2 research outputs found

    Predictions on wheat crop yielding through fuzzy set theory and optimization techniques

    Get PDF
    Agricultural field鈥檚 production is commonly measured through the performance of the crops in terms of sow amount, climatology, and the type of crop, among other. Therefore, prediction on the performance of the crops canaid cultivators to make better informed decisions and help the agricultural field. This research work presents a prediction on wheat crop using the fuzzy set theory and the use of optimization techniques, in both; traditional methods and evolutionary meta-heuristics. The performance prediction in this research has its core on the following parameters: biomass, solar radiation, rainfall, and infield鈥檚 water extractions. Besides, the needed standards and the efficiency index (EFI) used come from already developed models; such standards include: the root-mean-square error (RMSE), the standard deviation, and the precision percentage. The applicationof a genetic algorithm on a Takagi-Sugeno system requires and highly precise prediction on wheat cropping;being, 0.005216 the error estimation, and 99,928 the performance percentage

    Technology for Kisan Samanvayam: Nutrition Intelligibility of Groundnut Plant using IoT-ML Framework

    Get PDF
    Neolithic Demographic transition resulting the reduction of habitable land for cultivation. Hence the smart agriculture is the only way to cater higher food demand. The farming community of developing countries like India needs Kisan Samanvayam with futuristic technologies for financially viable cultivation. Technology place vital role in economically nourishment of soil fertility and crop management. In this regard we proposed IoT-ML framework for remotely assessing the soil nutrients (N, P,K), PH and early stage detection of crop deceases. Android APP which is a part and parcel of the frame work enable the farmer to have real time visual statistics of the soil nutrients, notifications and suggestions regarding to the crop management. JXCT Soil NPK sensors, PH sensors, Dual Core ESP32 Controllers, Firebase Cloud and Random Forest Decision Tree machine Learning Algorithm, Micromlgen serve this purpose. Unlike Solitary sensor for entire field, we have divided a hector into four subregions for effective monitoring local region needs. The presence of IoT with TinyML increased the robustness of the framework and results are encouraging with sandy loam soil
    corecore