63,769 research outputs found

    The Effects of Weather on the Life Time of Wireless Sensor Networks Using FSO/RF Communication

    Get PDF
    The increased interest in long lasting wireless sensor networks motivates to use Free Space Optics (FSO) link along with radio frequency (RF) link for communication. Earlier results show that RF/FSO wireless sensor networks have life time twice as long as RF only wireless sensor networks. However, for terrestrial applications, the effect of weather conditions such as fog, rain or snow on optical wireless communication link is major concern, that should be taken into account in the performance analysis. In this paper, life time performance of hybrid wireless sensor networks is compared to wireless sensor networks using RF only for terrestrial applications and weather effects of fog, rain and snow. The results show that combined hybrid network with three threshold scheme can provide efficient power consumption of 6548 seconds, 2118 seconds and 360 seconds for measured fog, snow and rain events respectively resulting in approximately twice of the life time with only RF link

    Passive Microwave Remote Sensing of Falling Snow and Associated GPM Field Campaigns

    Get PDF
    Retrievals of falling snow from space represent one of the next important challenges for the atmospheric, hydrological, and energy budget scientific communities. Historically, retrievals of falling snow have been difficult due to the relative insensitivity of satellite rain-based channels as used in the past. We emphasize the use of high frequency passive microwave channels (85-200 GHz) since these are more sensitive to the ice in clouds and have been used to estimate falling snow from space. While satellite-based remote sensing provides global coverage of falling snow events and the science is relatively new, retrievals are still undergoing development with challenges remaining. There are several current satellite sensors, though not specifically designed for estimating falling snow, are capable of measuring snow from space. These include NOAA's AMSU-B, the MHS sensors, and CloudSat radar. They use high frequency (greater than 85 GHz) passive and active microwave and millimeter-wave channels that are sensitive to the scattering from ice and snow particles in the atmosphere. Sensors with water vapor channels near 183 GHz center line provide opaqueness to the Earth's surface features that can contaminate the falling snow signatures, especially over snow covered surface. In addition, the Global Precipitation Measurement (GPM) mission scheduled for launch in 2013 is specifically designed to measure both liquid rain and frozen snow precipitation. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, and surface types. For example, can a lake effect snow system with low cloud tops having an ice water content (IWC) at the surface of 1.0 gram per cubic meter be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. In this work, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The results rely on simulated Weather Research Forecasting (WRF) simulations of falling snow cases [9] since simulations provide all the information to determine the measurements from space and the ground truth. This analysis relies on data from the Canadian CloudSat/CALIPSO Validation Program (C3VP) field campaign held from October 31, 2006 through March 1, 2007. In January 2012 GPM will return to the C3VP area for the GPM Cold Precipitation Experiment (GCPEx). This presentation will describe the thresholds-of-detection procedure and results, as well as the field campaign details

    A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    Get PDF
    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR)

    Radiation measurements from polar and geosynchronous satellites

    Get PDF
    Nimbus 5 satellite data and its use to study climate and develop climate model experiments are examined. Data cover: (1) physical basis for understanding long range and climate monitoring and prediction problem, (2) delineating energy loss to space between contributions from land, ocean, and atmosphere, (3) temporal and spatial distribution in earth's energy budget and its variations due to global cloud fields, and (4) studies of the frequency of occurrence of precipitation over ocean areas

    Rain Removal in Traffic Surveillance: Does it Matter?

    Get PDF
    Varying weather conditions, including rainfall and snowfall, are generally regarded as a challenge for computer vision algorithms. One proposed solution to the challenges induced by rain and snowfall is to artificially remove the rain from images or video using rain removal algorithms. It is the promise of these algorithms that the rain-removed image frames will improve the performance of subsequent segmentation and tracking algorithms. However, rain removal algorithms are typically evaluated on their ability to remove synthetic rain on a small subset of images. Currently, their behavior is unknown on real-world videos when integrated with a typical computer vision pipeline. In this paper, we review the existing rain removal algorithms and propose a new dataset that consists of 22 traffic surveillance sequences under a broad variety of weather conditions that all include either rain or snowfall. We propose a new evaluation protocol that evaluates the rain removal algorithms on their ability to improve the performance of subsequent segmentation, instance segmentation, and feature tracking algorithms under rain and snow. If successful, the de-rained frames of a rain removal algorithm should improve segmentation performance and increase the number of accurately tracked features. The results show that a recent single-frame-based rain removal algorithm increases the segmentation performance by 19.7% on our proposed dataset, but it eventually decreases the feature tracking performance and showed mixed results with recent instance segmentation methods. However, the best video-based rain removal algorithm improves the feature tracking accuracy by 7.72%.Comment: Published in IEEE Transactions on Intelligent Transportation System
    corecore