381 research outputs found

    Utilization of a canine cancer cell line (FACC) panel in comparative and translational studies of gene expression and drug sensitivity

    Get PDF
    Includes bibliographical references.2015 Summer.Canine cancer is the leading cause of death in adult dogs. The use of the canine cancer model in translational research is growing in popularity due to the many biologic and genetic similarities it shares with human cancers. Cancer cell tissue culture has long been an established tool for expanding our understanding of cancer processes and for development of novel cancer treatments. With the high rate of genomic advancements in cancer research over the last decade human cancer cell line panels that combine pharmacologic and genomic information have proven very helpful in elucidating the complex relationships between gene expression and drug response in cancer. We have assembled a panel of canine cancer cell lines at the Flint Animal Cancer Center (FACC) at Colorado State University to be utilized in a similar fashion as a tool to advance canine cancer research. The purpose of these studies is to describe the characteristics of the FACC panel with the available genomic and drug sensitivity data we have generated, and to show its utility in comparative and translational oncology by focusing specifically on canine melanoma and osteosarcoma. We were able to confirm our panel of cell lines as being of canine origin and determined their genetic fingerprint through PCR and microsatellite analyses, creating a point of reference for validation in future studies and collaborations. Gene expression microarray analysis allowed for further molecular characterization of the panel, showing that similar tumor types tended to cluster together based on general as well as cancer specific gene expression patterns. In vitro studies that measure phenotypic differences in the panel can be coupled with genomic data, resulting in the identification of potential gene targets worthy of further exploration. We also showed that human and canine cancer cells are similarly sensitive to common chemotherapy. Next we utilized the FACC panel in a comparative analysis to determine if signaling pathways important in human melanoma were also activated and sensitive to targeted inhibition in canine melanoma. We were able to show that despite apparent differences in the mechanism of pathway activation, human and canine melanoma tumors and cell lines shared constitutive signaling of the MAPK and PI3K/AKT pathways, and responded similarly to targeted inhibition. These data suggest that studies involving pathway-targeted inhibition in either canine or human melanoma could potentially be directly translatable to each other. Evidence of genetic similarities between human and canine cancers led us to ask whether or not non-pathway focused gene expression models for predicting drug sensitivity could be developed in an interspecies manner. We were able to show that models built on canine datasets using human derived gene signatures successfully predicted response to chemotherapy in canine osteosarcoma patients. When compared to a large historical cohort, dogs that received the treatment our models predicted them to be sensitive to lived significantly longer disease-free. Taken together, these studies show that human and canine cancers share strong molecular similarities that can be used advantageously to develop better treatment strategies in both species

    miRConnect 2.0: identification of oncogenic, antagonistic miRNA families in three human cancers

    Full text link
    Abstract Background Based on their function in cancer micro(mi)RNAs are often grouped as either tumor suppressors or oncogenes. However, miRNAs regulate multiple tumor relevant signaling pathways raising the question whether two oncogenic miRNAs could be functional antagonists by promoting different steps in tumor progression. We recently developed a method to connect miRNAs to biological function by comparing miRNA and gene array expression data from the NCI60 cell lines without using miRNA target predictions (miRConnect). Results We have now extended this analysis to three primary human cancers (ovarian cancer, glioblastoma multiforme, and kidney renal clear cell carcinoma) available at the Cancer Genome Atlas (TCGA), and have correlated the expression of the clustered miRNAs with 158 oncogenic signatures (miRConnect 2.0). We have identified functionally antagonistic groups of miRNAs. One group (the agonists), which contains many of the members of the miR-17 family, correlated with c-Myc induced genes and E2F gene signatures. A group that was directly antagonistic to the agonists in all three primary cancers contains miR-221 and miR-222. Since both miR-17 ~ 92 and miR-221/222 are considered to be oncogenic this points to a functional antagonism of different oncogenic miRNAs. Analysis of patient data revealed that in certain patients agonistic miRNAs predominated, whereas in other patients antagonists predominated. In glioblastoma a high ratio of miR-17 to miR-221/222 was predictive of better overall survival suggesting that high miR-221/222 expression is more adverse for patients than high miR-17 expression. Conclusion miRConnect 2.0 is useful for identifying activities of miRNAs that are relevant to primary cancers. The new correlation data on miRNAs and mRNAs deregulated in three primary cancers are available at miRConnect.orghttp://deepblue.lib.umich.edu/bitstream/2027.42/112974/1/12864_2013_Article_4929.pd

    Comparative Membranome Expression Analysis in Primary Tumors and Derived Cell Lines

    Get PDF
    Despite the wide use of cell lines in cancer research, the extent to which their surface properties correspond to those of primary tumors is poorly characterized. The present study addresses this problem from a transcriptional standpoint, analyzing the expression of membrane protein genes - the Membranome – in primary tumors and immortalized in-vitro cultured tumor cells. 409 human samples, deriving from ten independent studies, were analyzed. These comprise normal tissues, primary tumors and tumor derived cell lines deriving from eight different tissues: brain, breast, colon, kidney, leukemia, lung, melanoma, and ovary. We demonstrated that the Membranome has greater power than the remainder of the transcriptome when used as input for the automatic classification of tumor samples. This feature is maintained in tumor derived cell lines. In most cases primary tumors show maximal similarity in Membranome expression with cell lines of same tissue origin. Differences in Membranome expression between tumors and cell lines were analyzed also at the pathway level and biological themes were identified that were differentially regulated in the two settings. Moreover, by including normal samples in the analysis, we quantified the degree to which cell lines retain the Membranome up- and down- regulations observed in primary tumors with respect to their normal counterparts. We showed that most of the Membranome up-regulations observed in primary tumors are lost in the in-vitro cultured cells. Conversely, the majority of Membranome genes down-regulated upon tumor transformation maintain lower expression levels also in the cell lines. This study points towards a central role of Membranome genes in the definition of the tumor phenotype. The comparative analysis of primary tumors and cell lines identifies the limits of cell lines as a model for the study of cancer-related processes mediated by the cell surface. Results presented allow for a more rational use of the cell lines as a model of cancer

    Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism.

    Get PDF
    Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood

    MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells

    Get PDF
    Targeted anticancer therapies represent the most effective pharmacological strategies in terms of clinical responses. In this context, genetic alteration of several oncogenes represents an optimal predictor of response to targeted therapy. Integration of large-scale molecular and pharmacological data from cancer cell lines promises to be effective in the discovery of new genetic markers of drug sensitivity and of clinically relevant anticancer compounds. To define novel pharmacogenomic dependencies in cancer, we created the Mutations and Drugs Portal (MDP, http://mdp.unimore.it), a web accessible database that combines the cell-based NCI60 screening of more than 50,000 compounds with genomic data extracted from the Cancer Cell Line Encyclopedia and the NCI60 DTP projects. MDP can be queried for drugs active in cancer cell lines carrying mutations in specific cancer genes or for genetic markers associated to sensitivity or resistance to a given compound. As proof of performance, we interrogated MDP to identify both known and novel pharmacogenomics associations and unveiled an unpredicted combination of two FDA-approved compounds, namely statins and Dasatinib, as an effective strategy to potently inhibit YAP/TAZ in cancer cells

    AKT activation controls cell survival in response to HDAC6 inhibition.

    Get PDF
    HDAC6 is emerging as an important therapeutic target for cancer. We investigated mechanisms responsible for survival of tumor cells treated with a HDAC6 inhibitor. Expression of the 20 000 genes examined did not change following HDAC6 treatment in vivo. We found that HDAC6 inhibition led to an increase of AKT activation (P-AKT) in vitro, and genetic knockdown of HDAC6 phenocopied drug-induced AKT activation. The activation of AKT was not observed in PTEN null cells; otherwise, PTEN/PIK3CA expression per se did not predict HDAC6 inhibitor sensitivity. Interestingly, HDAC6 inhibitor treatment led to inactivating phosphorylation of PTEN (P-PTEN Ser380), which likely led to the increased P-AKT in cells that express PTEN. Synergy was observed with phosphatidylinositol 3-kinases (PI3K) inhibitor treatment in vitro, accompanied by increased caspase 3/7 activity. Furthermore, combination of HDAC6 inhibitor with a PI3K inhibitor caused substantial tumor growth inhibition in vivo compared with either treatment alone, also detectable by Ki-67 immunostaining and (18)F-FLT positron emission tomography (PET). In aggregate AKT activation appears to be a key survival mechanism for HDAC6 inhibitor treatment. Our findings indicate that dual inhibition of HDAC6 and P-AKT may be necessary to substantially inhibit growth of solid tumors

    INTEGRATED GENOMIC MARKERS FOR CHEMOTHERAPEUTICS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    AKT-Independent Signaling Downstream of Oncogenic PIK3CA Mutations in Human Cancer

    Get PDF
    Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.National Institutes of Health (U.S.) (Grant P30CA14051
    corecore