15 research outputs found

    Removing Abstraction Overhead in the Composition of Hierarchical Real-Time System

    Get PDF
    The hierarchical real-time scheduling framework is a widely accepted model to facilitate the design and analysis of the increasingly complex real-time systems. Interface abstraction and composition are the key issues in the hierarchical scheduling framework analysis. Schedulability is essential to guarantee that the timing requirements of all components are satisfied. In order for the design to be resource efficient, the composition must be bandwidth optimal. Associativity is desirable for open systems in which components may be added or deleted at run time. Previous techniques on compositional scheduling are either not resource efficient in some aspects, or cannot achieve optimality and associativity at the same time. In this paper, several important properties regarding the periodic resource model are identified. Based on those properties, we propose a novel interface abstraction and composition framework which achieves schedulability, optimality, and associativity. Our approach eliminates abstraction overhead in the composition

    Designing Bandwidth-Efficient Stabilizing Control Servers

    Get PDF
    Guaranteeing stability of control applications in embedded systems, or cyber-physical systems, is perhaps the alpha and omega of implementing such applications. However, as opposed to the classical real-time systems where often the acceptance criterion is meeting the deadline, control applications do not primarily enforce hard deadlines. In the case of control applications, stability is considered to be the main design criterion and can be expressed in terms of the amount of delay and jitter a control application can tolerate before instability. Therefore, new design and analysis techniques are required for embedded control systems. In this paper, the analysis and design of such systems considering server-based resource reservation mechanism are addressed. The benefits of employing servers are manifold: (1) providing a compositional framework, (2) protection against other tasks misbehaviors, and (3) systematic bandwidth assignment. We propose a methodology for designing bandwidth-efficient servers to stabilize control tasks

    Response Time Analysis for Sporadic Server based Budget Scheduling in Real Time Virtualization Environments

    Get PDF
    Virtualization techniques for embedded real-time systems typically employ TDMA scheduling to achieve temporal isolation among different virtualized applications. Recent work already introduced sporadic server based solutions relying on budgets instead of a fixed TDMA schedule. While providing better average-case response times for IRQs and tasks, a formal response time analysis for the worst-case is still missing. In order to confirm the advantage of a sporadic server based budget scheduling, this paper provides a worst-case response time analysis. To improve the sporadic server based budget scheduling even more, we provide a background scheduling implementation which will also be covered by the formal analysis. We show correctness of the analysis approach and compare it against TDMA based systems. In addition to that, we provide response time measurements from a working hypervisor implementation on an ARM based development board

    Incorporating defect specific condition indicators in a bridge life cycle analysis

    Get PDF
    Bridges are critical assets for the safe, reliable and functional operation of transportation networks. Infrastructure asset managers are responsible for ensuring that these bridges adhere to rigorous safety standards using the finite resources available to transportation agencies. To facilitate strategy development and to present decisions to stakeholders, a life cycle analysis is commonly performed. Many bridge owners use stochastic models that are calibrated using condition records from visual examinations, however condition records typically report bridge condition on a single condition scale. In this study, defect specific condition scales are utilised to implement multiple defect specific condition indicators in the modelling of deterioration. These additional indicators enable the modelling of the interactions between defects during deterioration. Moreover, the indicators are used in the modelling of different defect specific maintenance interventions providing the scope to quantitatively assess the effects of strategies that favour early intervention. A multiple defect deterioration model is presented as a dynamic Bayesian network, which is calibrated using records for metallic girders from railway bridges in the United Kingdom. A Petri net model is then used to perform a life cycle analysis, which incorporates a novel dynamic conditional approach for Petri net modelling to utilise the multiple condition indicators

    Distributed Target Engagement in Large-scale Mobile Sensor Networks

    Get PDF
    Sensor networks comprise an emerging field of study that is expected to touch many aspects of our life. Research in this area was originally motivated by military applications. Afterward sensor networks have demonstrated tremendous promise in many other applications such as infrastructure security, environment and habitat monitoring, industrial sensing, traffic control, and surveillance applications. One key challenge in large-scale sensor networks is the efficient use of the network's resources to collect information about objects in a given Volume of Interest (VOI). Multi-sensor Multi-target tracking in surveillance applications is an example where the success of the network to track targets in a given volume of interest, efficiently and effectively, hinges significantly on the network's ability to allocate the right set of sensors to the right set of targets so as to achieve optimal performance. This task can be even more complicated if the surveillance application is such that the sensors and targets are expected to be mobile. To ensure timely tracking of targets in a given volume of interest, the surveillance sensor network needs to maintain engagement with all targets in this volume. Thus the network must be able to perform the following real-time tasks: 1) sensor-to-target allocation; 2) target tracking; 3) sensor mobility control and coordination. In this research I propose a combination of the Semi-Flocking algorithm, as a multi-target motion control and coordination approach, and a hierarchical Distributed Constraint Optimization Problem (DCOP) modelling algorithm, as an allocation approach, to tackle target engagement problem in large-scale mobile multi-target multi-sensor surveillance systems. Sensor-to-target allocation is an NP-hard problem. Thus, for sensor networks to succeed in such application, an efficient approach that can tackle this NP-hard problem in real-time is disparately needed. This research work proposes a novel approach to tackle this issue by modelling the problem as a Hierarchical DCOP. Although DCOPs has been proven to be both general and efficient they tend to be computationally expensive, and often intractable for large-scale problems. To address this challenge, this research proposes to divide the sensor-to-target allocation problem into smaller sub-DCOPs with shared constraints, eliminating significant computational and communication costs. Furthermore, a non-binary variable modelling is presented to reduce the number of inter-agent constraints. Target tracking and sensor mobility control and coordination are the other main challenges in these networks. Biologically inspired approaches have recently gained significant attention as a tool to address this issue. These approaches are exemplified by the two well-known algorithms, namely, the Flocking algorithm and the Anti-Flocking algorithm. Generally speaking, although these two biologically inspired algorithms have demonstrated promising performance, they expose deficiencies when it comes to their ability to maintain simultaneous reliable dynamic area coverage and target coverage. To address this challenge, Semi-Flocking, a biologically inspired algorithm that benefits from key characteristics of both the Flocking and Anti-Flocking algorithms, is proposed. The Semi-Flocking algorithm approaches the problem by assigning a small flock of sensors to each target, while at the same time leaving some sensors free to explore the environment. Also, this thesis presents an extension of the Semi-Flocking in which it is combined with a constrained clustering approach to provide better coverage over maneuverable targets. To have a reliable target tracking, another extension of Semi-Flocking algorithm is presented which is a coupled distributed estimation and motion control algorithm. In this extension the Semi-Flocking algorithm is employed for the purpose of a multi-target motion control, and Kalman-Consensus Filter (KCF) for the purpose of motion estimation. Finally, this research will show that the proposed Hierarchical DCOP algorithm can be elegantly combined with the Semi-Flocking algorithm and its extensions to create a coupled control and allocation approach. Several experimental analysis conducted in this research illustrate how the operation of the proposed algorithms outperforms other approaches in terms of incurred computational and communication costs, area coverage, target coverage for both linear and maneuverable targets, target detection time, number of undetected targets and target coverage in noise conditions sensor network. Also it is illustrated that this algorithmic combination can successfully engage multiple sensors to multiple mobile targets such that the number of uncovered targets is minimized and the sensors' mean utilization factor sensor surveillance systems.is maximized

    An Embedded Platform for Testbed Implementation of Multi-Agent System in Building Energy Management System

    Get PDF
    This paper presents a hardware testbed for testing the building energy management system (BEMS) based-on the multi agent system (MAS). The objective of BEMS is to maximize user comfort while minimizing the energy extracted from the grid. The proposed system implements a multi-objective optimization technique using a genetic algorithm (GA) and the fuzzy logic controller (FLC) to control the room temperature and illumination setpoints. The agents are implemented on the low cost embedded systems equipped with the WiFi communication for communicating between the agents. The photovoltaic (PV)-battery system, the air conditioning system, the lighting system, and the electrical loads are modeled and simulated on the embedded hardware. The popular communication protocols such as Message Queuing Telemetry Transport (MQTT) and Modbus TCP/IP are adopted for integrating the proposed MAS with the existing infrastructures and devices. The experimental results show that the sampling time of the proposed system is 16.50 s. Therefore it is suitable for implementing the BEMS in a real-time where the data are updated in an hourly or minutely basis. Further, the proposed optimization technique shows better results in optimizing the comfort index and the energy extracted from the grid compared to the existing methods. Keywords: BEMS; MAS; embedded system; multi-objective optimization; genetic algorith

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy Consumption, and Security Challenges

    Get PDF
    Wireless body area networks (WBANs) are a new advance utilized in recent years to increase the quality of human life by monitoring the conditions of patients inside and outside hospitals, the activities of athletes, military applications, and multimedia. WBANs consist of intelligent micro- or nano-sensors capable of processing and sending information to the base station (BS). Sensors embedded in the bodies of individuals can enable vital information exchange over wireless communication. Network forming of these sensors envisages long-term medical care without restricting patients’ normal daily activities as part of diagnosing or caring for a patient with a chronic illness or monitoring the patient after surgery to manage emergencies. This paper reviews WBAN, its security challenges, body sensor network architecture and functions, and communication technologies. The work reported in this paper investigates a significant security-level challenge existing in WBAN. Lastly, it highlights various mechanisms for increasing security and decreasing energy consumption

    Sistem Smart Grid Untuk Optimalisasi Pemakaian Daya Listrik Pada Perumahan Dan Gedung Dengan Pemanfaatan Energi Surya

    Get PDF
    Sistem Smart Grid merupakan teknologi kelistrikan terkini yang mampu mengalirkan arus listrik dan informasi secara dua arah, dari pembangkit ke konsumen dan sebaliknya. Kemajuan teknologi ini mulai banyak diimplementasikan dalam pengelolaan energi listrik, salah satunya integrasi dengan sumber energi terbarukan. Salah satu permasalahan yang banyak ditemui dalam bidang kelistrikan adalah manajemen energi listrik. Pada penelitian ini, peneliti merancang model kelistrikan modern (Smart Grid) untuk manajemen energi di perumahan dan gedung-gedung dalam rangka pengembangan sistem Smart Home dan Smart Building. Penelitian yang dikembangkan akan mengoptimalkan pemakaian energi listrik secara real-time tergantung kondisi beban dan pembangkit energi yang ada saat itu. Pada tahun pertama dirancang model sistem Smart Grid untuk optimalisasi pemakaian daya listrik rumah (TKT-3). Sedangkan pada tahun kedua dirancang model sistem Smart Grid untuk optimalisasi pemakaian daya listrik gedung (TKT-3). Dengan sistem yang dikembangkan ini, diharapkan pemanfaatan, pengelolaan energi listrik utamanya yang bersumber dari energi surya dapat dimaksimalkan, dan sekaligus merupakan upaya pencapaian sasaran Renstra penelitian perguruan tinggi terutama pada bidang unggulan energi baru dan terbarukan
    corecore