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Abstract 

As translational research has created opportunity for an increasing number of 

anticancer agents, the need to develop computational methods to identify and 

understand predictive biomarkers has become emergent. This dissertation introduces a 

generic and systematic bioinformatics method to develop biomarker(s) for cancer 

therapeutics. The overall methodology includes the conceptualization of general types 

of biomarkers, implementation of algorithms, a uniqueness test of the signature 

markers in the test data using a novel computational algorithm and innovative 

bioinformatics algorithms to detect the presence of the signature with the pattern 

remained in the test data. An integrated genomic analysis to model gene expression 

and genomic aberrations is proposed to identify the minimal marker sets for clinical 

translation.  

We then study a novel biological phenomenon in cancer therapeutics, that 

cancer cells may show concordant chemo-response to multiple anticancer agents. The 

representative preclinical models (both cell lines and primary tumor derived explants) 
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are selected to reflect concordant sensitive and concordant resistant tumor cells. 

Moreover, we developed the gene expression signature of concordant 

chemotherapeutics using NCI60 data to characterize the concordance of 

chemotherapeutics. A high predictive value (AUC = 0.88±0.10) is observed in an 

independent validation using Oncotest tumor clonogenic assay and gene expression 

data from primary xenograft tumor models. When the signature is applied to 

expression data from tumors of breast cancer patients treated with (TFAC) 

combination chemotherapy, the signature predictor predicts treatment outcome (pCR 

vs RD) with a p-value=0.017. We also find that the signature predictor is able to 

predict the survival of patients in breast cancer and lung cancer. Meta-analysis using 

OncomineTM tools shows that more than 20 unique drug sensitivity concepts are 

significantly associated with the developed signature of concordant 

chemotherapeutics. These results demonstrate that concordance of chemotherapeutics 

is present in both preclinical models and clinical patients; the developed signature 

may have clinical utility for patients treated with standard of care chemotherapeutic 

agents in solid tumors.  

In summary, we present innovative bioinformatics methods to develop 

genomic markers for cancer therapeutics and we identify a novel biological problem 

in cancer therapeutics using translational research methods. 

Thesis Supervisors: Greg Tucker-Kellogg 
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Chapter 1 Introduction 

1.1 Background 

Cancers are diseases characterized by the uncontrolled growth and spread of 

abnormal cells. According to a World Health Organization report, over 10 million 

cancer cases occur annually, and deaths resulting from cancer worldwide are 

projected to continue rising to an estimated 11 million deaths by the year 2030. 

Although chemotherapy is a well-established therapeutic method for treatment of 

cancers, the clinical pathological response rate to the chemotherapy is usually low due 

to its limited efficacy and adverse effects. Resistance to chemotherapy is the most 

important factor contributing to the low response rate, and it remains a major obstacle 

in the treatment of cancer patients. Chemotherapy resistance occurs when cancers 

cells that have been responding to a therapy -- as evidenced by either growth delay or 

arrest -- begin to grow despite continued treatment. In other words, the cancer cells 

have acquired resistance to the effects of the chemotherapy, and the cancer treatment 

by way of chemotherapy from that point on is ineffective[1, 2]. 

The mechanisms of resistance of chemotherapy are very complex. Some 

cancer cells that are not killed by the chemotherapy may carry gene mutations that 

confer resistance to a drug. Some cancer cells may produce many copies of some 

particular genes, and then trigger an overproduction of protein that may render the 

anticancer drug ineffective. A well known resistance mechanism is when a 
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chemotherapeutic drug is pumped out of the cell by ATP transporter molecules, such 

as p-glycoprotein(ABCB1)[3]. These proteins are able to transport the drugs out of 

the cell, thus preventing drug activity. Some cancer cells may adapt to repair the DNA 

damage caused by some anticancer drugs. As a result, these cancer cells may be able 

to develop a mechanism to make the drugs ineffective[2].  

Although cancer is highly complex and the disease etiologies are still unclear; 

we can now define, and characterize, different types of cancer cells by thousands of 

genetic aberrations, epigenetic changes, post-transcriptional modifications, and 

combinations of these mechanisms, rather than by site of origin using modern biology 

technologies. By unraveling these complexities and decoding cancer pathways, we 

hope to understand why some cancer cells are specifically resistant to a course of 

treatment, and why some cancer cells are highly sensitive to the same treatment. The 

choices of anticancer therapy for individual patients can thus be optimized by 

“translational research” methods. When using the terms “translational science” and 

“translational medicine”; we should define these terms carefully. We define these 

terms as effective translation of the new knowledge, mechanisms, and techniques 

generated in basic science research and clinical research into new applicable 

approaches for prevention, diagnosis, and treatment of disease and to provide better 

healthcare for patients[4, 5]. 

In order to thoroughly understand the cytogenetic and molecular alterations in 

cancer cells, various data types such as large-scale karyotype changes, sequence 
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alterations on protein-coding or regulatory regions, DNA copy number variations, 

epigenetic modification changes, mRNA, protein and microRNA expression are 

needed. Integrative analysis of these data can lead to a comprehensive molecular 

genetics and characterization of cancer cells. Apart from understanding the molecular 

genetics of cancer cells, we are also studying the activities of anticancer drugs in 

different types of cancer cells using comprehensive assays, such as proliferation and 

colony formation assays, which are widely used to screen chemo-response of 

anticancer drugs in both in-vitro and in-vivo models. For example, NCI-DTP 

(National Cancer Institute – Drug Therapeutics Protram) has screened more than 

10,000 anticancer drugs in 60 cell lines using a Sulforhodamine B colorimetric assay, 

and 0 has screened more than 200 anticancer drugs in more than 100 human derived 

explants models using a tumor clonogenic assay[6, 7]. 

Not only do these measurement technologies enable us to observe more about 

cancer cells, but we also now have access to ever-increasing computational power to 

process the vast quantities of information, and assist in the identification and 

characterization the various pieces of the scientific puzzles. The developments here 

point to the need to form hypotheses from all these basic measurements of the cancer 

cells and anticancer drugs at an integrated systems level.  

The work presented in this dissertation is an attempt to address three levels of 

systematic analysis: 1) the development of principled computational methods for 

developing biomarkers and generating hypothesis for cancer therapeutics; 2) the 
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discovery of the association between gene or protein expression and genetic 

aberrations using integrated analysis of different types of complex measurement; and 

3) translation. There are two types of translation: a) translating the generated 

biological hypothesis into a clinical hypothesis and validating it using clinical data; 

and b) translating the learned biology during this process and forming clinical 

hypotheses for validation. 

In this introductory chapter, we will briefly elaborate on some of the points we 

have alluded to above and provide a detailed context for understanding and 

motivating this work. In the later chapters, we will explore the various steps and 

describe how we understand and utilize different types of genomic measurements to 

develop genomic markers for chemotherapeutics, and how we decode complex 

biological data using mathematical and computational methods. 

1.2 Principle of Scientific inquiry 

The process of scientific inquiry is a repeated cycle of observation and 

explanation. When handling biological data, the earliest stages of the cycle sometimes 

consist of pure observation. The first step is to gather the raw material, out of which to 

create questions and then formulate the right questions and seek the answers.  

Today, as we are in the genomic era, overwhelming biological data has been 

and is being generated like a continuing flood. After a period of observation, we may 

naturally begin to ask what kind of biological phenomena exist in the experimental 
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data that, and in some cases, we may notice different biological phenomena from 

what we have learned from textbooks. Followed by observations, critical dry bench 

analysis with mathematical and computational approaches and questions are 

formulated and possible explanations or hypotheses are postulated. Frequently, once 

integrated with multiple biological data, a number of hypotheses that are not 

consistent with the phenomena observed in different data can be rejected 

immediately; however, on the other hand, there may be a number of hypothesis that 

are consistent with the data and should be moved forward to the next stage. The next 

step is to gather more data for further analysis. Usually, we call this “validation”, or at 

a minimum, “hypothesis testing”. If the gathered data for validation is from same 

study, carefully-executed N-fold cross validation will give fairly robust validation 

results. But it is surprisingly easy to mistakenly “peek ahead” in the many steps of 

model building and testing. For that reason, the best standard for validation is when 

the gathered data is taken from another independent study. In the event that the 

hypotheses remain or pass the validation test, more experimentation and observation 

are necessary to distinguish between alternative explanations of the phenomena. In a 

biological study, if the hypothesis is generated from in vitro data, we strongly prefer 

furthering an in-vivo test before translating the hypothesis to the clinic. More on this 

will be discussed in later chapters. For use of predictions in appropriate and ethical 

human clinical studies, not only the in vitro validation, de-novo in-vivo test and 
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de-novo prediction in clinical data must be sound, all the experimental data generated 

and analyzed must also be based on robust statistical theory. 

1.3 Genomic biology 

The structure of DNA was discovered by James Watson and Francis Crick in 

1953. Since that, scientists have started to decode human DNA by developing and 

exploiting an increasing understanding of DNA sequence technology and quickly 

applied this knowledge into drug development. Just as John Sulston thinks “Science is 

essentially a cultural and dynamic activity. It generates pure knowledge about 

ourselves and about the universe we live in, knowledge that continually reshapes our 

thinking”[8], the genomic understanding is the basement of today’s drug 

development. 

A grand milestone of genome research effort was the "Human Genome 

Project". When first proposed, many scientific researchers argued that deciphering the 

human genome would lead to new understanding and benefits for human health. In 

1990, these advocates won over detractors, and the Human Genome Project (HGP) 

was officially launched with funding from the US National Institutes of Health (NIH) 

and Department of Energy (DOE). Labs from all over the world collaborated with the 

NIH and DOE and resolved to sequence 95% of the DNA in human cells. In 2003, 

with heavy involvement from major partners Wellcome Trust (U.K.) and 
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contributions from Japan, France, Germany, China, and other countries, the Human 

Genome Project was successfully completed.  

Today, vast quantities of genomic data are being generated throughout 

genomic biology, including DNA/RNA sequence data, mRNA/miRNA expression 

data, DNA methylation data, DNA copy number variation data and single 

polymorphism data, and protein expression data. The availability of genomic data will 

have a profound impact on biomedical research, diagnosis and therapeutic treatment. 

This also requires scientific researchers to advance systematic computational methods 

to better understand the data. In the following subsections, we will discuss different 

types of genomic data for context.  

1.3.1 Genome sequencing 

The DNA or RNA sequence is the primary structural description of a nucleic 

acid which composes of sequential nucleotides connected by chemical bonds. It can 

be written as a succession of letters representing the nucleotides of a DNA molecule 

or strand. By convention, the primary structure of a DNA or RNA molecule is 

reported from the 5' end to the 3' end. The sequence is considered to have capacity to 

carry information. The DNA genetic sequence carries the inherited information 

content of living functions.  

Sequences can be reported by reading biological raw material through DNA 

sequencing methods. The principle objective of sequencing genomics is to determine 

the sequences of nucleotides that comprise the genomes of various living organisms. 
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In detail, sequencing genomics not only sequences the organism’s chromosomes, it 

also identifies the organism’s genes, introns and exons, proteins coding sequences and 

regulatory elements through genomic analyses. The Human Genome Project has 

completely sequenced the DNA sequence of homo sapiens in 2003. To date, the 

genomes of a large number of other organisms have also been sequenced, including 

panda, yeast, many types of bacteria and dozens of fishes and plants[9].  

In past two decades, the Sanger method of sequencing by capillary 

electrophoresis using the ABI 3730xL(ABI Sanger) platform was widely used as the 

major solution for large-scale sequencing projects, and is recognized as the “gold 

standard” in terms of both read length and sequencing accuracy[10-13]. 

However, the high cost of Sanger sequence based method has greatly limited 

high-throughput sequence data generation. The increasing demand for low-cost 

sequencing is the key driver of the development of high-throughput sequencing 

technologies which dramatically parallelize the sequencing process and are able to 

produce thousands or millions of sequences at once. Several next generation 

sequencing (NGS) technologies have recently emerged, including Roche 454, 

Illumina Genomic Analyzer (GA), and Applied Biosystem (ABI) SOLiD, which are 

able to generate more than three to four orders of magnitude sequence and are 

considerably less expensive than the Sanger method on the ABI Sanger platform. To 

date, these new technologies have been successfully applied towards ChIP-sequencing 

to identify binding sites of DNA-associated proteins, RNA-sequencing to profile the 
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mammalian transcriptome, as well as whole human genome sequencing. Currently 

there is much interest in applying NGS platforms for targeted sequencing of specific 

candidate genes, intervals identified through single nucleotide polymorphism 

(SNP)-based association studies, or the entire human genome in large numbers of 

individuals[14-18]. 

Today, the low cost of high-throughput sequencing technologies is bringing 

the idea of “personalized medicine” closer to reality. The cost of sequencing a single 

whole genome has dropped to within several thousand US dollars. One day, full 

genome sequence data may allow healthcare researchers to investigate an individual’s 

entire genome and therefore detect all disease-related genetic variants, regardless of 

the genetic variant's prevalence or frequency. This will enable the rapidly emerging 

medical fields of “personalized medicine”, and will lead to a revolution in clinical 

genetics. Full genome sequencing is an important step towards better understanding 

the basis of genetic disease. However, it should be recognized that despite 

advancements in genome sequencing technology, incomplete understanding of the 

significance of individual variants or combinations of variants will limit the 

widespread usefulness of full genome sequencing in medicine until its clinical utility 

can be demonstrated [19]. 

1.3.2 DNA copy number variations 

DNA copy number variations (CNV) are alterations of genomic DNA in 

which a certain region of the chromosome has been deleted or amplified. The size of 
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DNA copy number variation ranges from 1 kb to few mb in a single chromosome. 

Copy number variations include deletions, insertions, duplications and more complex 

variants, and have been shown to affect gene expression, phenotypic variation and 

adaptation. The importance of DNA copy number variation in the human genome has 

become increasingly apparent over the last few years. The study of genome-wide 

copy number variation has shown that SNPs will have to share their place in the 

spotlight when it comes to studies of human genetic variation, disease and population 

structure[20, 21]. 

DNA Copy Number Variation(CNV) is caused by genomic rearrangements 

such as deletions, duplications, inversions, and translocations. Segmental Duplications 

(SD) is the typical explanation of genomic rearrangements. Segmental duplications 

are operationally defined as >1 kb stretches of duplicated DNA with high sequence 

identity, for example, Low Copy Repeat (LCR) is a DNA genome region specific 

sequence repeat and is susceptible to result in DNA copy number variations. Any 

change between two copies of DNA sequence, for instance, size, orientation and 

percentage similarity or distance, is susceptible to change in LCR therefore leading to 

genomic rearrangement[22-24]. 

Copy Number Variation(CNV) can be discovered by cytogenetic techniques 

such as fluorescent in situ hybridization, comparative genomic hybridization, array 

comparative genomic hybridization, and by virtual karyotyping with SNP arrays. To 

evaluate gain or loss of specific human samples, Wellcome Trust Sanger Institute 
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researchers have created the human CNV project, which has generated the most 

complete map within the human genome of variation in copy number between healthy 

individuals. To date, the human CNV project has detected CNVs in the genomes of 

270 individuals (the HapMap collection) with mixed ancestry of Europe, Africa and 

East Asia race (http://www.sanger.ac.uk/humgen/ cnv/). 

1.3.3 DNA methylation 

DNA methylation is a type of chemical modification of a DNA sequence. This 

modification can be inherited through cell division and it is subsequently removed 

without changing the original DNA sequence during zygote formation. It is one of the 

several types of epigenetic changes for DNA. DNA methylation typically occurs in 

the context of CpG (cytosine followed by guanine) dinucleotides. Localized regions 

of high CpG frequency (or CpG islands) are located around the promoters of the 

genes that are frequently expressed in cells. Methylated CpG sequence suppresses the 

corresponding genes’ expression. Cytosine methylation is the major form of DNA 

methylation in many mammalians. The methylated cytosine can be converted to 

thymine by accidental deamination, and the methylated CpG sequence will be 

transformed into the TpG sequence, and making the gene inactive[25, 26]. 

There are several assays to discover DNA methylation, such as 

Methylation-Specific PCR (MSP) assay, the HELP assay, and Methylated DNA 

immunoprecipitation (MeDIP) assay. Methylation-Specific PCR assay is based on the 

chemical reaction of sodium bisulfite with DNA that converts unmethylated cytosines 
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of CpG dinucleotides to uracil or UpG, followed by traditional PCR experiment. The 

HELP assay is able to detect and cleave methylated and unmethylated CpG sites using 

restriction enzymes. Methylated DNA immunoprecipitation first isolates methylated 

DNA fragments, and then and puts the DNA fragments into DNA microarrays or 

DNA sequencing (MeDIP-seq)[27, 28]. 

Changes in the pattern of DNA methylation data have been identified 

consistently in cancer cells. In the past decades, DNA methylation was speculated to 

play an important role in the onset or course of cancer. Recently, various changes in 

the DNA methylation patterns or in DNA methyltransferase expression levels in 

cancer cells have been reported. These changes provide a direct and indirect link 

between DNA methylation and cancer cell proliferation. In particular, DNA 

methylation might play a critical role in oncogene and tumor suppress gene 

mutations[29-31]. 

1.3.4 Gene expression 

Gene expression is the phenotypic expression of gene products. It means from 

transcription, through RNA processing to translation and post-translational 

modifications. Alternatively, gene expression refers to the process by which 

information, which is carried by a gene (DNA sequence), is translated to synthesize a 

functional gene product.  

Regulation of gene expression is the very important in the majority of cellular 

activities. It gives the cell control over all structures and functions, such as cellular 
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differentiation, morphogenesis and organism development. Gene expression can be 

modulated, from the DNA-RNA transcription process to post-translational 

modification of a protein. To better understand the regulation of gene expression 

usually requires the exploitation of the genome profiling at DNA, RNA and protein 

levels. In the previous part of this chapter, we have discussed DNA sequencing data – 

gene mutation, DNA copy number variation data – gene copy numbers  and DNA 

methylation data – gene methylation, the combined changes of these factors actively 

lead to the variation of gene expression and functional gene products, which are often 

proteins. In addition, small non-coding RNAs, such as microRNA, and various classes 

of short or long non-coding RNAs may be constantly involved in a variety of gene 

regulatory functions[32, 33]. 

Changes in gene expression underlie many biological phenomena. In cancer 

research, the study of the gene expression, especially the expressions of oncogenes 

and tumor suppress genes, is the critical step. Ideally, gene expression is measured by 

detecting the final gene product, usually the coded protein expression; however it is 

much easier to detect one of the precursors, typically mRNA, to infer levels of gene 

expression, especially in high throughput screening. Therefore, the expression pattern 

of a particular gene or set of genes, such as increases and decreases, measure the 

relative abundance of the gene specific mRNA transcript. In modern molecular 

biology, the high throughput screening of measuring thousands of genes concurrently 
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is called gene expression profiling, and it has been shown to be a powerful tool in 

cancer research[34-42]. 

To date, there are three major technologies have been adopted to profile gene 

expression: DNA microarray technology[43], serial analysis of gene expression 

(SAGE) and RNA-Seq technology[44-46]. Microarrays measure the relative activity 

of previously identified target genes by designing thousands of DNA oligonucleotides 

in the array. However, sequencing based techniques, like SAGE and SuperSAGE, are 

detecting the expression of level of full genomic transcripts instead of predefined set 

genes. Since 2006, the advent of next-generation sequencing techniques has made 

sequence based expression analysis more popular and more accurate when compared 

with microarrays. RNA-seq technology is also called “Whole Transcriptome Shotgun 

Sequencing” method. It is basically using high-throughput sequencing technologies to 

sequence cDNA in order to get information about a sample's RNA content. Till now, 

microarrays are still far more common because of its well validated 

reproducibility[47]. However, RNA-Seq is becoming widely used with reducing cost 

and the technology seems to be more reliable. What is important in this dissertation is 

that microarray technology allows comparison with a vast reference data set of 

published clinical gene expression data generated using the same method. 

In last decade, the technologies of DNA olignucleotide based microarrays 

have advanced tremendously. Both Affymetrix and Illumina have developed arrays 

for different types of scientific research. In a microarray chip, the probes are attached 
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via surface engineering to a solid surface by a covalent bond to a chemical matrix 

such as epoxy-silane, amino-silane, lysine or polyacrylamide. The solid surface is 

usually glass, plastic or a silicon chip. In Affymetrix, the solid surface is the array 

itself, while in Illumina, the solid support is microscopic beads distributed onto the 

array. The quality of DNA microarray data may potentially become problematic due 

to false cross-hybridizations between the design probes and mRNAs[43, 48]. As we 

discussed in our general scientific research methodology, validation is always 

necessary when confirming the basic discovery results. A low-throughput but highly 

validated approach for measuring mRNA abundance is the reverse transcription 

quantitative polymerase chain reaction(RT-PCR), followed with real-time polymerase 

chain reaction (qPCR). RT-PCR generates a DNA template from the mRNA by 

reverse transcription (cDNA). This cDNA template is then used for qPCR, where the 

intensity of fluorescence on the probe changes as the DNA amplification process 

progresses[49].  

1.3.5 MicroRNA expression 

MicroRNAs or miRNAs are short ribonucleic acid molecules, and on average 

they are only 22 nucleotides long. MicroRNAs are usually found in eukaryotic cells. 

MicroRNA is one of the post-transcriptional regulators that bind to complementary 

sequences on target gene mRNA transcripts, and it usually plays a translational 

repressing role that silences gene expression. The human genome has roughly over 

1000 microRNAs and they are predicted or validated to target about 60% of 
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mammalian genes. Some microRNAs are present upon human cell types[50, 51]. 

Some microRNAs have been shown to play either the role of oncogenes or tumor 

suppressing genes. For example, miR-17-5p and miR-20a are shown to mediate E2F1 

pathway activity by transcriptionally repressing E2F1[52, 53].  

Similar to mRNA expression, microRNA expression can be detected using 

microRNA microarrays. MicroRNA is hybridized to microarrays, slides or chips with 

probes to hundreds of microRNA targets, so that relative levels of microRNAs can be 

determined in different samples. More accurately, microRNA expression can be 

quantified with a polymerase chain reaction process of modified RT-PCR followed by 

quantitative real-time PCR. Variations of this method achieve absolute or relative 

quantification. 

1.3.6 Protein expression 

Proteins are the final product of gene expression system. In the cell machinery, 

proteins are the actual workers, and they are synthesized and regulated depending on 

the functional need in the cell. Protein expression refers to the way in which proteins 

are synthesized, modified, and regulated in living organisms. The blueprints for 

proteins are stored in DNA and decoded by highly regulated transcriptional processes 

to produce mRNA, and the mRNA is then translated into a protein. Transcription 

passes the information from DNA to mRNA, and translation is the synthesis of 

protein polypeptides based on a sequence specified by mRNA. After translation, 

protein polypeptides are modified in various ways to complete their structure, 
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designate their location or regulate their activity within the cell. Post-translational 

modifications are various additions or alterations to the chemical structure, and are 

critical features of the overall cell biology. There are a number of post-translational 

modification of proteins in the cell, which include: a) polypeptide folding into a 

globular protein to arrive at the lowest energy state; b) modifications of the amino 

acids; c) disulfide bridge formation or reduction; and d) protein modifications to 

facilitate binding functions, such as glycosylation and acetylation of histone to modify 

DNA-histone interactions[54, 55]. 

During the progression of cancer cells, many signaling proteins are activated 

through genetic, epigenetic and post-translational events[56-60]. The quantitative 

detection of proteins in cells and tissues to discover the expression patterns or changes 

in different conditions, such as health, disease, differentiation and drug treatment, is a 

central aim of proteomics research. The array format is well established for the rapid 

analysis of protein expression. There are three general types of protein arrays: 

large-scale functional chips, analytical capture arrays and lysate arrays. Large-scale 

functional chips immobilize large numbers of purified proteins and are able to assay a 

wide range of biochemical functions, such as protein-protein, protein-DNA, 

protein-small molecule interactions and enzyme activity, and are able to detect 

antibodies and demonstrate their specificity. Analytical capture arrays, also called 

antibody arrays, usually array antibodies, but may also use alternative protein 

scaffolds, peptides or nucleic acid aptamers. They are able to detect and quantify 
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analytes in complex mixtures such as plasma/serum or tissue extracts. Lysate arrays -- 

also called reverse phase proteins arrays – use cell samples, such as tissue lysates, 

printed on an array surface, and the protein targets are then detected with high quality 

antibodies overlaid on them[61, 62]. All three types of assays are widely used in 

diagnostics, clinical biomarkers and discovery research.  

Beside the array techniques, another label-free detection method is mass 

spectrometry. Mass spectrometry sequences the amino acids in a protein and 

compares its amino acid sequence with known proteins. The amino acid sequence also 

can be used to predict the charge of the molecule, its size, and its probable 

three-dimensional structure. The charge and size is confirmed experimentally using 

SDS-PAGE and double-dimension gels. The three-dimensional structure of the 

protein is determined through X-ray crystallography or nuclear magnetic resonance 

spectroscopy (NMR). 

Proteins play a number of different roles within cells, and their interactions are 

the most important biological activities. In this dissertation, we are going to apply our 

developed computational methods for the protein expression data and to develop 

protein expression markers for cancer therapeutics. The integrated analysis with other 

genomic data, such as DNA copy number variation data, DNA methylation data and 

mRNA and miRNA expression, permits us to decode the resistance of 

chemotherapeutics and develop the potential biomarkers for clinical application. 
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1.3.7 Integrated analysis of genomic data 

The first foray into analysis of genomics data are the phenotypic expression 

data, such as gene expression and protein expression. Challenges to the study of gene 

expression and protein expression data are very similar, including data normalization, 

data smoothing, correlating between genes or samples, clustering data, categorizing 

data and using hierarchical clustering methods, principle component analysis or 

singular value decomposition(SVD), or non-negative matrix factorization(NMF) to 

pull out patterns in the data. These enriched analysis methods have successfully 

identified a number of remarkable patterns in the phenotypic expression data[63-65]. 

However, these analyses based on pure phenotypic expression data, such as 

gene expression markers, lack concrete biological explanations of genetic changes, 

such as mutations, copy number variation or methylation, and regulations between 

transcripts or proteins and miRNAs. To better understand the developed phenotypic 

expression markers and apply them in clinical practice, it is necessary to decode the 

over or under expression for specific genes or proteins using the corresponding 

sequence genomics data, copy number variation, methylation data and miRNA data. 

Therefore, we propose a simple mathematical model to describe how genetic 

aberrations change the transcripts expression.  

 )(),(),()( iiii gnMethylatiogCNVgMutationfgExpression   Eq 1-1 

Here )( igExpression  represents the gene or protein expression value of gene i, 

usually it is the normalized readouts from large scale screening array data; 
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)( igMutation  is the mutation of the gene i, especially deletions or frame shift 

mutation; )( igCNV  is the DNA copy number variation value or calls for gene i; 

)( ignMethylatio  is the DNA methylation value for gene i. By using linear 

programming techniques, we can select the meaningful genes whose transcript 

expression is well explained by the corresponding genetic aberrations. However, this 

simple mathematical model does not consider the regional or distant genomic loci that 

regulate the expression of gene i. The gene or protein expression of gene i maybe 

regulated by the approximate location of the gene-of-origin, which is called cis or 

trans regulation. These genomic loci is usually called expression quantitative trait loci 

(eQTLs)[66]. To improve the proposed mathematical model, including the cis and 

trans regulations of the corresponding genomic loci is the direction, however, many 

eQTLs show tissue dependent variation[67], and this may set up a barrier in our 

analysis since we started the biomarker development with the pre-clinical models 

which include multiple cell types. If the biomarker development is focusing on 

specific tumor type, we highly suggest changing the mathematical models as: 

 )(),(),(),()( iiiii gnMethylatiogSNPgCNVgMutationfgExpression   Eq 1-2 

Here, )( igSNP  is the gene i associated SNP’s variation. 

1.4 Chemotherapeutics 

Chemotherapy is a distinct treatment from surgery and radiation therapy in 

treating cancer. Rather than physically removing or destroying a tumor or a part of it, 
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chemotherapy uses anticancer drugs to interact with cancer cells to eradicate or 

control the growth of cancer cells. The anticancer drugs used in chemotherapy are 

able to reach most parts of the body. Therefore, chemotherapy is likely to be 

recommended for cancer that has already spread to other areas of the body, for tumors 

that have occurred at more than one site, or for tumors that cannot be removed 

surgically. It is also used when a patient has the recurrent disease after initial 

treatment with surgery or radiation therapy. 

A single drug may be given or a combination of several different drugs may be 

given together, and this latter approach is called combination chemotherapy. The 

mechanism to kill or stop cancer cells growth is different for different anticancer 

drugs, and combination therapies exploit these differences. Cells divide by going 

through a cell cycle, following an ordered set of events that include the synthesis of 

the DNA (S-phase) and the mitosis (M-phase), when the cell is thereafter divided into 

two daughter cells. Normal cells grow and die in a precise and controlled way, but 

when cancer occurs, the cells growth process becomes abnormal, with cells dividing 

and forming more cells without control and order. In chemotherapy, anticancer drugs 

that interfere primarily with DNA synthesis and mitosis (the S and M phases of the 

cell cycle) are used to destroy cancer cells. Different drugs work through different 

mechanisms: some damage a cell's genetic material (DNA), while others prevent the 

cell from dividing.  
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Typically, there are two types of anticancer drugs: cytotoxic drugs and 

targeted drugs. Chemotherapy with cytotoxic drugs cannot distinguish between 

normal cells and cancer cells other than in gross features of replication; hence both 

types of cells are affected by chemotherapy. The toxicity of chemotherapeutic drugs 

to normal cells is the cause of unwanted side effects. Targeted drugs are intended to 

target the genetic lesions specific to cancer cells and to make cancer cells stop 

accumulating in tumor progression. Targeted drugs thus only target cancer cells and 

are intended to have much less effects on normal cells. Some targeted drugs show 

much better benefits than cytotoxic drugs for certain tumors in clinical use. However, 

the intrinsic value of chemotherapy lies in the fact that the killing effect of 

chemotherapeutic agents has a definite selectivity for cancer cells over normal host 

cells. Normal tissues are able to repair themselves and continue to grow, so the injury 

caused by chemotherapy is rarely permanent.  

In general, cytotoxic agents can be classified into alkylating agents, 

antimetabolites, topoisomerases, vinca alkaloids and taxanes. Alkylating agents are so 

named because of their ability to alkylate many nucleophilic functional groups under 

conditions present in cells. Cisplatin and carboplatin, as well as oxaliplatin, are 

alkylating or alkylating like agents. They impair cell functions by forming covalent 

bonds with the amino, carboxyl, sulfhydryl, and phosphate groups in biologically 

important molecules. Other alkylating agents are mechlorethamine, 

cyclophosphamide, chlorambucil, and ifosfamide. They work by chemically 
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modifying a cell's DNA. Antimetabolites agents include 5-fluorouracil, 

mercaptopurine, trimethoprim, pyrimethamine and pemetrexed. Some of these agents 

replace natural substances as building blocks in DNA molecules, thereby altering the 

function of enzymes required for cell metabolism and protein synthesis. 

Antimetabolites of this sort are cell cycle specific, and are most effective during the 

S-phase of cell division because they primarily act upon cells undergoing synthesis of 

new DNA for formation of new cells. Topoisomerases are essential enzymes that 

maintain the topology of DNA. Inhibition of type I or type II topoisomerases 

interferes with both transcription and replication of DNA by upsetting proper DNA 

supercoiling. Type I topoisomerase inhibitors include Camptothecins: Irinotecan and 

Topotecan. Type II inhibitors include Amsacrine, Etoposide, Etoposide phosphate, 

and Teniposide. Vinca alkaloids such as Vincristine, Vinblastine, Vinorelbine and 

Vindesine, bind to specific sites on tubulin, inhibiting the assembly of tubulin into 

microtubules (M phase of the cell cycle). They are derived from the Madagascar 

periwinkle and Catharanthus roseus. Taxane is the natural product Paclitaxel, 

originally known as Taxol and first derived from the bark of the Pacific Yew tree. 

Docetaxel is a semi-synthetic analogue of Paclitaxel. Taxanes enhance stability of 

microtubules, preventing the separation of chromosomes during anaphase. 

One of the most important decisions for an oncologist is to prescribe the right 

drug with the right amount of anticancer drugs to treat the cancer patients at the right 

time. In this dissertation, one of the main aims is to develop a systematic methodology 
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to identify molecular markers which may help to stratify patients groups for specific 

treatment using anticancer agents. An important phenomenon is that some cancer cells 

show sensitivity to almost all kinds of cytotoxic chemotherapeutic agents. While 

conversely, some cancer cells show resistance to many types of cytotoxic 

chemotherapeutic agents. In this dissertation, we will focus on developing genomic 

markers to elucidate the concordant chemotherapeutics using preclinical materials. 

1.5 Biomarker discovery 

1.5.1 Biomarker for cancer therapeutics 

The development of molecular biological techniques for genetic analysis has 

led to a great increase of our knowledge of genomics in general, and specifically, to 

our understanding of the structure and behavior of cancer genomics. These molecular 

techniques are being used to study biomarkers to stratify cancer patients groups in 

cancer chemotherapeutics, and have been shown great potential to improve the quality 

of patients’ lives. A 70-gene MammaPrint signature (Agendia Inc, Huntington Beach, 

CA) measures the gene expression profile of 70 genes and uses its expression pattern 

to predict the likelihood of distant metastases for early stage breast cancer. This is the 

first molecular marker approved by the US Food and Drug Administration (FDA). 

Another molecular marker, Oncotype DX (Genomic Health), uses its 21 candidate 

genes to estimate likelihood of recurrence. The gene expression signature is composed 

by ER and HER2, as well as ER-regulated genes and several proliferation-related 
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genes. Increasingly, such emerging molecular markers could influence clinical 

care[68-70]. 

Prognostic and predictive efficacy markers are the most important markers to 

guide the selection of the most appropriate chemotherapy for individual cancer 

patients. In the last decades, a lot of retrospective studies on many markers have been 

performed, but only few had been validated in prospective therapeutic trials or 

prospective studies from an accurately selected patient population. The predictive 

efficacy markers or response markers are used to predict the potential “responders” 

for specific chemotherapy or evaluate the probability of “sensitivity/response” for the 

individual patient to the chemotherapy. Prognostic markers, such as Agendia’s 

MammaPrint signature and Genomic Health’s Oncotype DX signature, are used to 

estimate the likely outcome of treatment, for instance, the recurrence of tumor growth 

after primary treatment for the cancer patients. Prognostic markers play a key role in 

clinical practice in distinguishing patients into different risk groups and providing 

guidance for doctors to design treatment strategies in the care for patients. For 

example, the amplification of MYCN proto oncogene is a known indicator of poor 

outcome in neuroblastoma patients, therefore, patients with MYCN amplication need 

more challenging clinical care[71]. 

Typically, there are two types of biomarkers in clinical applications: 

prognostic markers and efficacy markers. Prognostic markers may be generic and can 

predict the response of multiple chemotherapies; while efficacy markers may be 
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specific and it can only predict one or a combination of anticancer agent(s). Although 

prognostic biomarkers that provide information on the natural course of disease after 

standard treatments are useful, predictive biomarkers are of greater value in clinical 

decision making and will be essential tools to provide the tailoring treatments for 

cancer patietns. The measurement of efficacy of anticancer agents in solid tumors is 

based on pathological response using the RECIST criteria, categorized as complete 

pathological response, partial pathological response, stable disease or progression. 

The measurement of general prognosis, however, is based on patients’ survival, such 

as progression free survival, disease free survival and overall survival. Patient 

survival is highly correlated with the patient’s chemotherapeutic response to 

anticancer agent(s), if chemotherapy was chosen as the primary care for a cancer 

patient. The aim of our research is to develop molecular markers to stratify cancer 

patients for standard of care chemotherapies. In this dissertation, we will not 

specifically discuss whether the developed markers have prognostic value, or if they 

are purely efficacy markers. 

Tumor response to chemotherapy varies from one patient to another. It would 

be extremely useful to know ahead of time whether tumor cells of an individual 

patient would respond to chemotherapeutic agents, or whether an individual patient 

would show resistance to the chemotherapy. There are three types of molecular 

markers that provide guidance for chemotherapy treatment on clinical practice: a) the 

targeted genes; b) the activity of the targeted pathways; c) the genes are indirectly 
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related with the agent’s or targeted pathway. The drug targets are the most important 

markers for the targeted anticancer agent. The clinical response rate of Gleevec is 

highly dependent on the targeted genes, mutation of BCR-ABL gene and over 

expression of C-KIT. Patients with HER2 amplification show 20% higher response 

rate than patients with HER2 normal copy number to the Herceptin[72, 73]. The 

activity of the targeted pathway is also the key marker for the drug’s clinical response. 

For example, a patient with K-Ras mutation may show much worse response than a 

patient with wild type K-Ras to Panitumumab, which is a fully human monoclonal 

antibody specific to the epidermal growth factor receptor (EGFR). This is because a 

patient with a K-Ras mutation will lead to constitutively active downstream signaling 

of the pathway unaffected by the drug target[74, 75]. Apart from drug targeted genes 

and targeted pathways, there are also some molecular markers which are not directly 

related with the targeted pathways for example, ABCB1, TOP2A, ERBB2, and BCL2 

are candidates of predictive markers to predict the chemosensitivity for cytotoxic 

chemotherapy in breast cancer[76]. 

1.5.2 Biomarker development for cancer therapeutics 

The current primary focus of the translational research is to improve clinical 

outcomes by utilizing clinical validated biomarkers. According to the guidance from 

FDA pharmacogenomics, biomarkers are classified into three types: a) exploratory 

marker; b) probable validated marker and c) validated marker (FDA report 2004). An 

exploratory marker is more like a clinical hypothesis, for example, Taxane shows 



Chapter 1 Introduction 

45 
 

resistance in the patients with β-tubulin mutations. A probable validated marker 

means that marker has been validated by some biological or clinical data, for example, 

Taxane shows higher IC50 in cell lines with β-tubulin mutations than cell lines 

without β-tubulin mutations. A validated marker means that a probable validated 

marker is confirmed in clinical trials, and has shown usefulness in improving clinical 

outcomes.  

Remarkable advances in the understanding of neoplastic progression at the 

cellular and molecular levels have spurred interest in molecularly targeted cancer 

therapeutics. New imaging and bioassay technologies are providing the basis for 

developing biomarkers that will facilitate development of these molecularly targeted 

drugs. Biomarkers may be used in early drug development to elucidate the mechanism 

of action of a drug and provide preliminary evidence of its effect. As the relationship 

between a drug or class of drugs and a biomarker becomes better understood, there is 

a hope that clinical assays can be developed to identify patients most likely to benefit 

from the drug. These biomarkers are termed predictive biomarkers. Although 

prognostic biomarkers that provide information on the natural course of disease after 

standard treatments are useful, predictive biomarkers are of greater value in clinical 

decision making and will be essential tools for tailoring treatments. 

NCI, FDA and drug makers have consensus about the facing challenges in 

drug and biomarker co-development in an seminar discussion[77]. The critical issue 

to develop both drug and corresponding biomarkers are highly depended on the level 
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of understanding of the biology of the drug target and its interaction with the drug. 

This means to understand the underlying biology of the drug target and the 

mechanism of action of the drug is the still the key to speed up the process of drug 

and biomarker co-development. Therefore, the pre-clinical models are the good 

starting point for the biomarker development, especially to study the biology of the 

drug target and the mechanism of action of the drug, and to discover the probable 

marker and to develop and to evaluate biomarker assay performance. 

In the recent few years, remarkable advances in the understanding of 

cancerous progression at the cellular and molecular levels have spurred interest in 

oncogene or oncogene like addicted molecular targeted therapeutics. The latest news 

is the approvement of Zelboraf by FDA[78]. Zelboraf, which is specifically inhibiting 

mutated B-Raf protein, offers significant survival benefit in metastatic melanoma 

patients. The BRAF protein is involved in cell signaling pathway and promotes cell 

proliferation if over active. It is mutated in 50 percent of late-stage melanoma patients. 

Since Zelboraf selectively inhibits the mutated BRAF V600 protein, therefore, 

patients with B-Raf V600 mutation will likely show response to Zelboraf. Roche also 

developed Cobas 4800 BRAF V600 mutation assay to test the mutation in clinical 

patients. However, other than Zelboraf, there are many other targeted drugs are not 

“lucky” to have 50 percent of mutations for their drug targets in patients, and the 

tumor cells in patients may not show apparent tumor growth addiction on the drug 

targets as well. Therefore, the development of biomarkers for these drugs is also very 
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challenging, especially the number of available pre-clinical models is limited. What is 

needed here is the sophisticated methodology to identify the potential markers based 

on small size pre-clinical samples. Advanced bioinformatics analysis with new 

genomic and bioassay technologies are providing the basis for developing biomarkers 

that will facilitate development of these molecularly targeted drugs. In this 

dissertation, we will try to propose a systematic methodology to develop probably 

validated biomarkers for anticancer agents using a model driven analysis of genomic 

data and chemo-sensitivity data. Although there are some pioneer bioinformatics 

works done in the past decade [70, 79] [80], there is no systematic procedure to 

develop the probable validated markers for most standard of care chemotherapeutics 

and targeted agents.  

Data driven analysis methodologies have been useful in uncovering interesting 

patterns to form exploratory hypothesis in the biological and clinical data. We use the 

following framework to integrate genomic data and chemo-response data in order to 

develop and validate biomarkers for cancer therapeutics. 

The developed probable markers may be used in early drug development or 

for further academic research to elucidate the mechanism of action of a drug and 

provide preliminary evidence of its effect. As the relationship between a drug or class 

of drugs and the marker becomes better understood, there is hope that clinical assays 

can be developed and move to clinical for further validation and to identify patients 

most likely to benefit from the drug.  
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Figure 1-1: Framework to develop an exploratory marker, a probable validated 

marker and a validated marker for anticancer agents. 

1.6 Combination chemotherapy 

Combination chemotherapy is the use of more than one drug or therapy for 

cancer treatment in a patient. For some cancers, the best treatment strategy is a 

combination of surgery, radiation therapy, and chemotherapy. Sometimes 

In vitro/In-vivo Chemosensitivity data 

Preprocessing Pattern discovery 

Exploratory marker and hypothesis 

Probable marker: Independent In vitro and 

In-vivo validation 

Validated marker: clinical validation 

Principal genomic expression data 
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combination chemotherapy is used. Anticancer agents like cytotoxic drugs that are 

used to treat different cancers have variable outcomes. For example, only about 20% 

of patients with breast cancer respond therapeutically to the widely used drug Taxane 

(Paclitaxel or Docetaxel). Chemotherapy agents, especially cytotoxic drugs, often 

cause unwanted side-effects. Cytotoxic drugs work by killing cells which are 

dividing, and so some normal cells are consequently damaged too. Since the response 

rate is low and toxicity is high, combinations of a cytotoxic drug and other 

chemotherapeutic agents have been developed. The rationale for combination 

chemotherapy is to use drugs that work by different mechanisms of action, thereby 

decreasing the likelihood of developing resistant cancer cells. When drugs with 

different effects are combined, each drug can be used at its optimal dose without 

intolerable side effects. There are three types of measureable effects in combinational 

chemotherapy: synergistic, antagonistic and additive. If the combined agents show 

beneficial effect(s) to each combined agent, the combinational effect is considered 

“synergistic”; if the combined agents do not show favorable effects to one other, the 

combinational effect is considered “antagonistic”; and if the combined agents show 

similar effects as individual drugs, the combinational effect is considered “additive”. 

Mathematically, this is often evaluated by the use of a “Combination Index (CI)”[81]. 

In another situation, even the synergistic drug combination is identified, the toxicity 

of the drug combination will also need to be investigated. Usually, the combined 

drugs are treated to the patients sequentially to avoid the accumulation of the toxicity. 
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The success of many targeted cancer therapies are based on their efficacy only 

when they are combined with cytotoxic agents in chemotherapeutics. For example, 

bevacizumab did not show any survival benefit as a monotherapy for patients with 

metastatic colorectal cancer, but it gave extra 2.5-month survival advantage when 

used in combination with the FOLFOX4 (Oxaliplatin, Leucovorin and Fluorouracil) 

chemotherapy regimen[82]. These success stories of the combination of targeted 

drugs with cytotoxic agents based chemotherapy has led to the hypothesis that 

efficacy of traditional chemotherapies could be enhanced by incorporating with 

targeted agents. However the mechanisms of such combinations are still unclear. It 

would be very helpful to provide scientifically based rationales for drug combinations 

between targeted agents and cytotoxic agents. We hope to extend the computational 

framework of the evaluation of single agent biomarkers into the evaluation of 

combinations of biomarkers. With the focus on optimizing dose regimens and 

understanding of developed biomarkers, it is possible to stratify patients into 

subpopulations who could benefit from such combinations. 

1.7 Dissertation roadmap 

In this dissertation, we will first propose a computational framework to study 

biomarkers to guide cancer chemotherapeutics. In particular, we will present the 

bioinformatics method to generate the principal markers based on gene or protein 

expression data and anticancer agents’ in vitro chemo-response data. Next, we suggest 
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a novel computational method to test the uniqueness of the developed marker genes in 

the test data. Finally, we will further provide a robust method to detect the presence of 

the developed signature marker in the test data. By integrating mutation data, copy 

number variation data and methylation data, we can identify genes which are 

biologically meaningful and present strategies to narrow down the multiple gene 

signature into N(N<10) number of marker set for clinical translation. Another major 

part of the dissertation is to use translational research method to study novel 

biological problem in cancer therapeutics. 

Overall, there are three major objectives for this work: 

1. to develop a systematic bioinformatics methodology for studying 

molecular markers for cancer chemotherapeutics, and 

2. to propose minimal marker set for clinical validation and practice, and 

3. to study novel biology by using translational research methods 

The outline of the dissertation is as follows: In this chapter, the backgrounds of 

genomic biology, cancer chemotherapeutics, biomarkers and their application to 

improve chemotherapeutics are introduced. In Chapter 2, bioinformatics methods to 

develop principal markers based on principle expression data will be presented and the 

methods to test the robustness of the developed expression marker and to detect of the 

presence of expression marker in test dataset will be proposed. In Chapter 3, a method 

to integrate different types of complex genomics data, such gene expression, mutation, 

copy number variation and method methylation data and develop robust single marker 
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will be presented and strategies to propose minimal marker set to clinical validation 

will be discussed. In Chapter 4, a novel biological problem, concordant 

chemotherapeutics will be identified, and the corresponding molecular markers will be 

generated to characterize the concordant response among chemotherapeutics. The 

developed genomic signature is then validated in both in vitro data and clinical data. In 

the last chapter, we will summarize our study and contributions to the field. 
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Chapter 2 A systematic bioinformatics 

methodology to develop principal markers  

Gene expression and protein expression are the phenotypic expression of gene 

products. Ideally, a group of genes or proteins with a combined expression pattern 

could uniquely characterize the condition of phenotype of biological species, such as 

disease state of cancer patients and chemo-response of anticancer agents. Therefore, 

gene or protein expression signature can serve as a principle surrogate marker for the 

studies of molecular phenotype, pathology, prognosis and diagnosis of cancers. For 

example, gene expression profiling using microarrays has been successfully applied 

for the classification of tumor types, stages of tumor progression, prediction of 

clinical outcomes and prediction of the response of anticancer agents[83-98].  

The biological implication of the gene expression signatures is intrinsic, and 

the biological connection between genes identified by microarray and their 

phenotypic effect usually remains elusive. A signature gene set contains some false 

positives by nature of high throughput. Current advances in controlling the false 

discovery rate have overcome this problem to some extent, solidifying the status of 

expression profiling as the gold standard among non-biased genome wide approaches. 

In this chapter, we will review a few key technologies adopted to develop principle 

markers based on gene or protein expression arrays. The focus on of this chapter is to 

develop an innovative systematic methodology to discover biomarkers. 
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2.1 Introduction 

In the last 10 years, microarray technology has been greatly advanced and has 

substantially gone from obscurity to being almost ubiquitous among biologists. 

Biologists today run high-throughput genomic studies by simultaneously measuring 

the expression levels of tens of thousands of genes in their biomedical research. One 

of the major applications is to use microarrays to discover differentially expressed 

genes between two or more groups, such as normal versus cancer patients, responders 

versus non-responder, control versus and drug treated. These identified differentially 

expressed genes may represent disease biomarkers in the diagnosis of the different 

types and subtypes of diseases or in the efficacy markers of anticancer agents in 

chemotherapy. The objective of principle marker development is to identify genes or 

proteins which show statistically significant up-and-down expression patterns in two 

groups of samples (Figure 2-1). In microarray derived gene expression parlance, it is 

usually named as gene expression signature. 
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Figure 2-1: Schematic data matrix of the principle expression signature 

The most straight forward approach to identify differentially expressed genes 

is known as the “fold-change” (FC) and it is calculated as 

21 uuFC   Eq 2-1 

Where,  and  are typically the means of log-transformed gene expression in 

group 1 and group 2. 

The FC method simply evaluates the average log-ratio between two groups, 

and considers the gene differentially expressed if the log-ratio difference is greater 

than a specified cut-off. The FC method represents the “up” and “down”, or “high” 

and “low”, or “over” and “under”, or “on” and “off” of the gene’s expression. This is 

the preliminary criteria for a gene to be a biomarker in clinical. However, the FC 

method lacks solid statistical footing because it assumes that the variance of the gene 

expression in two groups is equivalent. This assumption is especially problematic 

since variability in gene expression measurements is not uniform, even after the 

High Low 

Low High 
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variance has been stabilized by data transformation. Statistically, using this FC 

method alone with a fixed cutoff gives undetermined type 1 error rates. 

Rather than applying a FC cutoff alone, a statistical test that incorporates 

variances of gene expression should be preferred. The student t-test is certainly the 

most popular test and has been considered as the fundamental method for differential 

gene analysis, especially for testing significant changes in small samples. The null 

hypothesis of the t-test is H0: 1= 2 and the test statistic is given as 
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Eq 2-2 

Where, n1, n2 are the number of samples in group 1 and group 2 respectively, and 

2
1S and 2

2S are the unbiased estimator of the variance of the expressions of the gene in 

group 1 samples and group 2 samples[99]. 

Another well known t-test based method is the Significance Analysis for 

Microarrays (SAM)[100, 101]. Estimating t-statistic could be problematic because the 

standardized variance can be skewed by low variation genes, which are false positives 

as their t-statistics are very large. SAM uses a modified t-statistics of the form 
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Eq 2-3 

Where, S  denotes the pooled standard deviation of both group samples, and OS  is 

a small constant for stabilizing the standard deviation. 

The statistical power of t-test statistics is usually small when the sample size is 

small. Baldi and Long[102, 103] highlighted this problem by way of showing how 
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estimates of sample variances are poor when the sample size is small. Consequently, 

they introduced a Bayesian framework to evaluate the variance to perform standard 

t-test. The variance is estimated by the formula 
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Eq 2-4 

Where, 2
0 is denoted as a background variance, 0w is defined as the weighted 

parameter and 2s is the empirical sample variance. The weighted parameter 0w is 

interpreted as a measure of confidence in the Bayesian estimate of the variance in 

comparison to the sample variance. The overall method is named as Cyber-T method. 

Another variance modeling method has been proposed by Delmar and his 

colleagues[104]. The mixtures of distributions are employed to improve the estimate 

of the variance. The variance 2 is modeled as a weighted mixture of Gamma 

distributions, and the parameters of the mixture model are estimated from the 

observed data by expectation maximization (EM) approach. 

Smyth[105] presented a different method that was based on general linear 

models, and named it as Limma. Limma is not restricted for two classes comparisons 

because it basically use the generalized linear model to fit the expression data for each 

gene 

bxay   Eq 2-5 

Where, y denotes the gene expression data, the log-transformed normalized gene 

expression array data, and x  represents the experiment design matrix or phenotype 

data, such as treatment and control, while b is the intercept vector. The subsequent 
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analysis is based on the fitted model parameters. Limma can not only identify 

significantly differential genes between two groups of samples, but can also be used 

for the analysis of more groups, factorial designs and time course experiments. 

The statistical significance of the differential expression analyzed by testing 

each gene, multiple hypothesis testing is then an immediate concern. When multiple 

hypotheses are tested, the probability that a type I error is dedicated increases sharply 

with the number of hypotheses. Considering that thousands of genes can be analyzed 

in a single experiment, this may dramatically intensify the problem. (While 

controlling the family-wise type I error rate (FWE), which is the probability of one 

error in the family of hypotheses is needed. Benjamini and Hochberg[106] pointed out 

that the estimate proportion of the errors among the identified differentially expressed 

genes may be more appropriate. They proposed a concept “false discovery rate 

(FDR)” which is actually the expectation of FWE of the identified significantly 

differentially expressed genes. FDR criterion in the simultaneous testing of gene 

expression has been shown to be more powerful procedures[107-109]. 

All the above procedures of differential gene expression analysis can be used 

to analyze protein array data. Our ultimate goal in developing gene or protein 

expression markers is to translate these microarrays or protein arrays profiles into 

clinical practice and use them to guide the treatment of cancer patients or stratify 

patients for specific chemotherapeutics. In clinical practice, chemotherapeutics used 

against cancer may get a range of responses, such as complete response, partial 

response, stable disease response and progression disease response. Therefore, we 
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cannot restrict our study of differentiation markers analysis to one or two class 

samples. Hence, we will need to extend the analysis from two classes to three classes 

and more. 

2.2 Fuzzy classification of biological data 

Biological data is inherently uncertain and noisy; when handling uncertain 

biological data, it is difficult to separate measurement errors from inherent variability. 

A Boolean Network (BN) model, which simply considers gene expression as “on” or 

“off”, has been used to model gene regulatory networks and discover the gene 

expression patterns[110-114]. In the Boolean network formalism, a gene is considered 

to be either expressed or unexpressed, so intermediate expression levels are neglected. 

In reality, a gene can be expressed at intermediate levels, and to model these cases we 

need an alternative model to cover them. A “Fuzzy” clustering method can deal with 

such situations[115, 116]. A Fuzzy approach provides a systematic and unbiased way 

to imitate human intelligence by using qualitative descriptors such as “high” or “hot” 

to reduce the complexity of the natural characteristics of the data. In this study, we 

cluster the chemo-response data, such as GI50s and IC50s, into three fuzzy classes: 

“sensitive”, “medium” and “resistant”. The clustering method uses formal data 

discretization algorithms. For example, Figure 2-2 describes the classification of 

NCI60 cell lines based on the chemo-response data NLogGI50 (Negative 

log-transformed GI50) of Paclitaxel. 52 solid tumor cell lines are classified into three 

fuzzy clusters (sensitive, medium and resistant) using fuzzy c-means (FCM) method 
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with the three centers: Sensitive is 8.5; Medium is 7.5 and Resistant is 6.5. Samples 

with NLogGI50 greater than 8 are classified as “sensitive”; samples with NLogGI50 

less than 7 are classified as “resistant”; and samples with NLogGI50 between 7 and 8 

are classified as “medium”. 

 

 

 

Figure 2-2: Classification of 52 NCI60 solid tumor cell lines based on NLogGI50 

readouts of Paclitaxel. 

2.3 Signature markers development 

 Fuzzy classification methods may cluster samples into three or more than 

three classes, such as “low”, “medium” and “high” for gene or protein expression; and 

“sensitive”, “medium” and “resistant” for chemo-response data. The statistical 

methods to develop significantly differentiated signature markers between two classes, 

such as “sensitive” and “resistant” samples, are state-of-the-art and have been well 

studied, but few methods have been presented to develop signature markers for three 

or more classes. Therefore, in this dissertation, one of the major tasks is to propose a 
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computational methodology that develops principal genomic markers, including the 

development of signature markers for samples with three or more classes. 

Since this study is focused on developing biomarkers for chemotherapeutic 

agents, we have chosen to develop chemo-response signature markers for a start. 

Figure 2-3 depicts the typical expression pattern of signature markers developed 

based on two classes samples: markers(sensitive) show high expression in sensitive 

samples but low expression in resistant samples; markers(resistant) show low 

expression in sensitive samples but high expression in resistant samples. Many 

methods reviewed above, like SAM and Limma procedures, are very powerful in 

developing significantly differentially expressed markers. Table 2-1 lists the 

implementation of R scripts using Limma procedure to identify the top 300 

significantly differentially expressed gene markers in microarray data. This 

implementation also includes the pre-processing steps of microarray data genes that 

expressed background level expression and do not vary significantly across all 

samples are excluded in the study. The R packages utilized in the following R scripts 

are “Limma”(version 3.6.9) and “genefilter”(version 1.32). 
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Table 2-1: R scripts using Limma procedure to identify the most significantly 

differentiated genes between two class samples 

However, this Table 2-1 only identifies the gene markers that have just two 

levels of expression: high and low in this pattern. When we extend the current two 

classes to three classes by considering “medium” samples, we obtain two types of 

expression patterns: type-I and type-II. In type-I, the expression of the marker has 

three categorical levels: high, medium and low. As shown in Figure 2-4, both 

markers(sensitive) and markers(resistant) keep the same pattern in both sensitive and 

resistant samples, but they show “medium” expression in the newly added “medium” 

samples. In type-II, the expression of the marker has two levels: high and low, 

therefore, a new group of markers, markers(medium), is identified to show high 

expression in medium samples and low expression in both sensitive and resistant 

samples (Figure 2-5). In this case, each class samples, either sensitive, medium or 

// ExprArray: microarray expression data, matrix format 

// ResponseClass: response class information, numeric vector 

library(genefilter) 

## filter out the probesets with noisy level expression 

f1 = pOverA(0.25, log2(100)) 

## filter out the probesets with insignificant variation expression 

f2 = function(x) (IQR(x) > 0.5) 

Fun.Filter = filterfun(f1, f2) 

selected = genefilter(ExprArray, Fun.Filter) 

ExprArray.PreProcessed = ExprArray[selected, ] 

library(Limma) 

design = cbind(mean = 1, diff = as.numeric(ResponseClass)) 

fit  = lmFit(ExprArray.PreProcessed, design) 

fit2 = eBayes(fit) 

topGenes = topTable(fit2,coef="diff",number=300,adjust.method="BH", sort.by="logFC") 

Expr.SigDiff  = ExprArray.PreProcessed[topGenes$ID,] 

Feature.Expr = cbind(topGenes[,c("logFC","adj.P.Val")], Expr.SigDiff) 

rownames(Feature.Expr) =  topGenes[,"ID"] 
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resistant, have the corresponding representative markers, which are named as 

“markers(class name)”. These markers only show “high” or “active” expression in 

these class samples, but show “low” or “silent” expression in all other classes samples. 

Therefore, the generalized expression patterns of the signature markers for “N 

classes” is defined as: a) type-I markers’ expression is significantly correlated with 

the rank of chemo-response data; b) type-II markers is the combination of over 

expression markers or under expression markers which are only significantly “over” 

or “under” expressed in the specific class i (i=1, 2, …, N) samples but significantly 

“under” or “over” expressed in all other classes (1, 2, i-1, i+1, …, N) samples. For our 

interests, we have focused on the over expression markers. 

Sensitive          Resistant 

Figure 2-3: The expression pattern of the chemo-response signature markers for 

sensitive and resistant samples 

 

 

 

High Low 

Low High 
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markers(resistant) 
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Sensitive      Medium       Resistant 

Figure 2-4: The expression pattern of type-I chemo-response makers for three 

classes: sensitive, medium and resistant samples 

 

Sensitive      Medium      Resistant 

Figure 2-5: The expression pattern of type-II chemo-response (over expression) 

markers for three classes: sensitive, medium and resistant samples 

Our next task is to build up a mathematical algorithm and implement it to 

extract both type-I and type-II signature markers for “N class” samples. The 
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expression of the type-I markers are significantly correlated, either positively or 

negatively, with the rank of response class(from 1 to N). Hence, we can use the 

correlation analysis method to develop type-I markers. Pearson product-moment 

correlation coefficient (denoted by r here) is a measure of the correlation or linear 

dependence between two variables (Eq 2-6). Another statistic metric to measure 

correlation is Spearman’s rank correlation coefficient (denoted by ρ here), which is a 

non-parametric measure of statistical dependence between two variables. It estimates 

the monotonic trends of two variables. The Spearman correlation coefficient is 

defined as the Pearson moment correlation coefficient between the ranked variables. 

We employ the correlation coefficient method to measure the correlation between the 

expression of each marker and the rank of response class. In the meanwhile, the fold 

change method is used as the preliminary criteria to ensure that the expression of the 

signature marker between two adjacent class samples, such as class j samples and 

class j+1 samples, is significantly different. After calculating the correlation 

coefficient, we performed the statistical test to select the markers which show 

significant correlation with the rank of response class. Thereafter, p-values reported 

from the statistical test and the markers with the corresponding p-values are smaller 

than the p-value cut-off, such as 0.01 or 0.05, are selected as the significant correlated 

markers. Table 2-2 lists the implementation of R scripts to calculate the correlation 

coefficient using Pearson moment correlation coefficient and Spearman rank 

correlation coefficient. Table 2-3 lists the implementation of R scripts to identify 

Type-I markers which are significantly correlated with the rank of response class for 
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three classes. As we extend the number of fuzzy clusters of the chemo-response data 

from three classes to “N(N>3)” classes, the R code should be easily modified to 

generate the significantly correlated markers. On the other side, when we degenerate 

the number of the classes from three classes to two classes, the significantly correlated 

markers should give similar results as other procedures, like t-test, SAM and Limma, 

with same FC threshold and p-value cutoff. 
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Eq 2-6 

E: expression of gene i in n samples; Y: the rank of response class from fuzzy 

classification of chemo-response data; E andY , Es and Ys are the mean and standard 

deviation of E and Y respectively. 
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Table 2-2: The implementation of R scripts to calculate Pearson moment correlation 

coefficient and Spearman rank correlation coefficient 

### Estimate the correlation coefficient between the expression of the potential marker and the 

rank of class from fuzzy classification of chemo-response data 

Correlation.ExprArray.ResponseClass = function(ExprArray,ResponseClass,Method) 

{ 

    CorrelationCoefficient = vector('numeric',length(nrow(ExprArray))) 

    PValue.test          = vector('numeric',length(nrow(ExprArray))) 

    for (i in 1:nrow(ExprArray)) 

    { 

        if (Method=="pearson" )  

        {    

              CorrelationCoefficient.ithMarker = 

cor.test(ExprArray[i,],as.numeric(ResponseClass),method="pearson") 

        } 

        if (Method=="spearman")  

        {      

             CorrelationCoefficient.ithMarker = 

cor.test(ExprArray[i,],as.numeric(ResponseClass),method="spearman") 

        }            

        CorrelationCoefficient[i] = CorrelationCoefficient.ithMarker$estimate        

        PValue.test[i]          = CorrelationCoefficient.ithMarker$p.value  

    } 

    return(list(CorrelationCoefficient,PValue.test)) 

} 
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Table 2-3: The implementation of R scripts to identify Type-I markers which are 

significantly correlated with the rank of class from fuzzy classification of the 

chemo-response data (three fuzzy classes in this instance) 

The type-II markers are basically the combination of N sets of significantly 

differentiated markers. For three classes, the type-II signature markers are the 

combination of markers(sensitive), markers(medium) and markers(resistant). Table 

2-4 lists the R scripts to develop markers(sensitive) that are only significantly 

Class  = Response.FuzzyClassification 

Class[which(Response.FuzzyClassification =="Sensitive")] = 2 

Class[which(Response.FuzzyClassification =="Medium")]  = 1   

Class[which(Response.FuzzyClassification =="Resistant")] = 0   

Class = matrix(as.numeric(Class),nrow=1) 

rownames(Class) = "Classes" 

colnames(Class) = toupper(SamplesNames) 

### Filtering with Fold Change metric 

Min.LogFC  = FC.Threshold 

Q.Expr  = vector(length=nrow(ExprArray.PreProcessed)) 

u2 = apply(ExprArray.PreProcessed[,which(Class==2)],1,mean) 

u1 = apply(ExprArray.PreProcessed[,which(Class==1)],1,mean) 

u0 = apply(ExprArray.PreProcessed[,which(Class==0)],1,mean) 

fc2_1 = u2-u1   

fc1_0 = u1-u0 

ExprArray = ExprArray.PreProcessed [which((abs(fc2_1) >= Min.LogFC)&(abs(fc1_0) >= 

Min.LogFC)),]    

### Extracting the significantly correlated genes 

PValue.Cutoff = 0.05 

Correlation = Correlation.ExprArray.ResponseClass(ExprArray,t(Class),"pearson") 

SigGene.ExprArray = ExprArray[Cor[[2]] < PValue.Cutoff,] 

Sig.Correlation = matrix(Cor[[1]][Cor[[2]]< PValue.Cutoff],ncol=1) 

colnames(Sig.Correlation) = "CorrelationCoefficient"  

GXP.Signature = cbind(Sig.Correlation, SigGene.ExprArray) 

GXP.Signature = GXP.Signature[order(Sig.Correlation,decreasing=TRUE),] 

UpDown = 

matrix(c(rep("Up",length(which(Sig.Correlation >0))),rep("Down",length(which(Sig.Correlation 

<0)))),ncol=1) 

colnames(UpDown) = "StatusOfExpression" 

GXP.Signature = cbind(UpDown,GXP.Signature) 
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over-expressed in sensitive samples, but are significantly under-expressed in both 

medium and resistant samples. Similarly, we can modify the scripts to obtain another 

two subsets of signature markers: markers(medium) are only significantly 

over-expressed in medium samples, but significantly under-expressed in both 

sensitive and resistant samples; markers(resistant) are only significantly 

over-expressed in resistant samples but significantly under-expressed in both sensitive 

and medium samples. 

 

Table 2-4: The implementation of R scripts to identify markers(sensitive) of Type-II 

markers which are significantly over-expressed in sensitive samples but 

under-expressed in medium and resistant samples (three fuzzy classes in this instance) 

### Step a: Developing marker(sensitive)：markers are significantly over expressed in sensitive 

sample but under expressed in both medium and resistant samples 

Min.LogFC  = LogFC.Cutoff 

FDR = FDR.Cutoff 

Q.Expr = vector(length=nrow(ExprArray.PreProcessed)) 

Class.S.MR = Response.FuzzyClassification 

Class.S.MR[which(Class=="Sensitive")] = 1 

Class.S.MR[which((Class=="Medium")|(Class=="Resistant"))] = 0   

Design = cbind(mean = 1, diff = as.numeric(Class.S.MR)) 

u2 = apply(ExprArray.PreProcessed[,which(Class.S.MR ==1)],1,mean) 

u1 = apply(ExprArray.PreProcessed[,which(Class.S.MR ==0)],1,mean) 

fc  = u2-u1 

FC.Expr = ExprArray.PreProcessed[which(fc>= Min.LogFC ),]   

fit1  = lmFit(FC.Expr, design) 

fit2  = eBayes(fit1) 

maxNum.probesets = min(nrow(FC.Expr),300) 

topGenes  = topTable(fit2, coef = "diff", number=maxNum.probesets, adjust.method = "BH", 

sort.by="logFC") 

SigGenes.Sensitive = topGenes[which(topGenes$adj.P.Val<FDR),] 

SigGenes.Expr = FC.Expr[SigGenes.Sensitive $ID,] 

GeneType = matrix(rep("SenGenes",nrow(SigGenes.Expr)),ncol=1) 

Feature.Expr = cbind(GeneType, SigGenes.Sensitive[,c("adj.P.Val")], SigGenes.Expr) 
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Following the example of Paclitaxel, we have clustered 52 NCI60 solid tumor 

cell lines into three fuzzy classes. We then coupled the classified chemo-response data 

with microarray data (Affymetrix U133) to develop both type-I and type-II gene 

expression signatures. With the cutoff of LogFC=0.6 and the threshold of 

p-value=0.05, the developed type-I gene signature (Figure 2-6) includes 43 

Affymetrix probesets (8 up, 35 under expressed in sensitive cell lines). This 

developed type-I gene signature show significantly correlated expression with the 

chemo-response of sensitive, medium and resistant samples. With the cutoff of 

LogFC=1 and the minimum of FDR=0.1, the type-II gene signature (Figure 2-7) 

includes 179 Affymetrix probesets (27 genes(sensitive) noted as “SenGenes”; 85 

genes(medium) noted as “MedGenes”; 67 genes(resistant) noted as “ResGenes”), that 

clearly describes the over-expression pattern in the corresponding “class” samples. 

In these two developed signature marker sets, we found that 16 genes appear 

in both type I and type II marker sets and show significant over expression in 

Paclitaxel resistant cell lines: TGM2, MYL9, IGFBP7, GSTM3, SIRPA, TIMP2,  

GNG11, UGCG, HOXB2, TFPI2, OGFRL1, TIMP2, PLEKHA2, PRKCE, C7orf29, 

IGFN1. The basic hypothesis we may form is these 16 probable genes maybe related 

with mechanism of resistance of Paclitaxel. We then performed the gene ontology 

analysis using Ingenuity Pathway Analysis (IPA) tool. As shown in Figure 2-8, the 

analysis has indicated that the mechanism of Paclitaxel resistance may be affected by 

altered drug metabolism and cellular movement. Although, researchers have 

presented the drug metabolism could inactive cytotoxic anticancer agents, like 
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Paclitaxel [117], these 16 genes may have more comprehensive roles in cell 

proliferation. In Figure 2-9, the enriched molecular network also shows that the 

protein signaling pathway is seemingly active as well. 

 

 

yellow: high value; blue: low value 

Figure 2-6: Gene expression pattern of Paclitaxel(NCI60) type-I chemo-response 

signature for three classes: sensitive, medium and resistant samples 
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yellow: high value; blue: low value 

Figure 2-7: Gene expression pattern of Paclitaxel(NCI60) type-II chemo-response 

signature for three classes: sensitive, medium and resistant samples 
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Figure 2-8: Gene ontology analysis of 16 Paclitaxel signature genes which are over 

expressed in Paclitaxel resistant cell lines (IPA content version: 11631407) 

 

Figure 2-9: Core network analysis of 16 Paclitaxel signature genes which are over 

expressed in Paclitaxel resistant cell lines (IPA content version: 11631407) 
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2.4 Test the randomness and uniqueness of the developed signature 

markers 

Before we apply the developed signature markers to predict the 

chemo-response of the anticancer agent(s), the critical questions we need to answer 

are: “Is the signature randomly present in the test data?” and “How is the uniqueness 

of the signature in the test data”? It is hard to answer these questions if we analyze the 

complex biology of the whole signature gene set. Instead, we could borrow a 

statistical metric of the correlation between two matrices known as “Mantel statistics” 

to evaluate the uniqueness of the developed signature markers in the test data. 

The Mantel test is commonly used in ecology estimate the distance between 

objects such as species of organisms. In statistics, the Mantel test[118] allows linear 

or monotonic comparisons between the elements of two distance matrices. The null 

hypothesis of Mantel test is there is no relation between the two square matrices X 

and Y. The values within each matrix (Xij or Yij) represent a relationship between 

points i and j. The relationship represented by a matrix could be a geographical 

distance, a data distance or any other conceivable data. The basic statistics of Mantel 

test is using Mantel Z metric, which is simply the sum of the products of the 

corresponding elements of the matrices: 

ij
ij

ijYXZ  Eq 2-7 

Where ∑ is the double sum over all i and all j where i ≠ j. Because Z can take any 

value depending on the exact nature of X and Y, the Mantel Z metric is usually 
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normalized to -1 to 1, as the correlation coefficient between the pair-wise elements of 

X and Y. Therefore, the Mantel metric may be interpreted as a parameter which is 

similar to correlation coefficient. The original Mantel test[118] gives unbiased test 

statistics that could reveal whether two matrices are significantly similar or not by 

randomly permuting the rows and columns of one of the matrices many times over. 

Since we have only one developed signature, the global measure of similarity of the 

expression signature and only a set of random genes will not be enough to indicate the 

uniqueness of the gene expression signature in the test dataset. Hence, we randomly 

chose many random expression signatures to evaluate the distribution of the Mantel 

metric Z estimated as the similarities between the actual expression signature and 

random expression signatures (noted as ZAR). Similarly, we can also create a baseline 

distribution of the Mantel metric Z between one random expression signature and 

another random expression signature (noted as ZRR). Thus the null hypothesis of our 

test is: 

H0:      RRAR ZZ   Eq 2-8 

Here, we rephrase both ZAR and ZRR: 

ZAR: the similarity metric between the actual expression markers set and random 

expression markers set 

ZRR: the similarity metric between the random expression markers set and another 

random expression marker set 
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After sampling large number of random signatures, with assuming both ZAR 

and ZRR follow Gaussian distribution, we test the significance of the hypothesis H0 

using simple t-test statistics. 

Table 2-3 lists the implementation of R scripts to evaluate the uniqueness of 

the developed signature makers in the test data. The Mantel Z statistics is calculated 

using “mantel.randtest” function in R package “ade4”(version 1.4-17). Figure 2-8 

depicts the uniqueness test results of Hoeflich Mek[119] gene expression signature in 

Bittner breast cancer data. The Mek gene expression signature are composed of genes 

significantly differentially expressed between transfected HRas or Mek MCF-10A 

cell lines and MCF-10A cell lines[119]. The distribution of the Mantel similarity 

between the actual Hoeflich Ras/Mek pathway signature and the sampled random 

gene signatures is significantly lower than the baseline distribution which is defined 

as the Mantel statistics metric among random gene signatures. The unique presence of 

Ras/Mek pathway signature in breast cancer tumor samples is consistent with the 

existing preclinical and clinical studies[119-121]. However, the results from 

uniqueness test of Hoeflich Ras/Mek pathway signature in NCI60 suggest that the 

Hoeflich Ras/Mek pathway signature behaves randomly in NCI60 cell lines (Figure 

2-9). This may due to the observation that basal-like breast cancer tumors cells are 

more dependent on Ras-Mek pathway activity compared with other cancer tumors. 

This is why the Hoeflich Ras/Mek pathway signature is predominantly present in 

breast cancer tumors[119]. Further studies have shown that the Mek inhibition is 

determined by elevated Ras signal and the feedback signaling of MAPK/ERK Kinase 
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(MEK)-Phosphoinositide 3-Kinase[122]. The predicted results of Hoeflich Ras/Mek 

gene signature in both datasets have shown that the pattern of the signature in Bittner 

Breast cancer data is clear: about 50% of the breast cancer samples have shown active 

Ras-Mek pathway when compared with the rest of the samples. However, the pattern 

of the signature in NCI60 cell lines is relatively very weak as only about 10-20% of 

cell lines show that the Ras-Mek pathway is active. 

 

Table 2-5: The implementation of R scripts to test the uniqueness of the signature 

markers in the test data using Mantel statistics metric 

#############################################################

### 

### test the uniqueness of gene signature in test data 

obs_vector_Actual_Rnd = vector("numeric",length=0) 

obs_vector_Rnd_Rnd    = vector("numeric",length=0) 

# The actual signature markers in test data 

exprData.bioMarker.Actual = exprData.bioMarker 

# the random signature markers in test data 

exprData.bioMarker.Rnd  = 

matrix(0,nrow=dim(exprData.bioMarker)[1],ncol=dim(exprData.bioMarker)[2]) 

exprData.bioMarker.Rnd1 = 

matrix(0,nrow=dim(exprData.bioMarker)[1],ncol=dim(exprData.bioMarker)[2]) 

for (iter in 1:n.permutation) 

 {    

     exprData.bioMarker.Rnd  = 

dataset.Matrix[sample(dim(dataset.Matrix)[1])[1:dim(exprData.bioMarker)[1]],] 

     exprData.bioMarker.Rnd1 = 

dataset.Matrix[sample(dim(dataset.Matrix)[1])[1:dim(exprData.bioMarker)[1]],] 

     # set nrepet to 10 as we are not interested in the emperical p-value of the test       

     mantel.bioMarker.Act = mantel.randtest(dist(t(exprData.bioMarker.Actual),method=Metric), 

dist(t(exprData.bioMarker.Rnd),method=Metric),nrepet=10) 

     mantel.bioMarker.Rnd = mantel.randtest(dist(t(exprData.bioMarker.Rnd1),method=Metric), 

dist(t(exprData.bioMarker.Rnd),method=Metric),nrepet=10) 

 # Aggregate the Mantel metric from a random selected genes/probesets compared to  

   # another randomly selected genes/probesets   

obs_vector_Rnd_Rnd    =  c(obs_vector_Rnd_Rnd, as.numeric(mantel.bioMarker.Rnd$obs)) 



Chapter 2 A systematic bioinformatics methodology to develop principle markers 

78 
 

 

Figure 2-10: Hoeflich Ras/Mek pathway gene expression signature is uniquely 

present in Bittner breast cancer tumor samples (p.value<0.001) 

 

Figure 2-11: Hoeflich Ras/Mek pathway gene expression signature is randomly 

present in NCI60 cell lines data (p.value=0.953) 
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Figure 2‐12: Hoeflich Ras/Mek pathway gene expression signature in Bittner Breast 

cancer datasets; samples are sorted by the predicted probability of activity using 

Bayesian Metagene projection methods[79]. 

 

Up 
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Figure 2-13: Hoeflich Ras/Mek pathway gene expression signature in NCI60 cell line 

datasets; samples are sorted by the predicted probability of activity using Bayesian 

Metagene projection methods[79]. 

2.5 Signature detection method 

After we assessed the developed signature markers that are uniquely present in 

the test data, the following step is to discover the expression pattern of the signature 

markers in the test data. The problem with these types of analyses is that the number 

of signature markers usually range between tens to hundreds. This, however, does not 

allow us to study all the markers individually in order to detect each gene’s expression 

pattern specifically. Bioinformatics algorithms that can manipulate the overall 

signature markers are needed. Generally, there are two types of methods: supervised 

Up 

Down 
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and unsupervised. By employing the unsupervised method, the patterns of the 

expression signature in the test data are inherently determined without a priori 

information. Typical algorithms include relevance networks[123, 124], hierarchical 

dendrograms and self organizing maps[125, 126], and all these algorithms require a 

metric, such as Euclidean distance, correlation coefficient or mutual information 

between the markers. The end result of unsupervised analysis of the expression 

signature in the test data is the agglomerative clusters information of samples and 

signature markers. Another type of the analysis is supervised learning. By using the 

context of signature development in the training data, parameters in the models, such 

as support vector machine (SVM)[127, 128], neural network[129] and decision 

trees[130], can be determined and then used to predict samples in the test data. 

Although the characterization of the signature expression in the test data is 

interesting, it is more important to address the issue on how much is the biological 

pattern(s) of the expression signature in the training data remained in the test data. 

Therefore, a statistical method is necessary to quantitatively measure the extent of 

how the pattern remained in the test data. The metagene methodologies have proven 

to be capable in capturing the phenotypic patterns of the expression data[131-134]. 

The concept of metagene projection was originally presented by West et al.[79], and it 

has demonstrated to be useful in predicting the expression pattern that remained in 

cross platforms[135]. West et al. also proposed a statistical method which integrated 

standard binary regression models, singular value decomposition(SVD) and metagene 

projection to measure the extent of the expression pattern of training data remained in 
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the test data. Here for simplicity, we name it as “Bayesian-SVD” method. The 

developed signature data is constructed with samples in columns and markers in rows. 

Principal components of the training data are used to compute the metagene and 

metasample values, and then form metagene signature. The expression signature in 

the test data is then projected into this metagene signature. The projected metagene 

signature retains the most information of the signature expression pattern in the test 

data. West et al.[79] used Bayesian binary probit regression model to generate the 

probability of the remaining signature pattern for two classes problem. We name the 

predicted probability of the chemo-response signature as the probability of sensitivity 

(POS) and the predicted probability of pathway or oncogene activity signature as the 

probability of activity (POA). The model was fitted to the metagene signature and 

relative probability of sensitivity (POS) or probability of activity (POA) is estimated 

to the projected metagene expression signature using the Bayesian binary probit 

regression parameters fitted from the metagene signature. When studying 

chemo-response predictor, the classes are defined as ‘0’ for resistant and ‘1’ for 

sensitive for training. Low POS scores would be suggestive of a sample being 

resistant and vice versa. When studying pathway or oncogene predictors, the classes 

are defined as ‘0’ for hypoactive and ‘1’ for hyperactive. The critical issue of 

Bayesian-SVD method is we could only use the major singular value instead of all 

non-zero singular value in the application of microarray data analysis due to the large 

scale of microarray data. The Bayesian-SVD method may lose some information in 
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the training data. Therefore, we introduce another metagene projection method as 

follows and which is named as Bayesian-NMF method. 

 

Figure 2-14: The schematic flow chart of detecting the expression signature in the 

test data using Bayesian-SVD metagene projection method. MTr: the marker genes in 

the original training dataset, MTe: the marker genes in the test dataset, FTr: metagene 

expression, FTe: projected metagene expression. 

In this dissertation, we present a novel method to detect the expression 

signatures in the test datasets by assigning the predicted probability to each sample. 

The novel computational method is based on Non-Negative Matrix Factorization 

(NMF). NMF is basically a type of an Independent Components Analysis (ICA) 

variant with the restriction(s) to positive values[136]. The feature of non-negativity of 

the decomposed matrix elements facilitates the NMF method such that it can be 

widely used in genomic data analysis[137-140]. In contrast to Principal Component 

Analysis (PCA) or Singular Value Decomposition (SVD) and other ICA-based 

methods, the negative metagene expression is inherently close to the interpretation of 
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gene or protein expression. The NMF method permits the decomposed matrix to be 

sparse and it also permits localized features[136, 139], which means that the NMF 

may capture the critical expression information of the genes, such as oncogene genes 

or tumor suppressor genes in cancer research. This feature suggests the NMF method 

is superior to the PCA and other ICA based approaches. The NMF algorithm usually 

gives local optimizations, and this seems more suitable for the biological systems 

which essentially have multiple stable points after perturbations. This framework 

combines the Bayesian regression method, the NMF method and the metagene 

projection method.  

Consider a gene expression data set consisting of the expression levels of N 

features (genes or probesets) in S samples, which represents different types of 

experiments or experiment time points. For gene expression signature, the number N 

features is typically in the hundreds, and the number S experiments is typically less 

than 100. We refer the gene expression signature datasets by an expression matrix X 

of size N by S, whose rows contain the expression levels of the N features in the S 

samples. The Non-negative Matrix Factorization decomposes the matrix X into the 

multiplication of two small sized matrices, and each of them with non-negative 

elements. The NMF method is the approximation of the positively linear 

combinations of metagene expressions, which is defined as “factor matrix”. Formally, 

the standard NMF is described as follows:  

H WNMF: X   Eq 2-8 
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X corresponds to the gene expression signature with size N by S, W is the factoring 

matrix with non-negative entities, it has size N by k, with each of the k columns 

defining a metagene or factor; entry Wij is the coefficient of gene i in metagene j. The 

loading of matrix H has size k by S, with each of the M columns representing the 

metagene expression pattern of the corresponding sample; entry Hij represents the 

expression level of metagene i in sample j.  

The NMF decomposition is usually done by an iterative updating method. The 

multiplication updating rule was proposed by Lee and Seung (1999).  
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Eq 2-9 

To enhance the sparse of the metagene expressions, Pascual-Montano et al. 

(2006) proposed a non-smooth NMF method by adding sparseness constraints to the 

Lee and Seung’s NMF procedure. Mathematically, Pascual-Montano et al. defined a 

“smoothing” matrix S, which is a positive symmetric matrix with the size q by q. 

  TVV
q

IS 111
 

 
Eq 2-10 

Where I is the identity matrix, V1 is a vector of ones and the parameter  represent 

the sparseness, which satisfies 10   . Therefore, the Non-smooth Nonnegative 

Matrix Factorization model was defined as: 

HS WnsNMF: X   Eq 2-11 

The nsNMF method can be quickly implemented by following Lee and 

Seung’s updating rule. Correspondingly, in the update equation for H, substitute W 

with WS and in the update equation for W, substitute H with SH. Table 2-4 lists the 

detailed implementation of NMF algorithm with Lee and Seung’s multiplicative 

updating rule.  
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Figure 2-15: The schematic flow chart of detecting the expression signature in the 

test data using Bayesian-NMF metagene projection method. MTr: the marker genes in 

the original training dataset, MTe: the marker genes in the test dataset, HTr: metagene 

expression, HTe: projected metagene expression. 

Figure 2-15 depicts the flow chart of using Bayesian-NMF metagene 

projection method to detect the expression signature in the test data. Figure 2-16 and 

Figure 2-17 describe the detection results of Bild Ras[141] oncogene activity 

signature in Ding lung[142] primary tumor and Bhattercharjee Lung[143] primary 

tumor data respectively. Both shows AUC is significantly greater than 0.5 when 

comparing the predicted activity of Ras activity in K-Ras mutants and wild type 

samples, which indicate that the presented Bayesian-NMF metagene projection 

method is able to detect the expression signatures in an unbiased way. In order to 

compare the performance of the Bayesian –NMF method, Figure 2-18 depicts the 

detection results of Bild Ras[141] oncogene activity signature in Bhattercharjee 

Lungprimary tumor data using Bayesian-SVD method. The Bayesian-NMF method 

shows very similar detection results with Bayesian-SVD method in terms of AUC 

metric. Although the example shown here reflects only two class problems, the 

dimension of the NMF decomposed matrix can be three or more, based on the 
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response class information and the optimal solution from NMF algorithm. Therefore, 

this method can be applied to multiple class problems as well. 
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Table 2-6: R scripts of the implementation of NMF algorithm (Lee and Seung’s 

updating rule) 

### NMF algorithm: Lee and Seung’s updating rule 

NMF = function(M,r) 

{   # M is the original matrix for factorization;  r is the lower dimension and r < 

min(nrow(M),ncol(M)) 

    connect   = min(50,nrow(M))  # converge condition 1 

    tol.converge = 1.0e-6           # converge condition 2 

    tol = 1.0e-8                    # small positive number 

    # Initialize factorization matrices W,H 

    n.row = nrow(M);  n.col = ncol(M);  r = min(r,n.row,n.col) 

    mean.M =sqrt(mean(M));   sd.M = mean(sd(M)) 

    nmf.M = list() 

    W0 = matrix(runif(n.row*r),n.row,r);     H0 = matrix(runif(r*n.col),r,n.col)      

   Flag = 1;  Iter = 1;  Obj = NULL 

    while(flag==1) 

    {    H0[H0<0] = tol;  W0[W0<0] = tol 

        # Compute new W and H (Lee and Seung) 

        W1 =W0*(M%*%t(H0)/(W0%*%H0%*%t(H0)+tol)) 

        H1 = H0*(t(W1)%*%M/(t(W1)%*%W1%*%H0+tol))         

        # Renormalize so rows of H have constant energy 

        norms = sqrt(apply(H1^2,1,sum)) 

        H1   =  H1/matrix(rep(norms,n.col),ncol=n.col);   W1  =  

W1*t(matrix(rep(norms,n.row),nrow=r))         

        order.W1 = order(W1,decreasing=T);       order.H1 = order(H1,decreasing=T)         

        order.W0 = order(W0,decreasing=T);       order.H0 = order(H0,decreasing=T) 

        sum.obj0 = sum(abs(M-W0%*%H0));       sum.obj1 = sum(abs(M-W1%*%H1)) 

        if 

(((sum(abs(order.W1[1:connect]-order.W0[1:connect])))==0)&((sum(abs(order.H1-order.H0)))=

=0) &(abs(sum.obj0-sum.obj1)<1.0e-3)) 

        {    abs.H.dif   = abs(H1-H0) 

             order.H.dif = order(abs.H.dif,decreasing=T) 

             if (((abs.H.dif[order.H.dif[1]]/H1[order.H.dif[1]])<tol.converge)& 

               ((abs.H.dif[order.H.dif[2]]/H1[order.H.dif[2]])<tol.converge)& 

               ((abs.H.dif[order.H.dif[3]]/H1[order.H.dif[3]])<tol.converge)) 

               {    flag = 0;        print('NMF is converged!')     }      }          

        W0  = W1;         H0 =  H1 

        Iter  =  Iter+1 

        Obj  = c(Obj,sum.obj1)   }  

        SSE = sum((M-W1%*%H1)^2) 

        nmf.M$W = W1;    nmf.M$H  = H1 

        nmf.M$SSE = Obj;  nmf.M$Iteration = Iter 

        return(nmf.M)   } 
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sd.AUC: Standard deviation of AUC estimate, p.val: Probability (null hypothesis: the 

expression signature is non-informative) 

Figure 2-16: Receiver Operating Characteristic (ROC) curve of detecting Ras 

pathway expression signature in Ding Lung[142] primary tumor data using 

Bayesian-NMF method. In ROC plot, samples with K-Ras mutation and K-Ras wild 

type were compared, AUC=0.75±0.08.  

 

 

 

 



Chapter 2 A systematic bioinformatics methodology to develop principle markers 

90 
 

 

sd.AUC: Standard deviation of AUC estimate, p.val: Probability (null hypothesis: the 

expression signature is non-informative) 

Figure 2-17: Receiver Operating Characteristic (ROC) curve of detecting Ras 

pathway expression signature in Bhattercharjee Lung[143] primary tumor data using 

Bayesian-NMF method. In ROC plot, samples with K-Ras mutation and K-Ras wild 

type were compared, AUC=0.67±0.06. 
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sd.AUC: Standard deviation of AUC estimate, p.val: Probability (null hypothesis: the 

expression signature is non-informative) 

Figure 2-18: Receiver Operating Characteristic (ROC) curve of detecting Ras 

pathway expression signature in Bhattercharjee Lung[143] primary tumor data using 

Bayesian-SVD method. In ROC plot, samples with K-Ras mutation and K-Ras wild 

type were compared, AUC=0.68±0.07. 

2.5 Summary 

We have reviewed a couple of methods to develop expression signature 

markers for two class problems. By suggesting a concept of fuzzy classification, it is 

very necessary to develop expression signature markers for three and more classes. 

Hence, two types of expression signature markers are proposed, and the 

corresponding development methods are also presented. The expression signature 

may be randomly and no uniquely present in the test data; therefore, we suggested a 
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computational method by borrowing a statistic metric of measuring a similarity of two 

matrices to evaluate the uniqueness of the signature in the test data. Lastly, in order to 

detect the signature in a more robust way, we proposed a novel framework that we 

call the Bayesian-NMF metagene projection method. The overall methodology of 

expression signature development, uniqueness test, and detection is systematic and 

robust.  
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Chapter 3 Identifying minimal marker sets 

for clinical translation 

3.1 Introduction 

In chapter 2, we proposed a systematic bioinformatics methodology to develop 

the principle expression chemo-response markers, by which the markers, based on 

say, gene expression, microRNA etc., are significantly differentiated between two 

class samples, or are correlated with multiple class samples that can be identified and 

utilized to predict agents’ chemo-response in independent cancer data. These 

signature markers that correlate with a phenotype of interest have shown to play very 

important roles in cancer research and clinical prognosis[144-168]. However, it is still 

very challenging to move multiple-gene signature into clinical application, the efforts 

for assay development, optimization and further in-vitro, in-vivo, and clinical 

validations many take a lot of time and resources. Therefore, narrowing down the 

multiple gene/protein signature from tens to hundreds of markers to a minimal gene 

marker set (<10) or even a single gene marker is usually requested and welcomed by 

clinicians.  

Since cancer is driven by the alterations of various cell signaling, cellular and 

physiological processes, it is essential to systematically understand the corresponding 

heterogeneous genomic biology of the expression markers, such as mutations, copy 

number variation or methylation, and regulations between transcripts or proteins and 
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miRNAs. One type of integrated analysis of genomic data is the meta-analysis, which 

is an analysis often applied to multiple similar datasets in clinical practice to classify 

tumor types and identify robust prognosis markers[169-172]. In order to narrow down 

the multiple-gene signature rigorously, it is essential to decode the over or under 

expression for each expression marker, such as transcripts or proteins, using the 

corresponding sequence genomics data, copy number variation, methylation data and 

miRNA data. Recently, there have been a number of integrated genomic analyses 

between gene expression profiling and DNA copy number variation, gene mutation, 

DNA methylations, microRNA expression and protein expression have been 

reported[173-181]. 

Beyond the various types of integrated analysis that have been applied in 

cancer data, a range of computational models have also been suggested. The most 

popular method is the correlation coefficients, which is applied to integrate DNA 

copy number and gene expression[182, 183], and methylation and gene 

expression[184] etc. The correlation based method captures simple pair wise relations 

of one type of genomic aberrations and its effect on the expression of the marker, but 

this may limit the understanding of the whole picture. Relating multiple genetic 

aberrations information with phenotypic expression helps to better comprehend the 

mechanism of cancer phenotypes. Therefore, a coherent model that combines 

different types of genetic aberration data is inevitably needed. The coherent model is 

expected to optimize the number of signature markers by identifying the most 

representative marker, enabling it to shift quickly into clinical applications. 



Chapter 3 Identifying minimal marker sets for clinical translation 

95 
 

3.2 Integrated genomic analysis using linear model 

We propose a mathematical model to describe how genetic aberrations change 

the expression of the each single signature marker. Let iy  the expression of the 

signature marker i, such as gene expression or protein expression, and its value is 

numeric (log2 transformed signal); iMu is the mutation of marker gene i and its value 

is integer with -1 for frame shift deletion or homozygous deletion, 0 for wild type and 

1 for point mutation or other types of activation mutation; iCNV  is the DNA copy 

number of gene i and its value is numeric with or without normalized by the HapMap 

reference value; iMe is the methylation of gene (or promoter) i and its value is 

between -1 to 0. Recall the Eq 1-1 introduced in chapter 1, we obtain 

 iiii Me,MuCNVfy ,  Eq 3-1 

 Consider the combinational effects of copy number variation, mutation and 

methylation is linear, then 

0,,,, 32103210  aaaaMeaCNVaMuaay iiii  Eq 3-2 

By using linear programming techniques, we could identify the genes whose 

expressions are significantly driven by genomic aberration. For example, here we 

chose CDKN2A as the example to study this model. CDKN2A is one of the marker 

genes from our generated Paclitaxel chemo-sensitivity gene signature and it has 

known role as a biomarker for G2M anticancer agents[185]. Therefore, CDKN2A 

could be one of the most representative single gene maker to reflect the 

chemo-response of Paclitaxel in NCI60 data. Figure 3-1 describes CDKN2A gene 
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expression relates to the mutation and methylation. According to the plot, CDKN2A 

homozygous mutation samples show a very low expression of CDKN2A and wild 

type samples with low methylation show a very high expression. Figure 3-2 depicts 

the CDKN2A mRNA expression and the coded protein p16 expression; both of them 

are highly correlated except the wild type samples with high methylation, which tend 

to show significant low expression. Table 3-1 lists the detailed gene expression data 

of CDKN2A (Affymetrix U133(A&B) array, log2-transformed MAS5), and the 

genetic information which include mutation (COSMIC database v52), DNA copy 

number variation and CpG island methylation data (CellMiner v1.0). Table 3-2 lists 

the estimated parameters for CDKN2A gene fitted in model Eq 3-2. According to the 

statistical analysis, it is obvious that both CDKN2A mutation and CpG island 

methylation significantly affect the gene expression of CDKN2A gene. 

Cell Line Classes mRNA Mut CNV Me.CpG AA Change 

SK_MEL_2 Sensitive 10.13 0 -0.5 0.4 WT 

LOXIMVI Sensitive 8.17 -1 -1.03 0 p.M1_ *157del 

SW620 Sensitive 11.89 0 -0.09 0.89 WT 

NIH.OVCAR_3 Sensitive 12.96 0 0.69 0 WT 

NCI_H522 Sensitive 12.78 0 0.24 0 WT 

MDA_MB_435 Sensitive 11.04 1 0.61 0 p.? 

HCT_116 Sensitive 10.54 1 -0.13 0.57 p.R24fsX20 

HCC_2998 Sensitive 12.04 0 0.25 0 WT 

SNB_75 Sensitive 11.74 0 -0.49 0 WT 

NCI_H460 Sensitive 7.04 -1 -0.83 1 p.? 

MCF7 Sensitive 9.03 -1 -0.04 0 p.M1_ *157del 

M14 Sensitive 10.22 1 0.88 0 p.? 

OVCAR_8 Sensitive 11.88 0 0.62 0 WT 

KM12 Sensitive 12.62 0 0.58 0.84 WT 
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UACC_62 Sensitive 7.52 -1 -0.57 0 p.M1_ *157del 

NCI_H322M Sensitive 6.61 0 -1.22 1 WT 

PC_3 Sensitive 11.84 0 -0.39 0.89 WT 

U251 Sensitive 7.37 -1 -1.17 1 p.M1_ *157del 

COLO_205 Medium 10.56 0 0.12 0.96 WT 

A549 Medium 8.24 -1 -0.7 1 p.M1_ *157del 

SF_539 Medium 12.08 0 0.69 0 WT 

HS578T Medium 5.13 -1 -0.19 1 p.M1_ *157del 

SK_OV_3 Medium 8.34 -1 -1.64 0 p.? 

DU_145 Medium 13.41 1 0.06 0 p.D84Y 

SK_MEL_5 Medium 7.93 -1 -1.48 0 p.M1_ *157del 

RXF_393 Medium 7.17 -1 -1.65 0 p.M1_ *157del 

BT_549 Medium 13.58 0 0.53 0 WT 

SNB_19 Medium 7.26 -1 -0.32 1 p.M1_ *157del 

HOP_62 Medium 6.11 -1 -0.11 1 p.M1_ *157del 

SN12C Medium 12.93 0 -0.2 0 WT 

IGROV1 Medium 9.27 0 -0.32 0 WT 

OVCAR_5 Medium 7.09 -1 -1.45 0 p.M1_ *157del 

SF_295 Medium 6.88 -1 -0.44 1 p.M1_ *157del 

MDA_MB_231 Medium 5.98 -1 -0.31 1 p.M1_ *157del 

X786_0 Medium 5.34 -1 -0.98 1 p.? 

SF_268 Medium 4.56 -1 -1 1 p.M1_ *157del 

A498 Resistant 7.58 -1 -1.36 1 p.M1_ *157del 

T47D Resistant 10.25 0 0.14 0.9 WT 

TK_10 Resistant 12.26 0 -0.02 0.81 WT 

UACC_257 Resistant 10.80 0 -0.27 0 WT 

CAKI_1 Resistant 6.82 -1 -0.71 0 p.M1_ *157del 

HOP_92 Resistant 9.94 -1 -0.1 0 p.M1_ *157del 

MALME_3M Resistant 6.38 -1 -0.79 0 p.M1_ *157del 

SK_MEL_28 Resistant 10.97 0 -0.64 0 WT 

HCT_15 Resistant 6.65 0 0.64 1 WT 

EKVX Resistant 10.81 0 0.11 0.85 WT 

NCI_H226 Resistant 7.36 -1 0.85 0 p.? 
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UO_31 Resistant 8.16 -1 0.6 0 p.M1_ *157del 

NCI_ADR_RES Resistant 13.62 0 0.58 0 WT 

ACHN Resistant 6.71 -1 -1.61 0 p.M1_ *157del 

OVCAR_4 Resistant 11.55 0 -0.14 0 WT 

Table 3-1: Gene expression, mutation, DNA copy number variation and CpG 

methylation of CDKN2A. 

 
Figure 3-1:  Jitter plot of the expression of CDKN2A gene (Affymetrix U133A&B 

array) and the genomic aberrations 
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Figure 3-2:  CDKN2A gene expression (Affymetrix U133A&B array) and CDKN2A 

coded protein expression, p16 with the genomic aberrations 

 

Parameters Estimate SE t-value P-value 

Intercept 11.05 0.31 35.40 <2e-16 

Mut 2.33 0.43 5.39 2.22e-06 

CNV 0.76 0.38 1.99 0.053 

Me.CpG 1.43 0.49 2.92 0.0054 

Table 3-2: Model parameter estimated for CDKN2A gene in the Paclitaxel type-II 

gene signature 

3.3 CDKN2A as the single gene marker for Paclitaxel  

We have identified that CDKN2A has sufficient preliminary criteria to be a 

single gene marker via integrated genomic analysis of gene expression, mutation, 

DNA copy number variation and methylation. We therefore can evaluate the actual 

performance of CDKN2A as a single gene marker of Paclitaxel. Firstly, we plotted 

the jitter plot (Figure 3-1) for CDKN2A expression in 51 NCI60 solid tumor cell lines. 
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As expected, the Paclitaxel sensitive samples show an over-expression of CDKN2A. 

Interestingly, the expression of resistant samples is higher than the medium samples. 

This is understandable, since the original signature is the combination of three sets of 

significantly differentiated genes. Since the GI50 of Paclitaxel sensitive samples is 

10-fold less than the GI50 of Paclitaxel resistant samples, it would be more 

meaningful to assess the predicted ability of CDKN2A to Paclitaxel sensitive and 

resistance. Figure 3-3 depicts the AUC plot to use CDKN2A gene expression to 

predict Paclitaxel sensitive and resistant chemo-response pattern. AUC=0.64 seems 

indicate the CDKN2A is only a weak single gene predictor of Paclitaxel 

chemo-response. 
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Figure 3-3:  Jitter plot of the expression of CDKN2A gene (Affymetrix U133A&B 

array) in the corresponding Paclitaxel chemo-response classes 
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Figure 3-4: AUC plot of the expression pattern of CDKN2A in Paclitaxel sensitive 

and Paclitaxel resistant samples 

3.3 General strategies to propose minimal marker sets for 

clinical translation 

The integrated analysis identified the principle expression markers may 

potentially applicable in clinical translation since the expression pattern of each 

marker can be well explained by the related genomic aberrations. Specifically, N-gene 

marker may be requested in the clinical applications. Therefore, we suggest three 

general strategies to narrow down multiple gene signature markers to N-gene marker. 

• Strategy-I: Use the gene markers with the gene or protein expression are well 

explained by the heterogeneous genomic biology using integrated genomic data 

analysis 
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• Strategy-II: Use the combination of N-gene marker set which gives minimal 

misclassification rate 

• Strategy-III: Strategy-I + Strategy-II 

Strategy-I is the aggregation of N genes, such as CDKN2A, whose expression 

are significantly affected by the corresponding gene mutation, CpG island 

methylation and DNA copy number of variation. 

Strategy-II is using a searching algorithm to identify the best combination of N 

genes which gives the minimal misclassification rate. When handling chemo-response 

gene expression signature, a multinomial probit regression model is usually employed 

to assign a predicted probability of each response class for each sample. Consequently, 

the predicted accuracy and error rate is estimated. Table 3-3 depicts the possible 

3-gene marker for Paclitaxel type-II gene signature. According to the table, the best 

combination of 3-genes gives the minimal error rate 0.18 using multinomial probit 

regression. This is done using R package “vbmp” version 1.20.  

Gene 1 Gene 2 Gene 3 Error Rate 

231067_s_at 202685_s_at 204780_s_at 0.18 

203323_at 202685_s_at 204584_at 0.20 

211980_at 228107_at 202897_at 0.22 

214247_s_at 213906_at 204086_at 0.269 

222802_at 202685_s_at 218537_at 0.288 

… … … … 

Table 3-3: The combination of 3 genes marker (Strategy-II) narrowed down from the 

Paclitaxel type-II gene signature 

Strategy-III is the combination of Strategy-I and Strategy-II, which means a 

part of the marker genes are selected from Strategy-I and another part of the marker 
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genes are selected using Strategy-II. For example, if P (P<N) genes are identified by 

integrated genomic analysis and are requested to move into clinical for further 

validation, but the prediction performance is not good, strategy-II can be then 

followed to identify another Q (Q=N-P) genes and the combined N (P and Q) genes 

are expected to give a improved prediction accuracy than P genes. Table 3-4 describes 

the identified 3-gene marker included CDKN2A(209644_x_at) gene for Paclitaxel 

type-II gene signature. The best 3-gene marker (Include CDKN2A) gives error rate 

0.228 that is slightly lower than the error rate reported by 3-gene marker using 

strategy-II. 

Gene 1 Gene 2 Gene 3 Error Rate 

209644_x_at 222108_at 223622_s_at 0.228  

209644_x_at 222108_at 201850_at 0.268  

209644_x_at 202686_s_at 201850_at 0.268  

209644_x_at 202685_s_at 204780_s_at 0.327 

209644_x_at 201951_at 201850_at 0.327  

… … … … 

Table 3-4: The combination of 3 genes marker (Strategy-III) narrowed down from the 

Paclitaxel type-II gene signature 

3.4 Summary and discussions 

In order to narrow-down the size of multiple-marker signature to a small 

number(<10) of signature markers, we have suggested an integrated genomic analysis 

mathematical model to understand how the genetic aberrations regulate the 

phenotypic expression of the marker gene. CDKN2A is selected as the single gene 

marker of Paclitaxel, as it shows that its gene expression is significantly affected by 

mutation and CpG island methylation. However, the AUC analysis has indicated that 
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this single gene predictor is only a weak predictor. Although the single marker 

predictor can be quickly adopted into clinical practices, it may show poor 

predictability when compared with multiple-marker predictors. Alternatively, we 

suggested three general strategies to identify N-gene (N<10) marker for clinical 

translations. 
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Chapter 4 A genomic signature to 

characterize concordant response among 

chemotherapeutics 

4.1 Introduction 

Cancers are complex and heterogeneous diseases characterized by the 

uncontrolled growth and spread of abnormal cells[186]. One of the most commonly 

used treatment option for cancer patients is the treatment with an appropriate 

chemotherapeutic agent or agents. However, one of the biggest challenges associated 

with chemotherapy is that patients with similar histopathology do not consistently 

respond the same way to the same agent. Optimizing the choices of anticancer therapy 

for individual patients using translational research methods is an key challenge to 

clinical practice[187-189]. For our usage, we adopt the definitions for “translational 

science” and “translational medicine” mean “new knowledge, mechanisms and 

techniques generated in basic science research and clinical research that are 

effectively translated into new approaches for prevention and diagnosis, or new 

treatment methods for better healthcare”[190].  

Molecular markers are well recognized as powerful translational tools that 

provide guidance for chemotherapy treatment in a clinical setting. Molecular markers 

may include: a) the gene targets themselves in the case of targeted agents; b) the 

activity of the targeted pathways; and c) genes only indirectly related with the agents 
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or targeted pathway. The drug targets themselves are the most important markers for 

targeted anticancer agents. For example, patients with Her2 amplification show 20% 

higher response rate to Herceptin than patients with HER2 normal copy number[72, 

73]. In addition, the activity of a targeted pathway may also serve as a marker for a 

drug’s clinical response. For example, patients whose tumors contain activating 

mutations in KRas show worse response than patients with wild type KRas to 

Cetuximab and Panitumumab, which are fully human monoclonal antibodies specific 

to the epidermal growth factor receptor (EGFR). This is because an activating KRas 

mutation will lead to constitutively active downstream signaling of the pathway, 

rendering EGFR inhibition ineffective[74, 191]. In addition to drug targeted genes 

and targeted pathways, there are also some molecular markers that are not directly 

related with the targeted pathway. For example, ABCB1, TOP2A, and BCL2 are 

candidates of predictive markers used to predict the response to cytotoxic 

chemotherapy in breast cancer[76]. 

Many anticancer agents, such as cytotoxic drugs that are used to treat different 

cancers, have variable outcomes in patients. For example, only about 20% of patients 

with breast cancer respond therapeutically to the widely used drug taxane (Paclitaxel 

or Docetaxel) [192]. Chemotherapy agents – especially cytotoxic drugs – also cause 

unwanted side effects. Cytotoxic drugs work by killing cells which are dividing, and 

so some non-cancerous cells can be damaged by their action. Since the response rate 

is often low and toxicity is often high, combinations of a cytotoxic drug and other 

chemotherapeutic agents have been developed. Some combinational treatments have 
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become the standard first line treatment in clinical use. Typical examples include 

patients with breast cancer who may be given the “TFAC” (Paclitaxel(T), 

5-Fluorouracil(F), Adriamycin(A) and Cyclophosphamide(C)) treatment, DC 

(Docetaxel and Cyclophosphamide) treatment, or FAC (5-Fluorouracil, Adriamycin 

and Cyclophosphamide) treatment in the neo-adjuvant setting. However, there are two 

challenges which may limit the application of multidrug combinations. First, 

combinations of multiple drugs have increased toxicity over individual agents. The 

administration of ineffective chemotherapy agents in combination regiments with 

relatively higher efficacy rates may increase the probability of side effects and 

decrease the quality of life for many cancer patients. Second, many tumors develop 

multidrug resistance (MDR) to multiple chemotherapy agents. This affects patients 

with a wide variety of blood cancers and solid tumors, including breast, ovarian, lung, 

and lower gastrointestinal tract cancers. Chemotherapy kills drug-sensitive cells, but 

leaves behind a higher proportion of drug-resistant cells. As the tumor begins to grow 

again, chemotherapy may fail because the remaining tumor cells are now resistant. 

MDR has been found to be correlated to the presence of ATP-binding cassette 

transmembrane transporter superfamily proteins, like P-glycoprotein, which may 

expel chemotherapy drugs from the interior of the cell[193]. 

What is needed, therefore, is a way of predicting the response of the cancer 

using molecular markers to a treatment (single agent or a multidrug combination) 

before administering chemotherapy. Such a rational approach to chemotherapy would 

prevent patients from having to undergo chemotherapy treatments that will not have a 
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clinically beneficial outcome. Over the last decade, the use of gene expression 

profiling has changed our understanding of cancer biology and raised the prospect of 

stratifying patients by predicting response to chemotherapy based on gene expression 

signatures. Recent research work has shown that the response in pre-clinical materials 

such as immortalized cell lines can be used to generate genomic signatures (from 

microarray gene expression data) that are predictive of response to a single drug[194]. 

The ultimate purpose of our study is to use preclinical material data to 

establish a systematic framework of anticancer combinations which may be 

effectively administrated to cancer patients. Using a translational genomic method 

similar to previous work[195], we develop genomic signatures for predicting response 

to cytotoxic agents and assess the prediction results of the signature in cell lines and 

patient tumor samples. The preclinical material includes cell lines and assay data from 

NCI-DTP (http://dtnci.nih.gov/) as well as primary human tumor derived explants 

from Oncotest (Germany)[7, 196], that has established a large collection of primary 

human tumor xenografts growing subcutaneously in nude mice. The primary 

xenografts retain many of the characteristics of the parental patient tumors including 

histology and sensitivity to anticancer drugs and to a high extent recapitulate the 

response of the donor patient to standard anticancer drugs[7]. Furthermore, an in vitro 

tumor clonogenic assay (TCA; inhibition of colony formation ability of cells that 

show anchorage independent growth in soft agar) performed on explant material 

derived from the in vivo models is highly predictive of in vivo response)[7, 196].  
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Predictive biomarkers of response to a particular agent may be difficult to 

distinguish from prognostic biomarkers that predict the outcome of the general 

treatment in a clinical setting, especially when that agent is used in combination. 

Using preclinical assays of sensitivity and translating genomic signatures to predict 

clinical response may partly address this challenge, while raising additional 

challenges of imperfect preclinical models. We hypothesized that the ability to predict 

response with high specificity for individual chemotherapeutic cytotoxic agents may 

be hampered by concordant chemo-sensitivity or chemoresistance in preclinical 

models. In this study, through an integrated analysis of basal microarray expression 

data and preclinical response, we identified a 168 gene expression signature for 

concordance of chemotherapeutic sensitivity. We first define the concordance of 

chemotherapeutics among 14 selected cytotoxic Standard of Care (SOC) anticancer 

agents. We then characterize the concordance of chemotherapeutics using a gene 

expression signature with robust in vitro validation using an independent data set. We 

next detect the developed signature to be present in the clinical patients who were 

treated with (TFAC) combination. This signature of concordant chemotherapeutics 

also shows a prognostic value to identify long survival patient groups in breast cancer 

and lung cancer. 
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4.2 Results 

4.2.1 Concordant chemotherapeutics across 14 cytotoxic agents  

The starting point of this study is the observation of chemotherapeutic 

response in the established in vitro tumor models, such as breast, ovarian, colon, 

renal, lung, prostate, and melanoma cancers. We focused on two independent in vitro 

drug sensitivity datasets and explored the patterns of concordant sensitivity that arise 

within them. The NCI-DTP has evaluated more than 10,000 compounds for evidence 

of the ability to inhibit cancer cell growth using a sulforhodamine B (SRB) assay in 

60 human tumor cell lines. Oncotest has investigated the inhibition of anchorage 

independent growth activity of over 100 anticancer agents using an in vitro Tumor 

Clonogenic Assay (TCA) in more than 200 tumor explant models. In this study, we 

analyze in vitro NCI’s SRB assay drug sensitivity data in 54 cancer cell lines (we 

exclude leukemia cell lines) and Oncotest’s TCA drug sensitivity data in 52 solid 

tumor explant models on 14 anticancer cytotoxic agents (Table 4-1). The selected 

tumor types in two datasets are similar – both include breast, colon, lung, melanoma, 

ovarian and renal cancers – but none of the individual models appears in both data 

sets. Leukemia cell lines and explant models are excluded in the study as they have 

previously demonstrated elsewhere to show high sensitivity to multiple agents in 

NCI60 data[197], whereas other tumor types are seen to show divergent response to 

multiple agents in both datasets. 
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Cytotoxic Agents Types 

CCNU Alkylating/alkylating-like 

Cisplatin Alkylating/alkylating-like 

Oxaliplatin Alkylating/alkylating-like 

FU Antimetabolites 

Gemcitabine Antimetabolites 

Doxorubicin Cytotoxic/antitumor antibiotic 

Mitoxantrone Cytotoxic/antitumor antibiotic 

Docetaxel Spindle poisons/mitotic inhibitors 

Paclitaxel Spindle poisons/mitotic inhibitors 

Vinblastine Spindle poisons/mitotic inhibitors 

Vincristine Spindle poisons/mitotic inhibitors 

Etoposide Topoisomerase inhibitors 

Irinotecan Topoisomerase inhibitors 

Topotecan Topoisomerase inhibitors 

Table 4-1: 5 types of standard of care chemotherapy agents included in the study are: 

alkylating/alkylating-like(3), antimetabolites(2), antitumor antibiotic(2), spindle 

poison/mitotic inhibitor(4) and topoisomerase inhibitor(3) 

In order to identify the pattern of in vitro chemo-response for 14 anticancer 

cytotoxic agents, we classified the samples into three classes for each agent: Sensitive, 

Medium and Resistant. The chemo-response data (GI50 and IC50) is negatively 

log-transformed (NLog) and discretized into three levels using an agglomerative 

clustering method. This “discretization level coalescence” method incrementally bins 

the number of discretization levels for the chemo-response data of each agent while 

minimizing the loss of total mutual information between the agents[198]. In this case, 

only 5% of mutual information was lost. We then define a Concordance Rate to 
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represent the concordance of chemotherapeutics within a class for each sample across 

all 14 cytotoxic agents. The Concordance Rate (Sensitive) is defined as: 
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Eq 4-1 

Similarly, we define Concordance Rates for the Medium and Resistant classes.  

We next performed the analysis of estimated concordance rate for both 

NCT-DTP and Oncotest drug sensitivity data in the selected anticancer cytotoxic 

agents. The analysis of concordance rates based on 54 NCI human cell lines for 14 

cytotoxic agents reveals that 8/54(15%) of cell lines show a Concordance 

Rate(Sensitive) of 67% or higher, including 1 breast (MCF7), 1 CNS (SF_539), 1 

colon (HCT116), 2 melanoma (LOXIMVI, UACC_62), 1 non-small cell lung cancer 

(NCH_H460) and 1 prostate (DU_145). 7/54 (13%) of cell lines show a Concordance 

Rate(Resistant) of 67% or higher, including include 1 melanoma (SK_MEL_2), 2 

non-small cell lung cancer (NCI_H322M, EKVX), 2 ovarian ( OVCAR_4, 

OVCAR_5) and 2 renal (UO_31, TK_10). The difference of NLogGI50 between 

concordant sensitive samples and concordant resistant samples represent more than 

10-fold differences in sensitivity. For example, the median of NLogGI50s of 

concordant sensitive cell line NCI_H460 among 14 cytotoxic agents is 8.07, while the 

median of NLogGI50s of concordant resistant cell line TK_10 is only 5.89. 

The analysis of concordance rates based on 52 Oncotest explant models in 

TCA for 14 cytotoxic agents shows that 8/52(15%) samples with a Concordance Rate 

(Sensitive) of 67% or higher, including 1 breast (MAXF_401), 1 multiple myeloma 
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(MMXF_L363), 3 non-small cell lung cancer (LXFL_1121, LXFA_983, 

LXFE_1422), 1 prostate (PRXF_22RV1LX), 1 bladder (BXF_1218) and 1 uterine 

(UXF_1138LX). 8/52 (15%) samples show a Concordance Rate (Resistant) of 67% or 

higher, including 1 colon (CXF_975), 3 non-small cell lung cancer (LXFA_289, 

LXFA_1041, LXFA_297), 3 ovarian (OVXF_899, OVXF_550, OVXF_1023) and 1 

renal (RXF_423). The most sensitive sample, UXF_1138LX, shows a median 

NLogIC50 of 8, which is almost 1,000 fold over the most resistant sample LXFA_289 

with a median NLogIC50 of only 5. Figure 4-1 and Figure 4-2 depict the normalized 

chemo-response data of NCI-DTP and Oncotest respectively with the concordant 

sensitive and concordant resistant samples to 14 cytotoxic agents.  
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Table 4-2: Summary of concordant sensitive and concordant resistant cell 

lines/explants in NCI60 and Oncotest for 14 anticancer agents. 15 NCI-DTP cell lines 

show >67% concordance rates and 16 Oncotest models show >67% of concordance 

rates. 

 

NCI60 Tissue 
Concordance 

Rate (%) 
Oncotest Tissue 

Concordance 

Rate (%) 
Classes 

MCF7 Breast 100 LXFL_1121 Lung 85 Sensitive 

SF_539 CNS 86 LXFA_983 Lung 82 Sensitive 

HCT_116 Colon 71 BXF_1218 Bladder 79 Sensitive 

LOXIMVI Melanoma 93 LXFE_1422 Lung 77 Sensitive 

UACC_62 Melanoma 78 UXF_1138LX Uterine 77 Sensitive 

NCI_H460 Lung 93 PRXF_22RV1LX Prostate 71 Sensitive 

DU_145 Prostate 92 MAXF_401 Breast 67 Sensitive 

X786_0 Renal 69 MMXF_L363 Multi-Myeloma 67 Sensitive 

SK_MEL_2 Melanoma 71 LXFA_289 Lung 67 Resistant 

NCI_H322M Lung 71 RXF_423 Renal 71 Resistant 

EKVX Lung 93 OVXF_899 Ovarian 73 Resistant 

OVCAR_5 Ovarian 71 OVXF_550 Ovarian 73 Resistant 

OVCAR_4 Ovarian 71 LXFA_1041 Lung 75 Resistant 

UO_31 Renal 71 LXFA_297 Lung 75 Resistant 

TK_10 Renal 93 CXF_975 Colon 82 Resistant 

   OVXF_1023 Ovarian 92 Resistant 
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red: positive, white: zero, blue: negative 

Figure 4-1: Concordant chemotherapeutics is observed in NCI-DTP 60 cell lines’ 

screening data in SRB assay for 14 cytotoxic agents 
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red: positive, white: zero, blue: negative 

Figure 4-2: Concordant chemo-sensitivity is observed in Oncotest explants’ screening 

data in TCA for 14 cytotoxic agents 

4.2.2 A novel gene expression signature to characterize concordance 

of chemotherapeutics 

From the NCI-DTP drug sensitivity data, we used the 15 cell lines with ≥67% 

Concordance Rate (8 Sensitive + 7 Resistant) as evidence for high concordance 

among chemotherapeutics, and explore to see if there was any molecular distinction 

between them that is visible in genomic expression data. We tagged these 15 cell lines 
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as members of a “CS” (concordant sensitive) group and a “CR” (concordant resistant) 

group, respectively. Differential gene expression analysis (see methods and materials) 

was then employed to develop a gene signature to characterize the concordant 

groupings as a phenotype, predicted using basal gene expression profiles available 

from GEO (GSEA5720)[199]. The gene signature consists of 168 genes (176 

probesets) that are significantly differentially expressed between concordant sensitive 

samples and concordant resistant samples (Figure 4-3, Appendix-1). Using a 

metagene method with a Bayesian binary regression procedure (see materials and 

methods), each sample is assigned a probability of sensitivity (POS) between 0 and 1 

by the signature predictor. A box plot of the probability of sensitivity clearly shows 

the pattern of concordant sensitivity and concordant resistance among 15 samples 

(Figure 4-4).  
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Figure 4-3: Heatmap of gene expression signature of concordant chemotherapeutics 

(red: high, white: medium, blue: low) 
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yellow: concordant sensitive cell lines; blue: concordant resistant cell lines 

Figure 4-4: Boxplot of in-sample predicted (fitted) probability of sensitivity of the 

gene signature predictor of concordant chemotherapeutics in 15 NCI60 cell lines  

4.23 Independent validation in Oncotest explants models 

Subsequently, we then tested to assess if the signature predictor of 168 genes 

differentially expressed in concordant sensitive versus concordant resistant cell lines 

can predict concordant chemo-response in tumor derived explants from the Oncotest 

data. The hypothesis is that if the expression pattern of the signature genes remains 

significantly intact and non-random, then the signature predictor will be able to 

predict the concordance of chemotherapeutics for multiple cytotoxic anticancer agents 

in both cell lines and tumor model derived explants. Using the basal gene expression 
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data generated by Oncotest, we applied the predictor to 16 explants tumor models that 

include 8 concordant sensitive explants and 8 concordant resistant explants. The 

predicted probability of sensitivity (POS) of 16 explants tumor models is shown in 

Figure 4-5. The performance of the predictor is AUC=0.88±0.10 (Figure 4-6), which 

is significantly greater than 0.5 and suggests that the signature predictor is 

non-random. Figure 4-7 depicts the ECDF plot, which shows the robustness of the 

specified POS cutoff. For example, when the cutoff of POS moved from 0.35 to 0.94, 

6/8 (75%) concordant sensitive explants models(symbol:: triangle) and 8/8 (100%) 

concordant resistant explants models (symbol:: plus) were identified. This broad 

cutoff of probability of sensitivity (POS) also maximizes the sum of true positive rate 

and true negative rate. Therefore, the performance of the signature predictor of 

concordant chemotherapeutics in the independent in vitro validation using the 

Oncotest explant materials suggests that the genomic signature is valid and robust for 

pre-clinical solid tumor models of human tumors.  
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Figure 4-5: Boxplot of predicted probability of sensitivity of applying the gene 

signature predictor of concordant chemotherapeutics in 16 Oncotest explants models 

 



Chapter 4 A genomic signature to characterize concordant chemotherapeutics 

123 
 

 

Figure 4-6:  Receiver Operating Characteristic (ROC) curves of applying the gene 

signature predictor of concordant chemotherapeutics in 16 Oncotest explants models 
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X-Axis: probability of sensitivity (POS), Y-Axis: the fraction of samples for POS is less than 

the cut-off value 

Figure 4-7: Empirical cumulative distribution of predicted probability of sensitivity 

(POS) of applying gene signature predictor of concordant chemotherapeutics in 16 

Oncotest explants models 

4.2.4 Independent validation in clinical patients treated with (TFAC) 

combination chemotherapy 

To assess whether the signature of concordance was detectable in patient 

tumor samples and had potential clinical utility, we investigated whether the signature 

was able to show predictive ability for combination chemotherapy from published 

studies. Microarray expression data was used from a clinical cohort of 133 breast 

cancer patients undergoing neoadjuvant treatment with the TFAC (paclitaxel, 
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5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen[200]. To 

further dissect the general resistance TFAC chemotherapeutics, we apply our gene 

signature predictor of concordant chemotherapeutics to this breast cancer datasets of 

(126) tumor samples with clinical treatment results available (32 pathological 

complete response (pCR) and 94 residual invasive cancer (RD) responses. To follow 

standard quality control practices for clinical microarray data[201-203], we 

preprocess the microarray data for quality standards by removing low expression, low 

variation and poor quality gene level annotated probesets. The original 168-gene 

signature is therefore reduced to a signature of 23 genes (25 probsesets) in this 

particular breast cancer dataset. The performance of the signature predictor is 

AUC=0.63±0.06 (Figure 4-8). Although the AUC value is not very high compare with 

the performance in Oncotest explants data, “p-value=0.017” clearly demonstrates that 

the signature predictor is significantly non-randomly present in TFAC treated breast 

cancer patients. Hence, we can conclude that the developed gene expression signature 

of concordant chemotherapeutics is a robust signature and it is translatable across 

tumor types and clinical patients. 
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Figure 4-8:  Receiver Operating Characteristic (ROC) curves of applying the 

concordant chemotherapeutics gene signature predictor in 126 breast cancer data with 

patients treated by (TFAC) combinational chemotherapy 

4.2.5 Prediction of clinical outcome in cancer patients 

We next examined the ability of the signature predictor of concordant 

chemotherapeutics to predict clinical outcome in the clinical datasets: Miller 

breast[204] and Bild lung cancer data sets[141]. The patients’ samples are stratified 

into three groups based on predicted probability of sensitivity of concordant 

chemotherapeutics: the samples with top 1/3s highest predicted probability of 

sensitivity of concordant chemotherapeutics are classified as “predicted CS 

(concordant sensitive)” group; and the samples with the lowest 1/3s of predicted 
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probability of sensitivity of concordant chemotherapeutics are classified as the 

“predicted CR (concordant resistant)” group; and the rest of the samples with medium 

predicted probability of sensitivity of concordant chemotherapeutics are classified as 

the “predicted medium” response or “divergent” response group. The Kaplan-Meier 

survival analysis is then performed for the two stratified patients “predicted CS” and 

“predicted CR” groups. Figure 4-9 shows the Kaplan–Meier survival curves for the 

156 breast cancer patients. The predicted CS group patients show much better 

survival than predicted CR group patients with the log-rank test p-value=0.025. 

Figure 4-10 depicts the survival analysis for 74 lung cancer patients. The predicted CS 

group patients show significantly better survival than predicted CR group patients. 

These indicate that the presence of gene signature of concordant chemotherapeutics in 

both breast cancer and lung cancer patients. In clinic, the platins and taxanes are the 

two important standards of care cytotoxic agents, and they are widely used for the 

treatment of breast cancer and lung cancer patients. The strong association between 

the clinical outcome of stratified breast cancer and lung cancer patients by the 

signature of concordant chemotherapeutics signify that the gene signature predictor of 

concordant chemotherapeutics may be potentially useful for tailored chemotherapies 

in clinic for solid tumors. 
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Predicted CS: predicted “concordant sensitive” group; predicted CR: predicted “concordant 

resistant” group; P-Value: Log-Rank test probability (null hypothesis: two groups have no 

difference) 

Figure 4-9:  Kaplan–Meier survival curves of stratified predicted “Concordant 

Sensitive” and predicted “Concordant Resistant” breast cancer patients by the gene 

expression signature predictor of concordant chemotherapeutics. The 78 predicted CS 

patients showed a significantly longer disease-free survival time than the 78 predicted 

CR patients (P-Value<0.05). 
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Predicted CS: predicted “concordant sensitive” group; predicted CR: predicted “concordant 

resistant” group; P-Value: Log-Rank test probability (null hypothesis: two groups have no 

difference) 

Figure 4-10: Kaplan–Meier survival curves of stratified predicted 

“Concordant Sensitive” and predicted “Concordant Resistant” lung cancer patients by 

the gene expression signature predictor of concordant chemotherapeutics. The 37 

predicted CS patients showed a significantly longer disease-free survival time than the 

37 predicted CR patients (P-Value<0.05).  

4.2.6 Meta-analysis for correlations with other drug sensitivity 

signatures and mechanism study of sensitivity 

Since the concordance signature is proposed to represent concordance among 

multiple anticancer agents excluding the selected 14 agents, we investigated if the 



Chapter 4 A genomic signature to characterize concordant chemotherapeutics 

130 
 

signature genes for concordant sensitivity are correlated with sensitivities to other 

anticancer agents using Oncomine database analysis tools[205, 206]. We built two 

signature concepts in the Oncomine system: signature concept-a) 75 genes that are 

over expressed in concordant sensitive samples; signature concept-b) 93 genes that 

are under expressed in concordant sensitive samples. Interestingly, concept a) is only 

significantly associated with 17 signature concepts (Table 4-3), that include 5 unique 

drug sensitivity concepts (3 over expression, 2 under expression). However, concept b) 

is significantly associated with 109 signature concepts (Table 4-4), which include 33 

unique drug sensitivity concepts (5 over expression, 28 under expression). 

Furthermore, the under-expression genes in the proposed signature are highly 

enriched in many other drug sensitivity concepts including Amsacrine, Floxuridine, 

Methodtrexate, Teniposide, Topotecan, Tremetrexate, Cytarabine and Temsirolimus 

“sensitive multi-cancer cell lines concepts” (Figure 4-11), that means the signature 

concept formed by under-expression genes of concordant chemotherapeutics is able to 

predict the chemo-response of other anticancer agents. For example, Figure 4-12 and 

Figure 4-13 describe the signature concept-b) formed by under-expressed genes 

shows consistent expression patterns in Amsacrine and Temsirolimus sensitive cell 

lines respectively. The NCI-DTP drug sensitivity data of Amscrine and Temsirolimus 

also shows apparent sensitive and resistant patterns in 15 concordant sensitive and 

concordant resistant cell lines (Figure 4-14 and Figure 4-15). 
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Threshold: odds ratio=2, p-value=1.0e-4, Red: over-expression, Blue: under-expression 

Table 4-3: The associated concept summary for 75 over-expressed signature genes in 

concordant sensitive cell lines. Image is from OncomineTM. 

 

 

Threshold: odds ratio=2, p-value=1.0e-4, Red: over-expression, Blue: under-expression 

Table 4-4: The associated concept summary for 93 under-expressed signature genes 

in concordant sensitive cell lines. Image is from OncomineTM. 
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P: My Concepts: under-expressed signature genes of concordant chemotherapeutics 
1. Amsacrine Sensitive - Top 1% Under-expressed (Compendia CellLine) 
2. Floxuridine Sensitive - Top 10% Under-expressed (Compendia CellLine) 
3. Methotrexate Sensitive - Top 10% Under-expressed (Compendia CellLine) 
4. Teniposide Sensitive - Top 1% Under-expressed (Compendia CellLine) 
5. Topotecan Sensitive - Top 5% Under-expressed (Compendia CellLine) 
6. Trimetrexate Sensitive - Top 10% Under-expressed (Compendia CellLine) 
7. Mitomycin C Sensitive - Top 1% Under-expressed (Compendia CellLine) 
8. Foretinib Sensitive - Top 10% Under-expressed (Wooster CellLine) 
9. Cytarabine Sensitive - Top 5% Under-expressed (Compendia CellLine) 
10. Temsirolimus Sensitive - Top 10% Under-expressed (Wooster CellLine) 
11. Doxorubicin Sensitive - Top 10% Under-expressed (Compendia CellLine) 
12. Mitoxantrone Sensitive - Top 10% Under-expressed (Compendia CellLine) 
13. Pazopanib Sensitive - Top 5% Under-expressed (Wooster CellLine) 
14. Bleomycin Sensitive - Top 10% Under-expressed (Compendia CellLine) 
15. Fluorouracil Sensitive - Top 5% Under-expressed (Compendia CellLine) 
16. GSK1070916 Sensitive - Top 10% Under-expressed (Wooster CellLine) 
17. GSK1904529 Sensitive - Top 10% Under-expressed (Wooster CellLine) 
18. SN-38 Sensitive - Top 10% Under-expressed (Gemma CellLine) 
19. Dihydro-5-Azacytidine Sensitive - Top 10% Under-expressed (Compendia CellLine) 
20. Ormaplatin Sensitive - Top 10% Under-expressed (Compendia CellLine) 
21. BEZ235 Sensitive - Top 10% Under-expressed (Wooster CellLine) 
22. Mercaptopurine Sensitive - Top 10% Under-expressed (Compendia CellLine) 
23. Bleomycin Sensitive - Top 10% Under-expressed (Compendia Melanoma CellLine) 
24. Mechlorethamine Sensitive - Top 5% Under-expressed (Compendia CellLine) 
25. Thioguanine Sensitive - Top 5% Under-expressed (Compendia CellLine) 
26. SN-38 Sensitive - Top 10% Under-expressed (Shimokuni CellLine 2) 
27. Paclitaxel Sensitive - Top 10% Under-expressed (Compendia CellLine) 
28. GSK1070916 Sensitive - Top 10% Under-expressed (Wooster Liver CellLine) 

Figure 4-11: Comparison of shared genes across 29 gene signature concepts (under 

expression genes in concordant sensitive cell lines and 28 Oncomine 

chemo-sensitivity signature concepts). Figure is from OncomineTM. 
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Figure 4-12: Signature concept of under expressed signature genes (20) in Compedia 

cell lines show consistent expression pattern as Amsacrine in vitro drug sensitivity 

profile (OncomineTM). 

 

 

 

Figure 4-13: Signature concept of under expressed signature genes (20) in Wooster 

cell lines show consistent expression pattern as Temsirolimus in vitro drug sensitivity 

profile (OncomineTM). 

Amsacrine Resistant Amsacrine Sensitive 

Temsirolimus Resistant Temsiroimus Sensitive 
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Figure 4-14: NLogG50 of Amsacrine for 14 cell lines which show concordant 

chemotherapeutics in NCI60. 6/7 concordant sensitive cell lines show sensitive to 

Amsacrine and 6/7 concordant resistant cell lines show resistant to Amsacrine. 
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Figure 4-15: NLogG50 of Temsirolimus for 14 cell lines which show concordant 

chemotherapeutics in NCI60. 6/7 concordant sensitive cell lines show sensitive to 

Temsirolimus and 4/7 concordant resistant cell lines show resistant to Temsirolimus. 

Concordant Sensitive Concordant Resistant 

Concordant Sensitive Concordant Resistant 
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Figure 4-16: NLogG50 of Ridaforolimus for 15 cell lines show concordant 

chemotherapeutics in NCI60. 8/8 concordant sensitive cell lines show sensitive to 

Ridaforolimus and 4/7 concordant resistant cell lines show resistant to Ridaforolimus. 

Cell Lines  Classes  KRas  BRaf  PIK3CA  PTen  STK11 

MCF7  Concordant Sensitive  WT  WT  E545K  WT  WT 

SF_539  Concordant Sensitive  WT  WT  WT  HD  WT 

HCT_116  Concordant Sensitive  G13D  WT  H1047R  WT  WT 

LOXIMVI  Concordant Sensitive  WT  V600E  WT  WT  WT 

UACC_62  Concordant Sensitive  WT  V600E  WT  P248fs*5  WT 

NCI_H460  Concordant Sensitive  Q61H  WT  E545K  WT  p.Q37* 

DU_145  Concordant Sensitive  WT  WT  WT  WT  p.K178fs*86 

786_0  Concordant Sensitive  WT  WT  WT  Q149*  WT 

SK_MEL_2  Concordant Resistant  WT  WT  WT  WT  WT 

NCI_H322M  Concordant Resistant  WT  WT  WT  WT  WT 

EKVX  Concordant Resistant  WT  WT  WT  WT  WT 

OVCAR_5  Concordant Resistant  G12V  WT  WT  WT  WT 

OVCAR_4  Concordant Resistant  WT  WT  WT  WT  WT 

UO_31  Concordant Resistant  WT  WT  WT  WT  WT 

TK_10  Concordant Resistant  WT  WT  WT  WT  WT 

WT: wild type; HD: homozygous deletion; fs: frame shift; *: deletion or substitution. 

Table 4-5: Listed are the mutations of oncogene and tumor suppressor genes in 

mTOR upstream pathways. The mutation data is from COSMIC database.  

Concordant Sensitive Concordant Resistant 
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The topoisomerase-II specific inhibitor Amsacrine belongs to the cytotoxic 

class of topoisomerase inhibitors that include Etoposide, Irinotecan and Topotecan, 

that are included in the 14 agents used in signature development. The strong 

association between signature genes and Amsacrine chemo-sensitivity further 

confirms the predicted ability of the signature of concordant chemotherapeutics as a 

chemo-response predictor to standard of care cytotoxic agents.  

The signature genes are also observed to be significantly correlated with the 

chemo-sensitivity of the kinase inhibitor Temsirolimus (CCI-779) in the Oncomine 

database. Temsirolimus specifically inhibits mTOR and results in growth arrest of 

cells in the G1 phase of the cell cycle. mTOR is a serine/threonine protein kinase that 

integrates the signals of multiple upstream signaling pathways, e.g. IGF, EGF and 

mitogens[207, 208]. The mTOR activity plays a central role in the control of cell 

proliferation, survival, mobility and angiogenesis in multiple solid tumors. To follow 

up on this observation for Temsirolimus, we examined the drug sensitivity of another 

mTOR inhibitor, Ridaforolimus, for which NCI60 data is available. Ridaforolimus 

behaves similarly to Temsirolimus in those NCI60 cell lines (Figure 4-16) with high 

chemotherapeutic concordance. The presence of the signature of concordant 

chemotherapeutics in both Temsirolimus and Ridaforolimus sensitive cell lines may 

indicate that the integrated signal of upstream pathways of mTOR, like Ras/MAPK, 

AMPK and PI3K/Akt is high in concordant sensitive cell lines. As a preliminary 

evaluation of the activity of signaling pathways upstream of mTOR, we tabulated the 

known mutations of 5 cancer genes in mTOR upstream pathways from COSMIC 
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databases (Table 4-5). Based on the mutation information of KRas, BRaf, PI3KCA, 

PTen and STK11, it is evident that each of 8 concordant sensitive cell lines harbors 

known mutations in at least one pathway. However, only 1 of 7 concordant resistant 

cell lines, OVCAR_5, contains 1 of these mutations (KRas G12V). Although the 

activity of mTOR pathway in these cell lines awaits further experimental validation, 

the upstream pathways’ information could provide an indicator that mTOR integrates 

multiple signals to regulate cell proliferations. As a consequence of one or more than 

one active upstream pathway(s), mTOR is active, and cells may proliferate very fast. 

We then analyzed the cell growth rate of NCI60 cell lines. Figure 4-17 depicts the 

doubling time of identified 15 cell lines with high concordance of chemotherapeutics: 

the doubling time of 8 concordant sensitive cell lines is 23.9±6.9 hours and the 

doubling time of 7 concordant resistant cell lines is 43.6±5.2 hours. Apparently, the 

concordant sensitive cell lines grow significantly faster than the concordant resistant 

cell lines. Some other cell lines in NCI60, like SW620 and COLO205 harbor KRas or 

BRaf mutation, and both grow fast in culture medium, but they show very divergent 

chemo-response to multiple cytotoxic agents. The active proliferation pathway is 

maybe one of the critical prerequisites for cells to show sensitive to multiple agents.  

Hence, we hypothesize that solid tumor cells that are sensitive to multiple 

cytotoxic anticancer agents are growing fast with active proliferation pathway(s). We 

estimated the tumor doubling time in the mice of 15 Oncotest tumor models which are 

identified to show concordant chemotherapeutics. As shown in Figure 4-18, 6/8 

concordant resistant explants with tumor doubling time in mice is equal to or more 
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than 8 days, which is much longer than the maximum tumor doubling time in mice of 

7 concordant sensitive explants, at just 5 days.  

As 93 signature genes under-expressed in concordant sensitive samples are 

shown to be significantly associated with multiple drug sensitivity signatures, we then 

performed the enrichment analysis of these genes to assess the overall functional 

implications of the signature of concordant chemotherapeutics and to generate 

additional evidence decoding the biological mechanisms of concordant 

chemotherapeutics. The enrichment analysis was done using MetaCoreTM by GeneGo 

to identify biological functions significantly associated with concordant 

chemotherapeutics. The histogram (Figure 4-19) shows the top 10 enriched GeneGo 

pathway maps for the signature genes under-expressed in concordant sensitive cell 

lines. The protein signaling pathways, such as notch, WNT, late endocytic and SCF 

are related to the sensitivity of chemotherapeutics. This gives us a clue that the 

concordant resistance in chemotherapeutics is very complicated, and it is a 

combination of multiple biological processes instead of being exclusively driven by a 

single biological pathway. 
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Figure 4-17: The doubling time of 15 NCI60 cell lines identified as high concordance 

of chemotherapeutics. The concordant sensitive cell lines have much shorter doubling 

time than concordant resistant cell lines. 

  

 

Figure 4-18: The tumor doubling time of 15 Oncotest explants models identified as 

high concordance of chemotherapeutics. 

Concordant Sensitive Concordant Resistant 

Concordant Sensitive Concordant Resistant 
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Figure 4-19: The top 10 most significantly enriched GeneGo pathway maps for the 

under expressed (in concordant sensitive cell lines) signature genes. The bars 

represent significance as –log(p-value) for hypergeometric distribution. All ontology 

enrichments were filtered at significance level 0.05 (pValue: the significance of the 

enrich biological process) 

4.3 Discussions 

While advances in understanding of cancer genetics, increased use of targeted 

agents, and genetic predictors of response to individual agents have all helped build 

confidence in the promise of personalized medicine, the practical implications are still 

limited: cancer patients are often treated with combinations of multiple agents 

including cytotoxic chemotherapies, whose success in combination cannot be 

predicted in advance for individual patients. A variety of translational strategies using 

preclinical drug sensitivity data and integrative genomics have been proposed to 

address this challenge, including an ever widening range of preclinical models across 
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or within tumor types [209-213]. In addition, systems-based approaches have also 

begun to be applied to combination treatments explicitly, through pathway models 

and other systems approaches still in early stages of development [119, 122, 

214-216]. 

We utilize data from two very different sets of preclinical models – 

immortalized cell lines assayed for cell growth, and patient derived human tumor 

xenograft samples grown in 3D culture and assayed for clonogenic potential – to 

develop independently validated and translationally relevant predictive models of 

drug sensitivity. When tested across the diverse background provided by wide ranging 

models of solid tumors, the data can be used to identify subsets of cell lines and 

patient derived xenografts that show concordant sensitivity or resistance to a range of 

widely used chemotherapeutic agents.  

This concordant chemo-response defined in cell lines has a genomic basis, as 

indicated by the independent predictive power of a signature of concordant response 

in entirely different experimental model settings. The signature is further validated by 

prediction of both response and clinical outcome in clinical genomic data sets from 

patients with different diseases and different treatments. Importantly, genes from the 

signature of concordant response, when used in a meta-analysis of public gene set 

categories or “concepts”, specifically identify multiple gene sets of sensitivity for 

chemotherapeutic agents not in the original training set, consistent with a signature for 

broad chemotherapeutic concordance.  
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The signature is associated with, but not fully explained by, several common 

themes in cancer biology. While related to different proliferation rates in concordant 

sensitive versus concordant resistant models, the signature is a simple consequence of 

differential proliferation, as non-concordant models provide many counter-examples 

along with their divergent sensitivity profiles. The identification of the mTOR 

inhibitor Temsirolimus among agents picked up by the meta-analysis of expression 

signatures is consistent with known genetic activation upstream of mTOR in 

concordant resistant samples, and further supported by analysis of NCI60 sensitivity 

data for the mTOR inhibitor Ridaforolimus, but we do not have experimental mTOR 

pathway data for these cell lines. 

Since most cytotoxic agents interfere with cell cycle processes, it is no 

surprise that these agents are most effective on rapidly growing tumors. The tumor 

proliferative activity and response to first-line chemotherapy (anthracycline, 

clophosphamide, methotrexate and 5-fluorouracil) in advanced breast carcinoma has 

been studied elsewhere [217]. The results show a high response rate (48%) in the 

group with highly proliferative tumors when compared with a response rate of 21% in 

the group with less proliferative tumors. However, regardless of the difference in 

response rate, survival analysis showed no significant difference between the two 

groups based on proliferation rate alone. 

One response to our finding of concordant chemo-response might be for 

researchers designing future studies to remove concordant sensitive and concordant 

resistant cell lines from any training or test set for sensitivity to any agent, on the 
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grounds that including them would reduce the power of a predictive model. This 

approach may be warranted within panels of cell lines or primary models used to 

develop genomic predictors of non-targeted agents. But for either individual cell line 

study or for developing predictive models for targeted agents, we believe this is a 

bridge too far: models from the NCI60 panel showing concordant chemo-response 

have played important roles in cancer biology, and for targeted agents the details of 

these well-characterized models can make them particularly appropriate for target 

hypothesis-based experimentation.  

If the signature of concordance is validated in further patient studies, there 

may be clinical value in identifying patients whose tumors show a signature of 

concordant resistance to chemotherapeutics, to ascertain whether these patients should 

be prioritized for earlier combinations with targeted agents, rather than front-line 

treatment with chemotherapeutic combinations.  

We conclude that the developed gene expression signature could characterize 

the concordance of chemotherapeutics of standard of care agents, and it potentially 

may be applied as the predictor to tailor the patient’s response, given by standard of 

care chemotherapeutics with or without combination in a range of solid tumors. 
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4.4 Methods and Materials 

4.4.1 Anticancer Cytotoxic agents 

The selected 14 Standard of Care (SOC) anticancer cytotoxic agents include 5 

types of inhibitors: alkylating/alkylating-like, antimetabolites, antitumor antibiotic, 

spindle poison/mitotic inhibitor and topoisomerase inhibitor (Table 4-1).  

4.4.2 In vitro tumor explants screening at Oncotest 

The drug sensitivity of 14 anticancer cytotoxic agents were studied by Tumor 

Clonogenic Assay (TCA) in Oncotest. TCA studied the inhibition of anchorage 

independent growth and in vitro colony formation of tumor cells derived from human 

tumor xenografts of various tumor histologies in semi-solid medium. The assay is 

performed in a 24-well format with six replicates for untreated controls and three 

replicates for treatment wells. Agent effects are expressed in terms of the percentage 

of colony formation, obtained by comparison of the mean number of colonies in the 

treated wells with the mean colony count of the untreated controls (relative colony 

count expressed by the mean of treatment versus mean of control) [7]. IC50 is the 

drug concentrations necessary to inhibit colony formation by 50% (Treatment 

/Control = 50%). Four parameter dose response curves to determine these 

concentrations are fit. If an IC50 value could not be determined within the examined 

dose range because an agent was either too active or lacked activity, the lowest or 

highest concentration studied was used for the calculation.  
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4.4.3 In vitro cell line screening at NCI-DTP 

The National Cancer Institute (NCI) Developmental Therapeutics Program 

(DTP) program, cell lines and assay related details are given at http://dtnci.nih.gov/. 

The 14 cytotoxic agents’ chemo-response profile in NCI was reported in the DTP 

database. The database provides the estimates of concentration for IC50 (the 

concentration that cause 50% cells inhibition 100 × T/C = 50), GI50 (the 

concentration of test drug where 100 × (T - T0)/(C - T0) = 50, T0 is the optical 

density (response) of the “test well” at time zero), TGI (the concentration of test drug 

where 100 × (T - T0)/(C - T0) = 0, it signifies cytostatic effect) and LC50 (the 

concentration of drug where 100 × (T - T0)/T0 = -50), which are defined at 

http://dtnci.nih.gov/branches/btb/ivclshtml. 

4.4.4 Microarray data 

The tumor sample with TCA data were prepared by Oncotest and the 

microarray data was generated at Microarray Facility, Medical Genetics, Tuebingen, 

Germany (http://www.microarray-facility.com) as per the guidelines for Affymetrix 

gene expression microarrays (Affymetrix Inc., Santa Clara, USA). The expression 

profiling used RNA is from explant materials that were derived primary tumors. 

Following the sacrifice of mice by cervical dislocation, tumors of 400-600 mm^3 

volume were excised without delay, and tumor pieces free of necrosis were flash 

frozen in liquid nitrogen. For gene expression profiling of human tumor xenografts, 

total RNA was purified using the RNeasy Mini kit (QIAGEN, Hilden, Germany). 
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During RNA isolation, no genomic DNA digestion was done. Prior to hybridizing to 

microarrays, 1.2 µg of total RNA was amplified using the One-Cycle Eukaryotic 

Target Labeling Assay (Affymetrix Inc., Santa Clara, USA). 15 µg of labeled 

complementary RNA (cRNA) was then hybridized to Affymetrix HG-U133 Plus 2.0 

GeneChip expression array. The CEL files were processed using a statistical package 

R-project environment version 2.12.0 (http://www.r-project.com) with Bioconductor 

package version 2.7. The signal for probesets were condensed using MAS5.0 

algorithm, normalized to 500 fluorescence units, followed by log base 2 

transformation. The publicly available microarray datasets were downloaded from 

NCBI. Breast cancer (Hess et al. 2006) dataset (Affymetrix U133A gene expression 

array) was downloaded from http://www.bioinformatics.mdanderson.org 

/pubdata.html. NCI60 cell line expression dataset (Affymetrix U133A and U133B 

gene expression array) is available as accession number GSE5720 at NCBI's Gene 

expression omnibus. Bild lung [141] cancer and Miller breast [204] datasets 

(Affymetrix U133 plus2 gene expression array) are available as accession number 

GSE3141 and GSE3494 respectively at NCBI's Gene expression omnibus.  

4.4.5 Statistical analysis method 

Gene expression data is filtered to exclude probesets that show background 

level expression and that do not vary significantly across samples. Furthermore, the 

probesets are selected to be significantly differentiated between sensitive and resistant 
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samples using FDR (false discovery rate) criteria. The analysis uses R package 

“limma” (Linear Models for Micorarray Data[105])) (version 3.6.6).  

The statistical method to generate the probability of chemotherapeutic 

sensitivity uses standard binary regression models combined with singular value 

decompositions (SVD) [79]. Here for simplicity, we name it as “Bayesian-SVD” 

method. First, the probeset selection from the training data is done as stated above. 

Training data is constructed with samples in columns and probesets (or genes) in 

rows. Principal components of the training data are used to compute the metagene and 

metasample values. Bayesian binary probit regression model is fitted to the metagene 

signature for assessing the relevance of each metagene and the classes of 

chemo-response of training samples. We assess the performance of the signature in an 

independent test data. Given the test data set, the gene expression data with probesets 

matched with signature is then projected onto the metagenes from the training data. 

The model was fitted and relative probability of sensitivity (POS) is predicted using 

the Bayesian binary probit regression parameters fitted from the metagene signature. 

The classes are defined as ‘0’ for resistant and ‘1’ for sensitive for training such that 

low POS scores would be suggestive of a sample being resistant and vice versa. The 

implementation based on methodology is done in R environment (version 2.5 and 

above).  

We use a Receiver Operating Characteristic (ROC) curve to plot the true 

positive rate (sensitivity) and false positive rate (1-specificity) for different cutoff 

levels of the POS score estimated above. The Area Under Curve (AUC) is a measure 
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of the accuracy of the test. ROC curve and AUC analysis are done using R packages 

PresenceAbsence version 1.1. Empirical Cumulative Distribution Function (ECDF) is 

a cumulative distribution function that assigns probability ‘1/N’ to each of the ‘N’ 

cases in a sample. A cumulative distribution function (CDF) gives the probability 

when a random variable X is less that a given value x. (CDF(x) = Pr{X ≤ x}). An 

ECDF is a sample based estimate of this theoretical function. The ECDF plots are 

generated using R environment’s base package. The Kaplan-Meier survival analysis is 

performed using the Cox-Mantel log-rank test in R “survival” package version 2.36-1. 

The log-rank test p-value represents the significance of the difference of the probably 

of survival between different patient groups. 
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Chapter 5 Conclusions and discussions 

As the dissertation comes to end, it is important to highlight the important 

findings and address a number of remaining issues. Firstly, the systematic 

bioinformatics methodology to develop principle genomic markers introduced in 

chapter 2 and chapter 3 is reviewed. In particular, miRNA expression markers, that 

has been largely ignored, has been highlighted for discussion. Building on this 

discussion, the miRNA expression markers are generated for the concordant 

chemotherapeutics. These interesting results may suggest some concrete direction for 

future research to extend the genomic marker of concordant chemotherapeutics 

presented in chapter 4. The conclusion of the dissertation will focus on the 

contributions of this work to the cancer research society. 

5.1 Discussion of integrated genomic markers development 

The starting point to develop genomic markers for chemotherapeutics is from 

the fuzzy classification of chemo-response data. We use fuzzy data instead of actual 

numeric readout of GI50 and IC50 data because of its inherent variability of the 

readouts from the in vitro assay screening. Classification of “sensitive”, “medium” 

and “resistant” can also relate to the pathological response of the treatment of the 

anticancer agents in clinical patients, which is usually classified as “complete 

response / partial response”, “stable disease” and “progressive disease”. Since the 

chemo-response data is classified into fuzzy classes, correspondingly, the phenotypic 
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expression, like gene expression and protein expression data can be considered as 

“high”, “medium” or “low”. Therefore, we proposed two types of genomic markers:  

type-I and type-II markers. Type-1 markers are significantly correlated with the rank 

of chemo-response classes. Type-II markers are the combination of significantly 

differentiated genes sets between pair-wise chemo-response classes. To move the 

developed the multiple-gene signature biomarker assay into clinical practice is very 

challenging due to poor choice of assay genes and lack substantial preclinical 

validations[218, 219]. The integrated genomic marker analysis is the method to select 

the reliable assay markers and move into further validation, by which, the genomic 

aberrations, such as gene mutation, DNA copy number variations and methylation, are 

incorporated into the analysis to explain high or low expression patterns of the 

specific candidate marker. The marker with its expression significantly affected by the 

genomic aberration(s) may be considered as potential clinical candidate biomarker, 

and is to be followed up with further assay validations.  

5.1.1 MicroRNAs correlated with chemo-response 

However, there are certain limitations in selecting potential clinical candidate 

biomarker from initial multi-gene expression signature using this integrated genomic 

analysis. The gene or protein expression can be modulated from DNA-RNA 

transcription to the post-translational modification for a protein. The genomic 

aberrations considered in this study are only the modification of DNAs. The gene can 

also be post-transcriptionally regulated by microRNAs, that binds to complementary 
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sequences on target messenger RNA transcripts, and usually resulting in translational 

repression and silence of the gene[50, 51]. It is important to include the microRNA 

information in the study to interpret the expression pattern of candidate markers. For 

example, as shown in Figure 5-1, the expression of miRNA-30 family is identified to 

be significantly correlated with the concordant sensitive and concordant resistant cell 

lines categorized in NCI60 data in chapter 4. Although it has been revealed that 

miRNA-30s may target TP53 protein[220], regulate B-Myc activity together with 

miRNA-29[221] and play very critical roles in causing familial breast cancers[222], 

the targets of miRNA-30 family are still ambiguous. It is difficult to interpret the 

biological mechanisms of miRNA-30s when integrating with prior developed gene 

expression biomarkers from the developed gene signature of concordant 

chemotherapeutics. Alternatively, it is believed miRNA-30s should be further 

explored, especially their roles in multiple proteins signaling pathways. 
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Figure 5-1: The expressions of miRNA-30 family are significantly correlated with 

concordant chemotherapeutics samples 

5.1.2 Trans-modulation 

The karyotype of a chromosomal segment affects its copy number variation. 

The expression of a gene is usually affected by the copy number variations, mutation 

and DNA methylation. The integrated genomic analysis model is proposed in chapter 

3 with the focus on the gene expression and its own mutation, copy number variation 

and DNA methylation. However, the genetic aberrations can also modulate the 

expressions on the other locus. Therefore, the integrated genomic model should 

associate non-local genetic aberrations of chromosomal segment copy number 

variations with the maker’s expression. Yeang presented a multiple-layer modeling 

framework to identify the statistical and putative causal relations of the gene 

expression and non-local genetic aberrations of chromosomal segment copy number 
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variations, mutation and methylation[223] based on known mechanistic links. Based 

on this reference, we can modify the integrated model proposed in chapter 3 as 

follows: 

,,,,, 32221103222110  aaaaaMeaCNVaCNVaMuaay ijiii Eq 5-1 

Here, jCNV  is the mechanistic link which is reported to trans-modulate the 

expression of gene i. If the number of known trans-modulation copy number variation 

is more than 1, j may take a series of numbers. 

As we discussed in the chapter 1, the potential model, Eq 1-2, has incorporated 

eQTL SNP variation information, which may also consider the unknown non-local 

genetic aberrations. Since the objective of the integrated genomic analysis is to 

identify more robust expression makers and move them into clinical validation, the 

proposed model may be more meaningful. Thus the accuracy of our analysis may be 

low if unknown non-local molecular aberrations are shown to be significantly 

associated with the expression of the marker gene. The proposed integrated model can 

be used to explore the possible biological links between the gene expression and 

non-local genetic aberrations. 

5.2 Proteomic expression markers 

In this dissertation, we have focused on the gene expression markers. As we 

introduced in chapter 2, protein expression signature is another type of important 

principle expression markers. While gene expression can now be measured reliably 

and reproducibly in high throughput[202, 203, 224-227], protein expression 
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measurement technologies are still limited at relatively low and medium throughput. 

However, technologies like reverse phase protein arrays (RPPA) and reverse phase 

lysate arrays (RPLA) seems to provide a reliable high throughput platform to utilize 

the proteomic expression data for exploring the potential biomarkers for 

chemotherapeutics[228]. 

Therefore, we developed the protein expression signature to characterize the 

concordant chemotherapeutics. As shown in Figure 5-2, the 30 proteins (antibodies) 

expression signature includes 7 over expressed and 23 under expressed (in concordant 

sensitive cell lines) proteins. Although the expression pattern is not very concrete 

compared to the gene expression signature, this does give us another scope to decode 

the concordant chemotherapeutics. Interestingly, both tumor suppressor genes, TP53 

and RB1 are under-expressed in concordant sensitive cell lines, and these cell lines 

have high proliferation rate than resistant cell lines. Although no critical conclusion is 

drawn from the protein expression signature, it does expand our understanding of the 

activation status of multiple protein networks, and provides a basis for further looking 

into the integration with genomic analysis results such as gene expression signature 

and miRNA markers. 
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Figure 5-2: The protein expression signature of concordant chemotherapeutics (red: 

high value; blue: low value). Signature is derived with LogFC=0.6 and FDR=0.2. 

 

5.2 Extension for future work 

One of the most important bioinformatics analyses is to offer one-step 

validations for the experimental scientist. It is my special interest to suggest a few 

biological experiments to further discover novel biology. There are a few important 

and putative hypothesis considered that can be studied experimentally. 
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The mTOR upstream signaling pathways in concordant sensitive cell lines are 

more active than in concordant resistant cell lines. The phosph-mTRC1 and 

phosph-mTRC2 activity may be measured in the NCI60 concordant sensitive cell 

lines and concordant resistant cell lines. 

Another interesting follow up is that the miRNA-30s family show significantly 

differentiation patterns in concordant sensitive and concordant resistant samples. The 

general understanding that miRNA-30s may play important role in protein signaling 

pathways[229-231] is poor: there is very few published research papers reported to 

date. Our results indicate that it may play a critical role in the pan-resistance of 

chemotherapeutics. 

5.3 Contributions 

In this dissertation, we have made a number of significant contributions to the 

society of biomarker research in two main areas: a) methodologies development: we 

introduced fuzzy classification of biological data, two types of principle expression 

biomarker and the development algorithms, and then an integrated genomic analysis 

method between gene expression and genomic aberrations is proposed to narrow 

down the multiple-gene signature to few(<10) gene markers or find a single gene 

marker; and b) novel biology ：  we identified an important phenomena of 

chemotherapeutics - cancer cells may show concordant chemotherapeutics to multiple 

anticancer agents. To understand the underlying biology of concordant 

chemotherapeutics in cancer cells, we first categorized concordant sensitive and 
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concordant resistant cell lines, and primary derived tumor grafts. We then developed 

the gene expression signature of concordant chemotherapeutics using NCI60 data, 

with robust in-vitro validation in Oncotest tumor graft data. Thereafter, we employed 

the signature to predict the TFAC treated breast cancer patients’ samples and to 

stratify patients groups in both breast and lung cancer to evaluate the prognostic value 

of the signature. From the following meta-analysis in Oncomine database, we found 

that the signature genes are highly enriched in multiple signature concepts of 

anticancer agents. Furthermore, the concordant sensitive cell lines and tumor grafts 

are found to have higher proliferation rate than concordant resistant cell lines and 

tumor grafts. The mutational analysis may suggest that multiple protein signaling 

pathways may be hyperactive. Although this putative hypothesis needs to be tested 

experimentally, the developed gene signature of concordant chemotherapeutics is 

valuable, and should be moved into next step, which is validation. 

In order to demonstrate the end-to-end application of the biomarker 

development framework, we introduced a number of meaningful and signature 

concepts with suitable classification concepts for this particular domain. In particular, 

we proposed to use an integrated genomic analysis model to identify clinical like 

biomarkers. In the contribution of novel biology, we demonstrated that the identified 

biological phenomena “concordant chemotherapeutics” is present in both preclinical 

models and clinical patients.  

Finally, we hope that this dissertation helps biomarker scientists better 

understand the biomarker development process, and offers cancer research scientists a 
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deeper understanding of the resistance of chemotherapeutics to multiple cytotoxic 

agents. 
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Appendix 

Applendix-1: The gene signature genes and probesets (Affymetrix U133 A&B) of the 
concordant chemotherapeutics 

Probesets Gene Symbol 
Expression in 

Sensitive Cell Lines 
logFC 

242541_at ABCA9 Up 1.25 

231299_at AGAP3 Up 1.96 

229709_at ATP1B3 Up 1.66 

229018_at C12orf26 Up 2.03 

219260_s_at C17orf81 Up 1.07 

239208_s_at C21orf57 Up 1.77 

235219_at C5orf55 Up 1.5 

235981_at C8orf22 Up 1.55 

57715_at CALHM2 Up 1.69 

211347_at CDC14B Up 1.77 

206474_at CDK17 Up 1.52 

210689_at CLDN14 Up 1.74 

226751_at CNRIP1 Up 3.23 

220323_at CNTD2 Up 1.3 

205653_at CTSG Up 1.2 

241381_at CXorf36 Up 1.32 

218808_at DALRD3 Up 1.36 

219328_at DDX31 Up 1.65 

207379_at EDIL3 Up 1.85 

240528_s_at EXOC4 Up 1.59 

225099_at FBXO45 Up 1.03 

241671_x_at FLJ22536 Up 1.61 

219170_at FSD1 Up 2.09 

235574_at GBP4 Up 1.52 

220265_at GPR107 Up 1.17 

220042_x_at HIVEP3 Up 1.2 

227361_at HS3ST3B1 Up 2.65 

235301_at KIAA1324L Up 1.82 

228476_at KIAA1407 Up 1.48 

230432_at LOC100422737 Up 1.3 

235494_at LSAMP Up 1.45 

242838_at MAP6D1 Up 1.27 

207121_s_at MAPK6 Up 1.05 
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214270_s_at MAPRE3 Up 2.36 

208595_s_at MBD1 Up 1.39 

201151_s_at MBNL1 Up 1.03 

222867_s_at MED31 Up 1.15 

225316_at MFSD2A Up 1.37 

228592_at MS4A1 Up 1.43 

222570_at NCS1 Up 1.25 

226585_at NEIL2 Up 1.94 

206929_s_at NFIC Up 1.71 

222057_at NOL12 Up 1.76 

209629_s_at NXT2 Up 1.91 

219295_s_at PCOLCE2 Up 1.67 

236135_at PNPLA7 Up 1.73 

207000_s_at PPP3CC Up 1.29 

209599_s_at PRUNE Up 1.44 

205961_s_at PSIP1 Up 1.06 

243777_at RAB7L1 Up 1.26 

226945_at RHBDD1 Up 1.24 

218861_at RNF25 Up 1.57 

210426_x_at RORA Up 1.44 

222559_s_at RPRD1A Up 1.28 

236782_at SAMD3 Up 1.33 

215834_x_at SCARB1 Up 1.66 

211708_s_at SCD Up 2.25 

242064_at SDK2 Up 1.23 

244653_at SETD7 Up 1.61 

210135_s_at SHOX2 Up 2.18 

219713_at SHPK Up 1.33 

210567_s_at SKP2 Up 1.11 

218978_s_at SLC25A37 Up 1.22 

228935_at SLC4A8 Up 1.55 

213854_at SYNGR1 Up 1.46 

210053_at TAF5 Up 1.32 

222053_at TAF6L Up 1.12 

230394_at TCP10L Up 1.39 

223523_at TMEM108 Up 2.21 

223462_at TMEM175 Up 1.28 

213725_x_at XYLT1 Up 1.74 

203604_at ZNF516 Up 1.39 

226677_at ZNF521 Up 2.08 
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232137_at ZNF616 Up 1.44 

215767_at ZNF804A Up 2.05 

219488_at A4GALT Down -1.57 

228132_at ABLIM2 Down -1.54 

211712_s_at ANXA9 Down -1.87 

242727_at ARL5B Down -1.04 

212312_at BCL2L1 Down -1.37 

229975_at BMPR1B Down -3.39 

224435_at C10orf58 Down -2.01 

228155_at C10orf58 Down -2.27 

239777_at C14orf182 Down -2.06 

219010_at C1orf106 Down -1.51 

223951_at C21orf116 Down -1.48 

213199_at C2CD3 Down -1.17 

224707_at C5orf32 Down -1.26 

209495_at CEP250 Down -1.18 

204233_s_at CHKA Down -1.63 

204266_s_at CHKA Down -2.15 

222549_at CLDN1 Down -1.89 

224815_at COMMD7 Down -1.01 

201906_s_at CTDSPL Down -1.02 

201905_s_at CTDSPL Down -1.46 

201904_s_at CTDSPL Down -2.81 

202295_s_at CTSH Down -1.37 

214782_at CTTN Down -1.01 

238280_at CYB5RL Down -1.5 

230679_at DCAF10 Down -1.96 

202500_at DNAJB2 Down -1.77 

204720_s_at DNAJC6 Down -1.58 

204947_at E2F1 Down -1.24 

228256_s_at EPB41L4A Down -2.07 

224024_at ERGIC1 Down -1.73 

208297_s_at EVI5 Down -1.21 

223058_at FAM107B Down -1.57 

223059_s_at FAM107B Down -1.6 

223745_at FBXO31 Down -1.62 

217342_x_at FLJ11292 Down -1.22 

202838_at FUCA1 Down -1.73 

208505_s_at FUT2 Down -1.31 

206780_at GAD2 Down -1.64 
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213343_s_at GDPD5 Down -1.91 

242281_at GLUL Down -1.38 

203108_at GPRC5A Down -3.17 

227614_at HKDC1 Down -2.83 

201655_s_at HSPG2 Down -2.31 

216268_s_at JAG1 Down -1.66 

31849_at KRT80 Down -2.68 

12531_at LCN2 Down -2.15 

221115_s_at LENEP Down -1.96 

219181_at LIPG Down -1.38 

230388_s_at LOC644246 Down -1.08 

204682_at LTBP2 Down -1.02 

228885_at MAMDC2 Down -1.48 

235106_at MAML2 Down -1.75 

216206_x_at MAP2K7 Down -1.19 

210136_at MBP Down -2.8 

202616_s_at MECP2 Down -1.32 

244741_s_at MGC9913 Down -2.34 

224685_at MLLT4 Down -1.01 

233539_at NAPEPLD Down -1.29 

218414_s_at NDE1 Down -1.46 

235517_at PACRGL Down -1.8 

207717_s_at PKP2 Down -2.4 

219024_at PLEKHA1 Down -1.28 

202065_s_at PPFIA1 Down -1.07 

202066_at PPFIA1 Down -1.33 

49077_at PPME1 Down -1.05 

217841_s_at PPME1 Down -1.39 

238118_s_at PPOX Down -1.72 

226907_at PPP1R14C Down -1.59 

228494_at PPP1R9A Down -1.31 

238441_at PRKAA2 Down -2.66 

221808_at RAB9A Down -1.11 

219026_s_at RASAL2 Down -1.58 

226436_at RASSF4 Down -1.49 

226164_x_at RIMKLB Down -1.09 

221215_s_at RIPK4 Down -1.68 

228044_at SERP2 Down -1.51 

233753_at SFRS15 Down -1.53 

242963_at SGMS2 Down -1.44 
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223698_at SLC25A36 Down -1.37 

242274_x_at SLC25A42 Down -2.02 

244353_s_at SLC2A12 Down -1.33 

228221_at SLC44A3 Down -1.64 

222967_at SLC5A7 Down -2.05 

238691_at SNHG10 Down -1.67 

218705_s_at SNX24 Down -1.27 

213667_at SRCAP Down -2.08 

226932_at SSPN Down -1.99 

226822_at STOX2 Down -1.25 

202565_s_at SVIL Down -1 

235762_at TAS2R14 Down -1.81 

203221_at TLE1 Down -1.09 

203222_s_at TLE1 Down -1.9 

238802_at TYSND1 Down -1.68 

226678_at UNC13D Down -1.74 

204929_s_at VAMP5 Down -2.3 

235023_at VPS13C Down -1.58 

210248_at WNT7A Down -1.88 

213085_s_at WWC1 Down -1.41 

239757_at ZFAND6 Down -1.4 

216710_x_at ZNF287 Down -1.72 

240181_at ZSCAN12 Down -1.47 
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