Matching 3-D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patch-wise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frames to develop novel iterative deblurring algorithms. We consider two different formulations of the deblurring problem: one given by minimization of the single objective function and another based on the Nash equilibrium balance of two objective functions. The latter results in an algorithm where the denoising and deblurring operations are decoupled. The convergence of the developed algorithms is proved. Simulation experiments show that the decoupled algorithm derived from the Nash equilibrium formulation demonstrates the best numerical and visual results and shows superiority with respect to the state of the art in the field, confirming a valuable potential of BM3D-frames as an advanced image modeling tool.Comment: Submitted to IEEE Transactions on Image Processing on May 18, 2011. implementation of the proposed algorithm is available as part of the BM3D package at http://www.cs.tut.fi/~foi/GCF-BM3
    • …
    corecore