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Abstract—The hierarchical real-time scheduling framework is
a widely accepted model to facilitate the design and analysis of
the increasingly complex real-time systems. Interface abstraction
and composition are the key issues in the hierarchical scheduling
framework analysis. Schedulability is essential to guarantee that
the timing requirements of all components are satisfied. In order
for the design to be resource efficient, the composition must be
bandwidth optimal. Associativity is desirable for open systems in
which components may be added or deleted at run time. Previous
techniques on compositional scheduling are either not resource
efficient in some aspects, or cannot achieve optimality and
associativity at the same time. In this paper, several important
properties regarding the periodic resource model are identified.
Based on those properties, we propose a novel interface abstrac-
tion and composition framework which achieves schedulability,
optimality, and associativity. Our approach eliminates abstraction
overhead in the composition.

Keywords-Real-time embedded systems, compositional schedul-
ing, bandwidth-optimal interface, abstraction overhead.

I. INTRODUCTION

Real-time embedded systems are composed of computing
resources, real-time tasks, and scheduling policies. Such sys-
tems are becoming highly complex due to increasing computa-
tional demand. However, the amount of resources available in
most real-time applications, e.g., wireless sensor networks and
automobiles, are constrained by other design factors such as
size, weight, and power. Therefore, resource-efficient solutions
are crucial for real-time embedded systems.

Component-based design has been widely accepted as a
paradigm to facilitate the design of complex real-time sys-
tems [1]–[3]. In the component-based approach, a complex
real-time system is decomposed into multiple simple com-
ponents, each of which contains a workload consisting of
a real-time task set and a scheduling policy. Schedulability
analysis is then performed within each component, and an
interface is abstracted for each component. The interface of
a component represents the collective resource demand of the
workload without revealing the detailed information about the
task set and the scheduling policy. A real-time interface is
often represented by a resource model, which is an abstract
characterization of a resource supply pattern, and system-
level analysis is done by interface composition. Component-
based design is incorporated into the compositional scheduling
framework, where components are arranged in a tree so that

*This research was supported in part by NSF CNS-0931239, NSF CNS-
0930647, NSF CNS-0834524, and NSF CNS-0720518.

the workload of a component is either a real-time task set
generated by applications, or a set of interfaces of the sub-
components. In this paper, we distinguish those two kinds
of components in a scheduling tree as: leaf components,
whose workloads consist of real-time task sets generated by
applications, and intermediate components, whose workloads
consist of interfaces of the sub-components. Figure 1 gives an
example of hierarchical scheduling frameworks.

Compositional scheduling framework design requires that
properties established for each component are preserved at all
levels of the tree. A basic property for all real-time systems
is that components should be schedulable, i.e., the timing
requirements of the workloads should be satisfied under the
scheduling policies. In the scheduling tree, the decomposition
and integration of components should maintain schedulability
in the sense that each component is schedulable if its interface
is schedulable by its immediate parent component. In this
paper, the interfaces are represented as periodic resource
models (PRMs) as introduced in [4], [5]. A PRM (Π,Θ)
guarantees Θ units of resource supply for every Π time units
on a uniprocessor platform, and its bandwidth is Θ

Π
. The

semantics of PRMs are supported by many existing real-time
schedulers, and a PRM can be generically transformed into a
periodic real-time task, which is important for the analysis of
component-based hierarchical scheduling frameworks.

The minimum bandwidth needed by the root component
represents the overall resource requirement of the system. For
the framework to be resource efficient, the root bandwidth
should be minimized. In this paper, we address the optimality
issue in terms of bandwidth, i.e., to find the minimum-
bandwidth interface for the root component. In a PRM-based
hierarchical system, finding the optimal root interface can be
broken down into two sub-problems: identifying bandwidth-
optimal PRMs for each leaf component, and minimizing the
compositional overhead. The first problem has been addressed
in previous studies, such as [2]. For the latter problem, the
component-abstraction overhead has been defined in [2] as
UP/UW −1, where UP and UW are bandwidth of the interface
and workload of a component, respectively. In this paper, we
propose an approach to eliminate this abstraction overhead
incurred by the composition. Preemption overhead is not
addressed in the current framework.

In open real-time systems, components may be added or
deleted at run time. An example is the integrated medical
device systems in which devices may be activated and deac-



tivated according to patients’ physiological states that change
over time. Schedulability of open systems can be analyzed
more efficiently if the composition is associative, i.e., for
a given set of leaf components, the interface of the root
component does not depend on the order in which the leaf
components are composed. With associativity, when a compo-
nent C′ is added or deleted, the new optimal root interface can
be directly calculated from the interface of C′ and the previous
root interface. In contrast, without associativity, in order to
obtain the new optimal root interface, the interface abstraction
and composition need to be redone for every component in
the system.
Related Work. Compositional scheduling frameworks have
garnered growing attention in the real-time community [1]–
[18]. A two-level scheduling framework was first introduced
by Deng and Liu [19], and the schedulability analysis has
been done for both fixed-priority schedulers [20] and dynamic-
priority schedulers [21], [22]. Mok and Feng [6], [23] pro-
posed a bounded-delay resource model. Component interface
abstraction and composition techniques for the bounded-delay
resource model were later developed in [8]. None of these
approaches, however, is associative.

The PRM was introduced as an alternative interface rep-
resentation in [2], [4], [5]. The interface abstraction and
composition for PRMs have been addressed under fixed-
priority and dynamic-priority schedulers in [2], [4], [5], [7],
[9], [10]. Again, none of the composition methods is associa-
tive. The Explicit Deadline Periodic (EDP) model has been
proposed in [16] as an extension to the original PRM, but
the composition is not associative either. In addition, there
have been studies [13]–[15] on incremental design based on
interface theory [24], [25]. An interface representation with
multiple choices of periods and an associative composition
technique were proposed in [1]. However, the schedulability
condition used by [1] is sufficient but not necessary, which
incurs additional abstraction overhead in the composition.

In previous studies on PRM-based compositional framework
analysis [2], the sub-interfaces are composed by a 2-step ap-
proach: first, each sub-interface is transformed into a real-time
task; then the composed interface is computed as a resource
model that can schedule those tasks. At the composition step
it was assumed that the first jobs of the tasks may be released
at arbitrary time instances. However, the incremental analysis
proposed in [1] implicitly dropped this assumption as the
proposed composition method is correct only if the first job
release of each task is synchronized with the start time of the
resource supply. Neither the synchronization assumption nor
its impact on bandwidth optimality was explicitly elaborated
on in [1]. In this paper, we propose the synchronized release
times assumption for interfaces and show that the arbitrary re-
lease times assumption made in the previous study is not only
unnecessary but also incurs additional component abstraction
overhead in the composition.
Contributions. Our main contributions include:
• We identify several important properties regarding the

supply bound function of a PRM. Based on those proper-
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Fig. 1. Compositional scheduling framework.

ties, we define a function called Γ which generates a set of
PRMs from any given single PRM Ω′, each of which has
the same bandwidth as Ω′ and guarantees schedulability.
Using Γ, we develop a succinct interface that represents
an infinite number of candidate PRMs with only a few
variables.

• We propose a new interface abstraction and composition
framework that achieves schedulability, optimality, and
associativity. The composition incurs no abstraction over-
head.

• Based on inferences drawn from [1], we show that the ar-
bitrary release times assumption for the sub-interfaces in
the workloads of intermediate components is unnecessary.
We further show that the start times of all the interfaces
can be aligned without changing the schedulability of the
corresponding components.

The analysis is performed on the interface level, and the
proposed framework is generally applicable to any real-time
system in which the workload and resource can be char-
acterized by a demand-bound function and a supply-bound
function, respectively.

II. BACKGROUND AND OUR APPROACH

The real-time task sets discussed in this paper are char-
acterized by the demand-bound function dbf(t), which gives
the maximum possible resource demand of a single task or
a task set within any time interval of length t [26], [27].
For example, a well-known workload model is periodic tasks,
which are sequences of jobs released in a periodic fashion.
For periodic, independent, and preemptable tasks, it is known
that the earliest-deadline-first (EDF) algorithm is an optimal
dynamic-priority scheduling policy and the rate-monotonic
(RM) algorithm is an optimal fixed-priority scheduling pol-
icy [28]. The demand-bound function of a periodic task set
T = {T1 = (p1,e1), . . . ,Tn = (pn,en)} scheduled under EDF
is given by [26] as Equation 1, where pi and ei denote the
period and the worst-case execution time of Ti, respectively.
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The demand-bound function for a task Ti in the periodic task
set T scheduled under RM is given by [27] as Equation 2, in
which HPT (i) is the tasks in T that have higher priorities than
Ti.

dbfT (t) =
n

∑
i=1
b t

pi
cei (1)

dbfT (t, i) = ei + ∑
Tk∈HPT (i)

d t
pk
eek (2)

A real-time component consists of a real-time workload, a
scheduling policy, and a real-time interface.

Definition 2.1 (Real-time Component): A real-time compo-
nent C is defined as C = 〈W, I,A〉, wherein W is either a set
of real-time tasks or a set of interfaces of sub-components, I
is an interface, and A is a scheduling policy.

The interface I represents the collective resource demand of
W in order for W to be schedulable under A. In this paper, we
focus on PRM-based interfaces. The supply bound function
sbf(t), which gives the minimum supply of a PRM Ω over
any time interval t, is given by [2] as Equation 3, where x =
2(Π−Θ) and y =

⌊
t−(Π−Θ)

Π

⌋
. The functions lsbfΩ and usbfΩ,

the tight linear lower and upper bounds for sbfΩ, are given
by [2] as Equations 4 and 5.

sbfΩ(t) =

{
yΘ+max{0, t− x− yΠ} t ≥Π−Θ

0 Otherwise
(3)

lsbfΩ(t) = max(
Θ

Π
(t−2(Π−Θ)),0) (4)

usbfΩ(t) = max(
Θ

Π
(t− (Π−Θ)),0) (5)

Figure 2 shows the sbf, lsbf and usbf of a PRM Ω= (Π,Θ).
As shown in the figure, the starvation time of Ω, the longest
time interval during which there is no resource supply in the
worst case, is 2(Π−Θ), i.e., ∀t ≤ 2(Π−Θ),sbfΩ(t) = 0. From
Equations (3), (4), and (5), it can be calculated that lsbf and
usbf intersect sbf at time points defined by t1k = kΠ+2(Π−Θ)
and t2k = kΠ+(Π−Θ), in which k ∈ N, respectively.

A component C = 〈W, I,A〉 is schedulable if and only if
any resource model Ω represented in I satisfies the timing
requirements of W under A. The schedulability condition for

a periodic task set scheduled under EDF and RM are given
in [2]:

Theorem 2.2 (Schedulability of EDF/RM [2]): A real-time
workload W = {T1 = (p1,e1), . . . ,Tn = (pn,en)} is schedulable
by a resource model Ω under EDF, if and only if ∀0 < t ≤
LCMW dbfW (t)≤ sbfΩ(t), where LCMW is the least common
multiple of pi for all Ti ∈W . W is schedulable by Ω under
RM, if and only if ∀Ti ∈W ∃ti ∈ [0, pi] dbfW (ti, i)≤ sbfΩ(ti)

For both EDF and RM, the schedulability is checked based
on the comparison between the dbf and sbf. It immediately
follows that:

Lemma 2.3: Given two PRMs Ω1 = (Π1,Θ1) and Ω2 =
(Π2,Θ2), if ∀t,sbfΩ1(t) ≥ sbfΩ2(t), then for a workload W
which consists of periodic tasks, Ω1 can schedule W under
EDF/RM if Ω2 can schedule W under EDF/RM.

Proof: Suppose Ω2 can schedule W under EDF. Then,
∀t, dbfW (t)≤ sbfΩ2(t)≤ sbfΩ1(t). Hence Ω1 can schedule W .
The same reasoning applies for RM.

This lemma defines a partial order of scheduling capability
between two PRMs. If the condition stated in the lemma holds,
then Ω1 is said to be better than Ω2. It should be noted that
the partial order applies to any real-time systems in which
the schedulability is expressed in terms of the sbf being the
upper bound of a resource demand characteristic function of
the workload. The analysis in Section III is based on the partial
order defined here and does not make any assumptions on how
a dbf is calculated from specific scheduling policies and task
models. Therefore our work is applicable to a wide range of
real-time systems.

We define the notion of bandwidth B as follows. The
bandwidth of a resource model Ω = (Π,Θ) is B = Θ

Π
. In

our framework, an interface is represented by a set of PRMs
that share the same bandwidth, which is referred to as the
bandwidth of the interface. In a leaf component, the bandwidth
of a workload W is equal to the total bandwidth of the sub-
interfaces. In a leaf component, the bandwidth of a workload
W = {(p1,e1), . . . ,(pn,en)} is B = ∑i

ei
pi

. Abstraction overhead
in composition is eliminated if for any intermediate component
C = 〈W, I,A〉, the bandwidth of I is equal to the bandwidth of
W .
Our Approach. Given a hierarchical real-time system in
which the workloads of all the leaf components are known,
assume the schedulability condition is expressed in terms of
the sbf being the upper bound of the dbf, we do the following:

• For each leaf component, abstract its resource demand by
an interface such that the component itself is schedulable
if its interface is schedulable by the parent component.

• For each intermediate component, compose its sub-
interfaces into one single interface while preserving
schedulability.

• Justify the schedulability, optimality, and associativity of
the proposed framework.

• Evaluate the approach by comparing it with previous
techniques.



III. INTERFACE ABSTRACTION AND COMPOSITION

In this section, we propose our approaches for interface
abstraction and composition. We first identify several key
properties regarding the supply bound function of a PRM and
develop the schedulability condition for synchronous periodic
tasks where all tasks and resource models share the same
period and are first released at the same time. Based on these
results, we then propose our interface abstraction and com-
position framework and show that it achieves schedulability,
optimality, and associativity.

A. Bandwidth Equivalent Interface Class

Recall Lemma 2.3, which defines a partial order between
two PRMs. It is trivially true that for any fixed period Π,
a PRM (Π,Θ) with greater bandwidth always has a better
scheduling capability. However, to achieve bandwidth opti-
mality, it is desirable to enhance the scheduling capability of
a resource model without increasing its bandwidth. Thus, an
interesting question is: given a PRM Ω = (Π,Θ), are there
other PRMs with the same bandwidth but better than Ω? This
section gives a necessary and sufficient answer to the above
question, which – to the best of our knowledge – has not been
addressed before.

Intuitively, for a fixed bandwidth, a PRM with a shorter
period could be better than one with a longer period. Suppose
Ωl = (Πl ,Θl) and Ωs = (Πs,Θs) are two PRMs with the same
bandwidth. If Πs > Πl , then Ωs is not better than Ωl . This is
trivially true because the starvation time of a PRM (Π,Θ) is
2(Π−Θ) = 2Π(1− Θ

Π
). Since Θl

Πl
= Θs

Πs
, if Πs > Πl then the

starvation time of Ωs is longer than that of Ωl . Therefore, a
necessary condition for Ωs to be better than Ωl is 0 < Πs

Πl
≤ 1.

Note that Πs > 0 and Πl > 0 trivially hold here. Lemma 3.1
addresses the 0 < Πs

Πl
≤ 1

2 case.
Lemma 3.1: Given two PRMs Ωs = (Πs,Θs) and Ωl =

(Πl ,Θl) with the same bandwidth, i.e., Θs
Πs

= Θl
Πl

, if 0< Πs
Πl
≤ 1

2 ,
then ∀t,sbfs(t)≥ sbfl(t), i.e., Ωs is better than Ωl .

Proof: We show that ∀t, lsbfs(t) ≥ usbfl(t), and then it
follows sbfs(t)≥ lsbfs(t)≥ usbfl(t)≥ sbfl(t)

We have Θs
Πs

= Θl
Πl

so Θl =
ΠlΘs

Πs
. Thus ∀t,

lsbfs(t)−usbfl(t)

=
Θs

Πs
(t−2(Πs−Θs))−

Θl

Πl
(t− (Πl −Θl))

=
Θs

Πs
((Πl −Θl)−2(Πs−Θs))

=
Θs

Πs
((Πl −

ΠlΘs

Πs
)−2(Πs−Θs))

=
Θs

Πs
(

Πl

Πs
(Πs−Θs)−2(Πs−Θs))

=
Θs

Πs
(

Πl

Πs
−2)(Πs−Θs)

(6)

0 < Πs
Πl
≤ 1

2 ⇒
Πl
Πs
≥ 2 and Πs ≥ Θs, therefore ∀t lsbfs(t)−

usbfl(t) ≥ 0, and thus sbfs(t) ≥ lsbfs(t) ≥ usbfl(t) ≥ sbfl(t).
Note that in this proof, we exploit the fact that although by
definition lsbfs(t) =max(Θs

Πs
(t−2(Πs−Θs)),0) and usbfl(t) =

max(Θl
Πl
(t−(Πl−Θl)),0), it suffices to show ∀t, Θs

Πs
(t−2(Πs−

Θs)) ≥ Θl
Πl
(t − (Πl − Θl)), because ∀x,y ∈ R, max(x,0) ≥

max(y,0) if x≥ y.
From Lemma 3.1, if 0 < Πs

Πl
≤ 1

2 , then Ωs is better than Ωl .
If Πs

Πl
= 1, then Ωs = Ωl , and by definition, Ωs is better than

Ωl . We already showed if Πs
Πl

> 1, then Ωs is not better than
Ωl . Therefore, the only unknown case is 1

2 < Πs
Πl

< 1, which
is addressed by Lemmas 3.2 and 3.3. We show that when
Πs
Πl
∈ ( 1

2 ,1), Ωs is better than Ωl if and only if the ratio Πs
Πl

is
in the set { k+1

2k+1 , k ∈N}. Note that { k+1
2k+1 , k ∈N} gives a non-

increasing series {1, 2
3 ,

3
5 ,

4
7 , . . .} with limit lim

k→+∞

k+1
2k+1

=
1
2

.

Lemma 3.2: Given two PRMs Ωs = (Πs,Θs) and Ωl =
(Πl ,Θl) with the same bandwidth, i.e., Θs

Πs
= Θl

Πl
, if ∃k ∈ N

such that Πs
Πl

= k+1
2k+1 , then ∀t,sbfs(t)≥ sbfl(t), i.e., Ωs is better

than Ωl .
Proof: From Figure 2, it is clear that the sbf curve consists

of two types of segments: horizontal and sloped. Let A denote
the points where usbfl intersects sbfl and P denote the points
where lsbfs intersects sbfs.

From Equation 6, when Πs
Πl

> 1
2 , ∀t lsbfs(t)< usbfl(t). And

since Πs ≤ Πl , obviously ∀t usbfl(t) ≤ usbfs(t). Therefore
usbfl lies between lsbfs and usbfs, and it must intersect sbfs.
Let Q and R denote the points where sbfs intersects the
horizontal and sloped segments of usbfl , respectively.

Since Πs
Πl

= k+1
2k+1 , we introduce two auxiliary variables B

and c: B = Θs
Πs

= Θl
Πl

and Πs = c(k+1),Πl = c(2k+1). It can
be derived from Equations 3, 4, and 5 that type A, P, Q, and
R points are defined by following equations:

lsbfs(t) = max(B(t−2c(k+1)(1−B)),0) (7)

usbfl(t) = max(B(t− c(2k+1)(1−B)),0) (8)

tA = c(2k+1)(1−B)+nc(2k+1) (9)

tP = 2c(k+1)(1−B)+mc(k+1) (10)

tQ = tP− c(1−B) (11)

tR = tP + cB (12)

where m,n ∈ N.
Based on the relationship of the four sets of points (A, P, Q,

and R), especially the relative position of type A points and
“QPR corners” cut by usbfl , there are three possible scenarios,
as illustrated in Figure 3.

The key part of the proof is the following observation: first,
if sbfs and sbfl interleave with each another, i.e., ∃t ′ such that
sbfs(t ′)< sbfl(t ′), then the interleaving point (t ′,sbfl(t ′)) can
only lie within the region between lsbfs and usbfl , because
lsbfs(t ′) ≤ sbfs(t ′) < sbfl(t ′) ≤ usbfl(t ′). Furthermore, if such
a t ′ exists, one can always identify an interleaving scenario
shown in Figure 3(a), which is shown by the following case
study.

Note that sbf is non-decreasing, and the slope of non-
horizontal sections is 1. If t ′ lies on a slope (t ′2 in Figure 3(a)),
then let tA be the coordinate of the nearest type A point such
that tA ≥ t ′2. From t ′2 to tA, sbfl keeps increasing at a slope of 1,
which is the maximum slope that an sbf can increase at. Since
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Fig. 3. 3 scenarios of sbfs and sbfl

sbfl(t ′2) > sbfs(t ′2), we have sbfl(tA) = sbfl(t ′2) + (tA − t ′2) >
sbfs(t ′2)+(tA− t ′2)≥ sbfs(tA).

If t ′ lies on a horizontal segment (t ′1 in Figure 3(a)), then
let tA be the coordinate of the nearest type A point such that
tA ≤ t ′1. Obviously sbfl(t ′1) = sbfl(tA). Since sbfl(t ′1)> sbfs(t ′1)
and sbfs is non-decreasing, sbfl(tA)> sbfs(t ′1)> sbfs(tA).

In either case, one can identify a type A point (tA,sbfl(tA))
such that sbfl(tA)> sbfs(tA). From Figure 3, sbfl(tA)> sbfs(tA)
yields an interleaving scenario shown in Figure 3(a), i.e., from
Equations 9 to 12, ∃m,n ∈ N such that tQ < tA < tR.

Conversely, if the interleaving scenario in Figure 3(a) hap-
pens, then it is trivially true that Ωs is not better than Ωl
since sbfl(tA) > sbfs(tA). Therefore, Ωs is not better than Ωl
if and only if there exists one combination of (tA, tP, tQ, tR)
such that tQ < tA < tR, i.e., the interleaving scenario happens.
Equivalently, Ωs is better than Ωl if and only if for any
combination of (tA, tP, tQ, tR), either tA ≥ tR or tA ≤ tQ.

From Equations 9 to 12, tQ and tR are fully defined by tP,
B, and c.

tA ≥ tR or tA ≤ tQ⇔ tA− tP ≥ cB or tA− tP ≤ c(B−1)

Hence we have: ∀t,sbfs(t)≥ sbfl(t) if and only if ∀m,n ∈ N,
either tA− tP ≥ cB or tA− tP ≤ c(B−1).

We now show this condition is satisfied.
tA− tP
= c(2k+1)(1−B)+nc(2k+1)
− (2c(k+1)(1−B)+mc(k+1))
= nc(2k+1)−mc(k+1)− c(1−B)
= c[n(2k+1)−m(k+1)−1+B]

(13)

Note that n,m,k ∈N, let x = n(2k+1)−m(k+1)−1∈Z, then
tA− tP = c(x+B).
Since x ∈ Z, either x ≥ 0 or x ≤−1. If x ≥ 0, tA− tP = c(x+
B) ≥ cB; if x ≤ −1, tA− tP = c(x+B) ≤ c(B− 1). From our
previous conclusion, ∀t,sbfs(t)≥ sbfl(t)

Given Lemmas 3.1 and 3.2, the only remaining case that
we need to check is when the ratio Πs

Πl
∈ ( 1

2 ,1) but is not in

the set { k+1
2k+1 , k ∈ N}. In this case, since lim

k→+∞

k+1
2k+1

=
1
2

,

the ratio Πs
Πl

should lie between two consecutive elements in

the series { k+1
2k+1 ,k ∈N}, i.e., ∃k′, (k′+1)+1

2(k′+1)+1 < Πs
Πl

< k′+1
2k′+1 . With

an auxiliary variable ε ∈ R, such condition is equivalent to
Πs
Πl

= k′+ε

2k′+1 and 2k′+2
2k′+3 < ε < 1. Lemma 3.3 addresses this case.

Lemma 3.3: Given two PRMs Ωs = (Πs,Θs) and Ωl =
(Πl ,Θl) with the same bandwidth, i.e., Θs

Πs
= Θl

Πl
, if ∃k ∈ N

and 2k+2
2k+3 < ε < 1, such that Πs

Πl
= k+ε

2k+1 , then ∃t ′ such that
sbfs(t ′)< sbfl(t ′), i.e., Ωs is not better than Ωl .

Proof: The structure of the proof is similar to the proof
of Lemma 3.2. Define the auxiliary variables B and c as: B =
Θs
Πs
, Πs = c(k+ ε), Πl = c(2k+1). It can be derived that,

lsbfs(t) = max(B(t−2c(k+ ε)(1−B)),0) (14)

usbfl(t) = max(B(t− c(2k+1)(1−B)),0) (15)

tA = c(2k+1)(1−B)+nc(2k+1) (16)

tP = 2c(k+ ε)(1−B)+mc(k+ ε) (17)

tQ = tP− c(1−B)(2ε−1) (18)

tR = tP + cB(2ε−1) (19)

where m,n ∈ N. Following from the observation we made in
the previous proof, if there exists tA and tP such that c(B−
1)(2ε− 1) < tA− tP < cB(2ε− 1), then sbfs interleaves with
sbfl , and furthermore sbfs(tA)< sbfl(tA), i.e., Ωs is not better
than Ωl .

Next, we show that this condition is satisfied when m= 2k+
1,n = k+1, i.e., m = 2k+1,n = k+1 gives a combination of
(tA, tP, tQ, tR) such that c(B−1)(2ε−1)< tA− tP < cB(2ε−1).

First, we show that tA− tP < cB(2ε−1):

tA− tP− cB(2ε−1)
= c(2k+1)(1−B)+(k+1)c(2k+1)
−2c(k+ ε)(1−B)− (2k+1)c(k+ ε)

− cB(2ε−1)
= c[(2k+1)(1− ε)+(1−2ε)]

= c[(2k+1)(1− ε)− (2ε−1)]

(20)

Note that
2k+2
2k+3

< ε < 1⇔ 2k+1
2k+3

< 2ε−1 < 1 (21)

and,
2k+2
2k+3

< ε < 1⇔ 0 < 1− ε <
1

2k+3

⇒ 0 < (2k+1)(1− ε)<
2k+1
2k+3

< 2ε−1



Therefore,

tA− tP− cB(2ε−1) = c[(2k+1)(1− ε)− (2ε−1)]< 0 (22)

Next, we show c(B−1)(2ε−1)< tA− tP:

tA− tP− c(B−1)(2ε−1)
= c(2k+1)(1−B)+(k+1)c(2k+1)
−2c(k+ ε)(1−B)− (2k+1)c(k+ ε)

− c(B−1)(2ε−1)
= c(2k+1)(1− ε)> 0.

(23)

Hence, the lemma holds.
We define the Γ function as follows.
Definition 3.4 (Γ Function): Given a positive real number

Πx > 0, the function Γ(Πx) gives a set of positive real numbers
Γ(Πx) = {Π|0 < Π

Πx
≤ 1

2}
⋃
{Π|∃k ∈ N, Π

Πx
= k+1

2k+1}.
Theorem 3.5 directly follows from Lemmas 3.1, 3.2,

and 3.3.
Theorem 3.5: Given two PRMs Ω = 〈Π,Θ〉 and Ω′ =

〈Π′,Θ′〉 with the same bandwidth, Ω′ is better than Ω if
and only if Ω′ ∈ E(Ω), where E(Ω) is a set of PRMs:
E(Ω = 〈Π,Θ〉) = {Ω′ = 〈Π′,Θ′〉|Π

Θ
= Π′

Θ′ and Π′ ∈ Γ(Π)}.
Note that by Definition 3.4, Πx ∈ Γ(Πx) (when k = 0) and

therefore, Ω ∈ E(Ω). In the rest of this paper, the set E(Ω) is
referred to as the equivalent set of Ω, i.e., if Ω can schedule a
component, then any PRM from E(Ω) can also schedule the
component, and all PRMs in E(Ω) have the same bandwidth.

B. Component Interface Generation

The interface of a leaf component is generated by a
2-step procedure: first, a single bandwidth optimal PRM
Ω0 = (Π0,Θ0) is identified; and second, E(Ω0) is derived as
the interface of the leaf component. The first step involves
choosing a minimum bandwidth PRM that can schedule a
given leaf component, which has been addressed by previous
studies, such as [2]. Here, we focus on the second step, and
subsequently, the composition of interfaces (c.f. Section III-C).

In our framework, the interface of a leaf component is
defined as below:

Definition 3.6 (Model-Set Interface): The interface I of a
leaf component C = 〈W, I,A〉 is defined to be I = E(Ω0 =
〈Π0,Θ0〉), where Ω0 = (Π0,Θ0) is a bandwidth-optimal PRM
that guarantees the schedulability of C.

Observe that each interface as defined above can be fully
represented by the bandwidth, which is shared by all PRMs in
the interface, and the set of periods of all PRMs. We define the
“Bandwidth-Periods” representation, which is used for both
leaf and intermediate component interfaces in our framework.

Definition 3.7 (Bandwidth-Periods Interface): The
interface I of a component C = 〈W, I,A〉 is defined to
be I = 〈B,P〉, in which B = Θ0

Π0
and P is the set of periods

of all feasible PRMs, e.g., for a leaf component, P = Γ(Π0),
where Ω0 = 〈Π0,Θ0〉 is a bandwidth-optimal PRM that
guarantees the schedulability of C.

To transform a bandwidth-periods interface I = 〈B,P〉 into
a model-set one, we simply construct a PRM for each period
pi in P as (pi,B∗ pi), as illustrated in Example 1. Obviously,
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Fig. 4. sbf(5,5∗0.12) and sbf(3,3∗0.12)

if a leaf component C is schedulable by PRMs, then Π0 > 0,
meaning there exists a PRM Ω0 that can schedule C.

Example 1 (Interface Generation): Given a leaf component
C = 〈W, I,EDF〉 whose workload consists of two periodic real-
time tasks W = {(35,2),(50,3)}. First, using the techniques
introduced in [2], given Π = 5, one can find the optimal single
PRM Ω0 = (5,0.6) with bandwidth of 0.12 (the bandwidth of
W is 0.1171). Then, the interface is I = 〈B,P〉, where B= 0.12
and P = Γ(5). For example, 3 ∈ Γ(5), so that the PRM Ω′ =
(3,3∗0.12) ∈ E(Ω0). From Theorem 3.5, ∀t,sbf(3,3∗0.12)(t)≥
sbf(5,5∗0.12)(t), which is verified by numerical calculation as
shown in Figure 4.

C. Interface Composition

In the scheduling hierarchy, leaf components present their
interfaces to higher level intermediate components. Each in-
termediate component then composes its sub-interfaces into a
new interface. The interface for an intermediate component is
also a set of PRMs that share the same bandwidth. Interfaces
are composed bottom-up in the scheduling tree until the root
component’s interface is obtained. The root component then
select one specific PRM from its own interface. The period Π

of the selected PRM is propagated to all components in the
tree so that each component can choose the specific PRM with
period Π from its own interface.

The interface composition of an intermediate component is
done by taking the intersection of the period sets and summing
up the bandwidth of the sub-interfaces, as given below.

Definition 3.8 (Interface Composition): The interface I of
an intermediate component C = 〈W, I,A〉 is given by I = 〈B,P〉
where B = ∑

n
i Bi, P =

⋂n
i Pi, where each Ii = 〈Bi,Pi〉 is a sub-

interface in W , i.e., W = {I1, . . . , In}.
In this definition, the composed interface I is only feasible

if P =
⋂n

i Pi 6= /0. Theorem 3.9 shows that the intersection is
always non-empty, under the reasonable assumption that each
leaf component is schedulable.



Theorem 3.9 (Non-Empty Intersection): Given a schedul-
ing hierarchy in which the interfaces of leaf components are
{I0 = 〈B0,Γ(Π0)〉, . . . , In = 〈Bn,Γ(Πn)〉}. Assume each leaf
component i is schedulable so that ∀i, Πi > 0; then for any
intermediate component C j, its interface I j = 〈B j,Pj〉, which
is obtained by Definition 3.8, is non-empty, i.e., Pj 6= /0.

Proof: Let {I j0 = 〈B j0,Γ(Π j0)〉, . . . , I jm = 〈B jm,Γ(Π jm)〉}
denotes the interfaces of the leaf components in the subtree
rooted at C j. Apply the composition in Definition 3.8 to each
intermediate component, and it is clear that Pj =

⋂m
x=0 Γ(Π jx).

From Definition 3.4, ∀0 < w ≤ 1
2 Π jx w ∈ Γ(Π jx). Let Π′ =

1
2 min(Π j0, . . . ,Π jm). Then ∀0≤ x≤m and ∀0 < w≤Π′, w≤
Π′ ≤ 1

2 Π jx, and therefore w∈ Γ(Π jx). So ∀0<w≤Π′, w∈ Pj,
i.e., Pj 6= /0.

The period Π picked by the root component is propagated
to all components in the tree, and that means each interface
Ii = 〈Bi,Pi〉 is reduced to a single PRM Ωi = (Π,Π ∗Bi). In
the composition step, the period set of a parent component is
obtained by taking the intersection of the period sets of all its
children, therefore the value Π picked by the root component
is within the period set of every interface, i.e., ∀i,Π∈ Pi. This
guarantees the PRM Ωi is already in the interface Ii, and thus
it is a valid candidate resource model for component Ci. Then
for a leaf component Ci, Ωi can schedule its workload because
it is in the interface.

For each intermediate component C j = 〈Wj, I j,A j〉, the sub-
interfaces in its workload are reduced to single PRMs once the
root component has determined the resource period, i.e., Wj =
{I j1, . . . , I jn}= {Ω j1, . . . ,Ω jn}. To show the schedulability, we
need to prove that Ω j can schedule Wj = {Ω j1, . . . ,Ω jn}.
Notice that Ω j and Ω j1, . . . ,Ω jn have the same period Π, which
is picked by the root component. Each Ω jk = (Π,Θ jk) ∈Wj
is taken as a periodic real-time task Tjk = (Π,Θ jk) by C j.
Then each intermediate component C j needs to schedule a task
set {Tj1 = (Π,Θ j1), . . . ,Tjn = (Π,Θ jn)} using resource model
Ω j = (Π,Θ j). From Definition 3.8, we know Θ j = ∑k Θ jk.
Lemma 3.10 shows that such a schedule is feasible under
any work-conserving scheduling policy, by exploiting the
assumption that the first jobs of the tasks {Tj1, . . . ,Tjn} are
released at the same time instance t0, and the resource supply
of Ω j also starts at t0. This synchronization assumption will
be justified and further discussed in Section IV-A.

Lemma 3.10: Given a set of periodic real-time tasks with
identical period T = {(p,e1), · · · ,(p,en)}, the PRM Ω =
(p,∑i ei) can schedule T under any work-conserving schedul-
ing algorithm, under the assumption that the first jobs of all
tasks are released at the same time instance t0 and the resource
supply of Ω also starts at t0.

Proof: Without loss of generality, let t0 = 0. Then within
each period [kp,(k + 1)p] for any k ∈ N, Ω only needs to
schedule the jobs released at kp and due by (k+1)p, because
jobs are only released at time instances 0, p,2p, . . . ,kp. The
total amount of resources provided by Ω within [kp,(k+1)p]
is ∑i ei, which is equal to the total resource demand of T within
that time interval. Under a work-conserving policy, resources
provided by Ω cannot be wasted if there are unfinished jobs.

Therefore, all jobs released at kp can be finished within
[kp,(k + 1)p]. Apply this reasoning for all k ∈ N, and it is
clear that Ω can schedule T .

The following theorem states that schedulability is guaran-
teed in our framework.

Theorem 3.11 (Schedulability): The interface generation
and composition proposed in Definitions 3.7 and 3.8 guarantee
the schedulability, in the sense that as long as the root
component is schedulable, all components in the hierarchy are
schedulable.

Proof: We will prove this through top-down induction
on the height of the scheduling tree h. This statement in the
theorem is denoted as P(h), and P(h) = True if the statement
is true for a scheduling tree with height h.

Base case: h = 1. The scheduling tree has only one inter-
mediate component, the root component. From Definition 3.8
and Lemma 3.10, the root component can schedule all its
sub-components under any work-conserving policy. Therefore
P(1) = True.

Induction step: Assume ∀i ≤ k,P(i) = True. Consider a
scheduling tree with h = k + 1; since P(1) = True, root
component C0 can schedule all its children C1, . . . ,Cn with
depth = 1. By ∀i≤ k,P(k) = True, each depth = 1 component
Ci can schedule all the components in the sub-tree rooted at Ci
because the height of the sub-tree is no more than k. Therefore
P(k+1) = True.

In Definition 3.8, the interface I of an intermediate com-
ponent is taken by B = ∑i Bi and P =

⋂
i Pi. Here it is

unnecessary to calculate the equivalent set for each PRM in the
composed interface I = 〈∑i Bi,

⋂
i Pi〉, because the Γ function

has the following closure property such that for any PRM
Ω ∈ I = 〈∑i Bi,

⋂
i Pi〉, the equivalent set E(Ω)⊆ I.

Theorem 3.12 (Closure Property of Γ Function): Given
any n positive real numbers p1, . . . , pn, let Pi = Γ(pi) and
P =

⋂
i Pi, ∀p′ ∈ P,Γ(p′)⊆ P.

Proof: First we will prove by case study that ∀x > 0,∀y∈
Γ(x),Γ(y)⊆ Γ(x).

Recall that Γ(x) = {x′|0 < x′
x ≤

1
2}

⋃
{x′|∃k ∈N, x′

x = k+1
2k+1}.

Case 1: y = x, Γ(y) = Γ(x)⊆ Γ(x).
Case 2: ∃k ∈ N+, such that y = k+1

2k+1 x. In order to prove
Γ(y)⊆ Γ(x), we need to show that ∀z ∈ Γ(y),z ∈ Γ(x).
• z = y = k+1

2k+1 x, z = y ∈ Γ(x).
• ∃k′ ∈ N+,z = k′+1

2k′+1 y = k′+1
2k′+1

k+1
2k+1 x. Note that ∀k ∈

N+, k+1
2k+1−

2
3 = 1/3−k/3

2k+1 ≤ 0 so ∀k ∈N+, k+1
2k+1 ≤

2
3 . There-

fore z = k′+1
2k′+1

k+1
2k+1 x≤ 2

3
2
3 x = 4

9 x < 1
2 x, and thus z ∈ Γ(x).

• z≤ 1
2 y = 1

2
k+1

2k+1 x < 1
2 x, therefore z ∈ Γ(x).

Case 3: y≤ 1
2 x, then ∀z ∈ Γ(y), z≤ y≤ 1

2 x, so z ∈ Γ(x) and
Γ(y)⊆ Γ(x)

Since P =
⋂

i Pi and p′ ∈ P, ∀i, p′ ∈ Pi = Γ(pi). Apply the
previous conclusion, let x = pi and y = p′, and we have
∀i,Γ(p′)⊆ Γ(pi) = Pi. Therefore Γ(p′)⊆ P.

From Definition 3.8, the bandwidth of each intermediate
component is the sum of the bandwidth of its sub-components.
Therefore our approach removes the abstraction overhead
during the composition, and the composition is associative,



since addition and intersection are both associative operations.
Furthermore, the bandwidth of the root component is equal to
the sum of the bandwidth of all leaf components, and thus our
approach is bandwidth optimal. There properties are formally
proved below.

Theorem 3.13 (Bandwidth Optimality): The interface gen-
eration and composition proposed in Definitions 3.7 and 3.8
guarantee the resulting bandwidth of the root component in
a scheduling tree is equal to the sum of the bandwidth of
the interfaces of all leaf components. Therefore the proposed
scheduling framework is bandwidth optimal, in the sense that
given a set of leaf components, assume the single optimal
PRM of each leaf component can be identified, any feasible
PRM-based scheduling framework requires at least as much
root-level bandwidth as our framework.

Proof: First we proved that in our approach, the interface
of root component C = 〈W, I,A〉 for any scheduling tree is
I = 〈∑i Bi,

⋂
i Pi〉, in which

{C1 = 〈W1,〈B1,P1〉,A1〉, . . . ,Cn = 〈Wn,〈Bn,Pn〉,An〉}

are the leaf components. We will denote such a predicate as
P(h). Proved by induction on the height of scheduling tree h:

Base case: h = 1. The root component C is the immediate
parent of all leaf components. P(1) is trivially true by Defini-
tion 3.8.

Induction step: Assume ∀i ≤ k,P(i) = True. Given any
scheduling tree with height k + 1, consider all the com-
ponents with depth 1: {C′1 = 〈W ′1,〈B′i,P′i 〉,A′1〉, . . . ,C′m =
〈W ′m,〈B′m,P′m〉,A′m〉}. Since the height of any component in
{C′1, . . . ,C′m} is at most k, the induction assumption applies.

∀i, I′i = 〈∑
j∈Si

B j,
⋂
j∈Si

Pj〉

in which Si denotes the leaf components of the sub-tree
rooted at Ci. By the tree property,

⋃
i Si is the set of all

leaf components and ∀i 6= j,Si
⋂

S j = Φ. Therefore, from
Definition 3.8,

C = 〈W, I,A〉
= 〈{I′1, . . . , I′m},〈∑

i
∑
j∈Si

B j,
⋂

i

⋂
j∈Si

Pj〉,A〉

= 〈{I′1, . . . , I′m},〈∑
i

Bi,
⋂

i
Pi〉,A〉

(24)

in which {C1 = 〈W1,〈B1,P1〉,A1〉, . . . ,Cn = 〈Wn,〈Bn,Pn〉,An〉}
are the leaf components of the tree.

The optimality is proved by contradiction. Given a
set of leaf components {C1 = 〈W1,〈B1,P1〉,A1〉, . . . ,Cn =
〈Wn,〈Bn,Pn〉,An〉}, suppose there is a scheduling tree in which
the bandwidth of interface at root component is strictly less
than ∑i Bi, then there is at least one component C′= 〈W ′, I′,A′〉
in the tree such that the bandwidth of I′ is strictly less than
bandwidth of its workload W ′, which makes W ′ unschedulable.

Theorem 3.14 (Associativity): The interface generation and
composition proposed in Definitions 3.7 and 3.8 guarantee the
associativity.

Proof: This is trivially true since both intersection of pe-
riod sets and addition of bandwidth are associative operations.

IV. METHODOLOGY EVALUATION AND COMPARISON TO
PREVIOUS WORK

In this section, we evaluate our approach by comparing it
with two previous techniques: the PRM-based compositional
scheduling framework proposed in [2] and the incremental
analysis framework introduced by [1].

The compositional analysis in [2] assumes that the tasks
in the workload of an intermediate component can start at
arbitrary times, just like the tasks in the workload of a leaf
component. This assumption was implicitly dropped by the
incremental analysis proposed by [1], but the underlying issue
has not been elaborated on in [1]. In this section, we show
that this assumption may incur additional bandwidth overhead
during composition, and that it is, in fact, unnecessary.

The incremental analysis in [1] assumes a single PRM
for each leaf component is identified under the lsbf-based
schedulability condition, which is sufficient but not necessary,
and it incurs more abstraction overhead than the sbf-based
condition. Our approach allows the single PRM to be identified
under the sbf-based schedulability condition.

A. Aligned Offsets Assumption for Intermediate Components

For a periodic task Ti = (pi,ei), let offset ai denote the
release time of the first job of Ti, i.e., the jobs of Ti are
released at time instants ai,ai + pi, . . . ,ai + k ∗ pi. Similarly,
for a PRM Ω = (Π,Θ), let offset aΩ denote the time instant
at which Ω starts providing resource, i.e., Ω guarantees
at least Θ units of resource supply over any time interval
[aΩ + kΠ,aΩ + (k + 1)Π]. Given a set of real-time tasks
W = {(p1,e1), . . . ,(pn,dn)}, dbfW (t) is the worst-case demand
over any time interval with length t, regardless of the offsets
{a1, . . . ,an}.

In the scheduling tree, the workload of an intermediate
component is composed of a set of periodic tasks, which are
transformed from the interfaces of sub-components. On the
other hand, the workload of a leaf component consists of real-
time tasks of applications. To differentiate these two kinds of
workloads, we call the tasks in the workloads of intermediate
components interface tasks, in contrast to system tasks by
which we refer to those in the workloads of leaf components.

Since the offsets of system tasks are not determined by
schedulers, for the schedulability analysis of a leaf component,
it is necessary to assume the offsets {a1, . . . ,an} have arbitrary
values and that the resource model should be able to schedule
the workload for any offsets {a1, . . . ,an}.

In order to achieve schedulability under arbitrary offsets, the
bandwidth of Ω is usually higher than the bandwidth of W .
For example, in Figure 1, let W1 = {T1 = (5,1),T2 = (5,1)} be
scheduled under the EDF policy and assume arbitrary offsets
for T1 and T2. Given Π= 5, the bandwidth optimal PRM for W1
is Ω= (5,3.5). As shown in Figure 5, the sbfΩ curve intersects
the dbfW1 curve at t = 5, i.e., if Θ < 3.5, then sbfΩ(5) will be
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Fig. 6. worst-case alignment under arbitrary offsets assumption.

less than dbfW1(5). In this case, the bandwidth of Ω and W1
are 0.7 and 0.4, respectively, i.e., the overhead is 0.3. Such
overhead is caused by the arbitrary offsets assumption and
starvation times of PRMs. Figure 6 illustrates the worst-case
scenario in which Ω = (5,3.5) is tight for W1. The starvation
of Ω happens when the resource is supplied in the first Θ time
units in one period and in the last Θ time units of the next
period. For Ω= (5,3.5), the starvation length is 2∗(5−3.5) =
3. If two jobs of T1 and T2 are released at the beginning of the
starvation interval, which is t = 3.5, then within time interval
[3.5,8.5], Ω can only guarantee 5− 3 = 2 units of resource
supply, which is equal to the resource demand of T1 and T2
during [3.5,8.5].

In [2], it is assumed that interface tasks may also have
arbitrary offsets. Therefore, the interfaces of intermediate
components and those of leaf components are derived under
the same schedulability condition. In that case, the bandwidth
overhead incurred by the arbitrary offsets assumption also ap-
plies to the interface composition of intermediate components.
For example, in Figure 1, let W2 = {I3 = (5,1), I4 = (5,1)}
and A2 = EDF ; under the arbitrary offsets assumption, W2 is
just the same as W1. And therefore the composed interface is
I2 = (5,3.5).

However, the arbitrary offsets assumption for interface tasks
is unnecessary. For an intermediate component, the interface
tasks in its workload are not tasks generated by applications
but abstract transformations of resource models for the sub-

components. For an intermediate component, the scheduling
of the interface tasks is the process of allocating resources top
down to the sub-components. Therefore, for an intermediate
component, the scheduler can determine the offset of each
interface task. Theorem 4.1 shows that the schedulability
property is still preserved while dropping the arbitrary offsets
assumption for interface tasks.

Theorem 4.1 (Offset of Interface Tasks): Given a schedul-
ing hierarchy in which the schedulability is checked by
an sbf-dbf based condition, for any intermediate component
Ci = 〈Wi, Ii,Ai〉, suppose its corresponding interface task is
(ai,Πi,Θi), where ai is the offset and Ωi = (Πi,Θi) is a PRM
in Ii. If Ωi can schedule Wi under some offset a′i, then Ωi
can schedule Wi under any offset ai, i.e., changing the offset
of an interface task does not affect the schedulability of the
sub-components of Ci.

Proof: The proof is based on the fact that by definition,
sbfΩ(t) gives the worst-case resource supply of Ω over any
time interval of length t. The worst-case supply is identified
by sliding a window of length t in the timeline, therefore it
does not depend on when Ω starts. Hence, for any ai and
a′i, sbf(ai,Πi,Θi)(t) = sbf(a′i,Πi,Θi)(t). Since the schedulability is
checked by an sbf-dbf based condition and changing ai does
not change the sbf, it immediately follows that changing the
offset of an interface task does not affect the schedulability of
the sub-components.

Taking the W2 = {I3, I4} and A2 = EDF in Figure 1 for
example, we show that the workload of C3 is schedulable
regardless of the offset of I3. If C3 is a leaf component, then
I3 is derived from an sbf-dbf based schedulability condition,
and Theorem 4.1 applies. If C3 is an intermediate component,
then the offsets of the workload W3 and the offset of I3
are aligned, in which case the schedulability is guaranteed
by Lemma 3.10. This shows that the offsets of all interface
tasks can be aligned without changing the schedulability of
all the components. The schedulability under the proposed
interface abstraction and composition technique has been
formally proved in Theorem 3.11. For example, in Figure 1,
let W2 = {I3 = (5,1), I4 = (5,1)} and A2 = EDF , I2 = (5,2)
suffices to schedule W2, under the assumption that the offsets
of I2, I3, and I4 are aligned. In contrast, under the arbitrary
offsets assumption, at least I2 = (5,3.5) is needed to schedule
W2, as discussed before. Note that in our framework, under
the aligned offsets assumption and identical interface period
condition, the starvation scenario illustrated in Figure 6 will
not happen.

The incremental schedulability analysis framework pro-
posed in [1] composes two interfaces I1 = (Π,Θ1) and I2 =
(Π,Θ2) by simply adding up the Θ’s, i.e., the composed
interface is I = (Π,Θ1+Θ2). In order for such composition to
be correct, the arbitrary offsets assumption must be dropped,
which has not been explicitly stated in [1].

B. Comparison with Incremental Analysis

In incremental schedulability analysis [1], the interfaces of
leaf components are derived under the lsbf-based schedulabil-
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ity condition, e.g., for EDF it is ∀t, lsbf(t) ≥ dbf(t). Such a
condition is sufficient but not necessary, and it incurs more
bandwidth overhead than the sbf-based condition, which for
EDF is ∀t,sbf(t) ≥ dbf(t). This is because the lsbf is a
lower bound of an sbf. As an example, given two system
tasks W = {(5,1),(5,1)} scheduled under EDF, and let the
period of the resource model be Π = 5, from the previous
section it is known that Ω = (5,3.5) is optimal under the sbf-
based schedulability condition ∀t,sbf(t)≥ dbf(t) and arbitrary
offsets assumption. If instead, ∀t, lsbf(t) ≥ dbf(t) is used for
checking the schedulability, at least a PRM (5,3.82) will be
needed. The sbf and dbf curves are shown in Figure 7. In
our approach, the optimal PRM can be derived under the sbf-
based schedulability condition, and therefore it reduces the
bandwidth overhead for leaf components.

V. CONCLUSION

In this paper, we have identified several important properties
regarding the supply bound function of a PRM. Based on
those properties, we have proposed a new interface abstraction
and composition framework which achieves schedulability,
optimality, and associativity. Our approach eliminates the
abstraction overhead in composition. The proposed framework
is applicable to a wide range of real-time systems. One of our
future research directions is extending this framework to take
into account preemption overhead.
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