2,510 research outputs found

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Mobility Study for Named Data Networking in Wireless Access Networks

    Full text link
    Information centric networking (ICN) proposes to redesign the Internet by replacing its host-centric design with information-centric design. Communication among entities is established at the naming level, with the receiver side (referred to as the Consumer) acting as the driving force behind content delivery, by interacting with the network through Interest message transmissions. One of the proposed advantages for ICN is its support for mobility, by de-coupling applications from transport semantics. However, so far, little research has been conducted to understand the interaction between ICN and mobility of consuming and producing applications, in protocols purely based on information-centric principles, particularly in the case of NDN. In this paper, we present our findings on the mobility-based performance of Named Data Networking (NDN) in wireless access networks. Through simulations, we show that the current NDN architecture is not efficient in handling mobility and architectural enhancements needs to be done to fully support mobility of Consumers and Producers.Comment: to appear in IEEE ICC 201

    Simulation of an Optimized Data Packet Transmission in a Congested Network

    Get PDF
    Computer network and the Internet nowadays accommodate simultaneous transmission of audio, video, and data traffic among others. Efficient and reliable data transmission is essential for achieving high performance in a networked computing environment. Thus, there is need to optimized data packet transmission in the present day network. This paper simulates and demonstrates the process of optimizing data packet transmission in a congested network. It uses the modified FIFO Queue system to control data packet loss and uses the prototyping software methodology to develop software in Python Programming language for its implementation. From the simulation process, it was observed that causes of packet loss during transmission are largely dependent on protocol, congestion of traffic way, speed of the sender and speed of the receiver’s machine. Thus, the paper takes advantage of the observations from simulation and presents a system that simulates control of data loss during transmission in a congested network. Keywords: Simulation, Auxiliary Queue, Departing Packets, Arrival Packets, Packet Loss
    • 

    corecore