679 research outputs found

    Reconstructing intelligible audio speech from visual speech features

    Get PDF
    This work describes an investigation into the feasibility of producing intelligible audio speech from only visual speech fea- tures. The proposed method aims to estimate a spectral enve- lope from visual features which is then combined with an arti- ficial excitation signal and used within a model of speech pro- duction to reconstruct an audio signal. Different combinations of audio and visual features are considered, along with both a statistical method of estimation and a deep neural network. The intelligibility of the reconstructed audio speech is measured by human listeners, and then compared to the intelligibility of the video signal only and when combined with the reconstructed audio

    Normal-to-Lombard Adaptation of Speech Synthesis Using Long Short-Term Memory Recurrent Neural Networks

    Get PDF
    In this article, three adaptation methods are compared based on how well they change the speaking style of a neural network based text-to-speech (TTS) voice. The speaking style conversion adopted here is from normal to Lombard speech. The selected adaptation methods are: auxiliary features (AF), learning hidden unit contribution (LHUC), and fine-tuning (FT). Furthermore, four state-of-the-art TTS vocoders are compared in the same context. The evaluated vocoders are: GlottHMM, GlottDNN, STRAIGHT, and pulse model in log-domain (PML). Objective and subjective evaluations were conducted to study the performance of both the adaptation methods and the vocoders. In the subjective evaluations, speaking style similarity and speech intelligibility were assessed. In addition to acoustic model adaptation, phoneme durations were also adapted from normal to Lombard with the FT adaptation method. In objective evaluations and speaking style similarity tests, we found that the FT method outperformed the other two adaptation methods. In speech intelligibility tests, we found that there were no significant differences between vocoders although the PML vocoder showed slightly better performance compared to the three other vocoders.Peer reviewe

    Methods for speaking style conversion from normal speech to high vocal effort speech

    Get PDF
    This thesis deals with vocal-effort-focused speaking style conversion (SSC). Specifically, we studied two topics on conversion of normal speech to high vocal effort. The first topic involves the conversion of normal speech to shouted speech. We employed this conversion in a speaker recognition system with vocal effort mismatch between test and enrollment utterances (shouted speech vs. normal speech). The mismatch causes a degradation of the system's speaker identification performance. As solution, we proposed a SSC system that included a novel spectral mapping, used along a statistical mapping technique, to transform the mel-frequency spectral energies of normal speech enrollment utterances towards their counterparts in shouted speech. We evaluated the proposed solution by comparing speaker identification rates for a state-of-the-art i-vector-based speaker recognition system, with and without applying SSC to the enrollment utterances. Our results showed that applying the proposed SSC pre-processing to the enrollment data improves considerably the speaker identification rates. The second topic involves a normal-to-Lombard speech conversion. We proposed a vocoder-based parametric SSC system to perform the conversion. This system first extracts speech features using the vocoder. Next, a mapping technique, robust to data scarcity, maps the features. Finally, the vocoder synthesizes the mapped features into speech. We used two vocoders in the conversion system, for comparison: a glottal vocoder and the widely used STRAIGHT. We assessed the converted speech from the two vocoder cases with two subjective listening tests that measured similarity to Lombard speech and naturalness. The similarity subjective test showed that, for both vocoder cases, our proposed SSC system was able to convert normal speech to Lombard speech. The naturalness subjective test showed that the converted samples using the glottal vocoder were clearly more natural than those obtained with STRAIGHT

    Speech Based Machine Learning Models for Emotional State Recognition and PTSD Detection

    Get PDF
    Recognition of emotional state and diagnosis of trauma related illnesses such as posttraumatic stress disorder (PTSD) using speech signals have been active research topics over the past decade. A typical emotion recognition system consists of three components: speech segmentation, feature extraction and emotion identification. Various speech features have been developed for emotional state recognition which can be divided into three categories, namely, excitation, vocal tract and prosodic. However, the capabilities of different feature categories and advanced machine learning techniques have not been fully explored for emotion recognition and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews is a widely accepted means of diagnosis, but patients are often embarrassed to get diagnosed at clinics. The speech signal based system is a recently developed alternative. Unfortunately,PTSD speech corpora are limited in size which presents difficulties in training complex diagnostic models. This dissertation proposed sparse coding methods and deep belief network models for emotional state identification and PTSD diagnosis. It also includes an additional transfer learning strategy for PTSD diagnosis. Deep belief networks are complex models that cannot work with small data like the PTSD speech database. Thus, a transfer learning strategy was adopted to mitigate the small data problem. Transfer learning aims to extract knowledge from one or more source tasks and apply the knowledge to a target task with the intention of improving the learning. It has proved to be useful when the target task has limited high quality training data. We evaluated the proposed methods on the speech under simulated and actual stress database (SUSAS) for emotional state recognition and on two PTSD speech databases for PTSD diagnosis. Experimental results and statistical tests showed that the proposed models outperformed most state-of-the-art methods in the literature and are potentially efficient models for emotional state recognition and PTSD diagnosis

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Gender dependent word-level emotion detection using global spectral speech features

    Get PDF
    In this study, global spectral features extracted from word and sentence levels are studied for speech emotion recognition. MFCC (Mel Frequency Cepstral Coefficient) were used as spectral information for recognition purpose. Global spectral features representing gross statistics such as mean of MFCC are used. This study also examine words at different positions (initial, middle and end) separately in a sentence. Word-level feature extraction is used to analyze emotion recognition performance of words at different positions. Word boundaries are manually identified. Gender dependent and independent models are also studied to analyze the gender impact on emotion recognition performance. Berlin’s Emo-DB (Emotional Database) was used for emotional speech dataset. Performance of different classifiers also been studied. NN (Neural Network), KNN (K-Nearest Neighbor) and LDA (Linear Discriminant Analysis) are included in the classifiers. Anger and neutral emotions were also studied. Results showed that, using all 13 MFCC coefficients provide better classification results than other combinations of MFCC coefficients for the mentioned emotions. Words at initial and ending positions provide more emotion, specific information than words at middle position. Gender dependent models are more efficient than gender independent models. Moreover, female are more efficient than male model and female exhibit emotions better than the male. General, NN performs the worst compared to KNN and LDA in classifying anger and neutral. LDA performs better than KNN almost 15% for gender independent model and almost 25% for gender dependent

    An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Separation

    Get PDF
    Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. Since the visual aspect of speech is essentially unaffected by the acoustic environment, visual information from the target speakers, such as lip movements and facial expressions, has also been used for speech enhancement and speech separation systems. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving strong performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: acoustic features; visual features; deep learning methods; fusion techniques; training targets and objective functions. In addition, we review deep-learning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation. Finally, we survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance

    Audio-Visual Speech Enhancement Based on Deep Learning

    Get PDF
    corecore