72 research outputs found

    An advection-robust Hybrid High-Order method for the Oseen problem

    Get PDF
    In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer k0k\ge 0, the discrete velocity unknowns are vector-valued polynomials of total degree k\le k on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree k\le k on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree (k+1)\le(k+1), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element TT of diameter hTh_T contributes to the discretization error with an O(hTk+1)\mathcal{O}(h_T^{k+1})-term in the diffusion-dominated regime, an O(hTk+12)\mathcal{O}(h_T^{k+\frac12})-term in the advection-dominated regime, and scales with intermediate powers of hTh_T in between. Numerical results complete the exposition

    A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations

    Get PDF
    We introduce a space–time discontinuous Galerkin (DG) finite element method for the incompressible Navier–Stokes equations. Our formulation can be made arbitrarily high order accurate in both space and time and can be directly applied to deforming domains. Different stabilizing approaches are discussed which ensure stability of the method. A numerical study is performed to compare the effect of the stabilizing approaches, to show the method’s robustness on deforming domains and to investigate the behavior of the convergence rates of the solution. Recently we introduced a space–time hybridizable DG (HDG) method for incompressible flows [S. Rhebergen, B. Cockburn, A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys. 231 (2012) 4185–4204]. We will compare numerical results of the space–time DG and space–time HDG methods. This constitutes the first comparison between DG and HDG methods

    An embedded--hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present and analyze a new embedded--hybridized discontinuous Galerkin finite element method for the Stokes problem. The method has the attractive properties of full hybridized methods, namely an H(div)H({\rm div})-conforming velocity field, pointwise satisfaction of the continuity equation and \emph{a priori} error estimates for the velocity that are independent of the pressure. The embedded--hybridized formulation has advantages over a full hybridized formulation in that it has fewer global degrees-of-freedom for a given mesh and the algebraic structure of the resulting linear system is better suited to fast iterative solvers. The analysis results are supported by a range of numerical examples that demonstrate rates of convergence, and which show computational efficiency gains over a full hybridized formulation

    Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present optimal preconditioners for a recently introduced hybridized discontinuous Galerkin finite element discretization of the Stokes equations. Typical of hybridized discontinuous Galerkin methods, the method has degrees-of-freedom that can be eliminated locally (cell-wise), thereby significantly reducing the size of the global problem. Although the linear system becomes more complex to analyze after static condensation of these element degrees-of-freedom, the pressure Schur complement of the original and reduced problem are the same. Using this fact, we prove spectral equivalence of this Schur complement to two simple matrices, which is then used to formulate optimal preconditioners for the statically condensed problem. Numerical simulations in two and three spatial dimensions demonstrate the good performance of the proposed preconditioners

    Analysis of a space--time hybridizable discontinuous Galerkin method for the advection--diffusion problem on time-dependent domains

    Full text link
    This paper presents the first analysis of a space--time hybridizable discontinuous Galerkin method for the advection--diffusion problem on time-dependent domains. The analysis is based on non-standard local trace and inverse inequalities that are anisotropic in the spatial and time steps. We prove well-posedness of the discrete problem and provide a priori error estimates in a mesh-dependent norm. Convergence theory is validated by a numerical example solving the advection--diffusion problem on a time-dependent domain for approximations of various polynomial degree

    To CG or to HDG: A Comparative Study in 3D

    Get PDF

    High-fidelity surrogate models for parametric shape design in microfluidics

    Get PDF
    Nowadays, the main computational bottleneck in computer-assisted industrial design procedures is the necessity of testing multiple parameter settings for the same problem. Material properties, boundary conditions or geometry may have a relevant influence on the solution of those problems. Consequently, the effects of changes in these quantities on the numerical solution need to be accurately estimated. That leads to significantly time-consuming multi-query procedures during decision-making processes. Microfluidics is one of the many fields affected by this issue, especially in the context of the design of robotic devices inspired by natural microswimmers. Reduced-order modelling procedures are commonly employed to reduce the computational burden of such parametric studies with multiple parameters. Moreover, highfidelity simulation techniques play a crucial role in the accurate approximation of the flow features appearing in complex geometries. This thesis proposes a coupled methodology based on the high-order hybridisable discontinuous Galerkin (HDG) method and the proper generalized decomposition (PGD) technique. Geometrically parametrised Stokes equations are solved exploiting the innovative HDG-PGD framework. On the one hand, the parameters describing the geometry of the domain act as extra-coordinates and PGD is employed to construct a separated approximation of the solution. On the other hand, HDG mixed formulation allows separating exactly the terms introduced by the parametric mapping into products of functions depending either on the spatial or on the parametric unknowns. Convergence results validate the methodology and more realistic test cases, inspired by microswimmer devices involving variable geometries, show the potential of the proposed HDG-PGD framework in parametric shape design. The PGD-based surrogate models are also utilised to construct separated response surfaces for the drag force. A comparison between response surfaces obtained through the apriori and the a posteriori PGD is exposed. A critical analysis of the two techniques is presented reporting advantages and drawbacks of both in terms of computational costs and accuracy.Actualmente, el principal obstáculo en los procesos de diseño industrial computarizado es la necesidad de examinar múltiples parámetros para el mismo problema. Las propiedades de los materiales, las condiciones de contorno o la geometría pueden tener una influencia relevante en la solución de esos problemas. Por lo tanto, es necesario estimar con precisión los efectos de las variaciones de esas cantidades en la solución numérica. Esto da origen a procedimientos de consultas múltiples que requieren considerable tiempo durante los procesos de toma de decisión. La microfluídica es uno de los varios campos afectados por esta problemática, especialmente en el contexto del diseño de dispositivos robóticos inspirados en los micronadadores naturales. Generalmente se recurre a procedimientos de reducción de orden de modelo para reducir la complejidad computacional de estos estudios paramétricos basados en múltiples parámetros. Además, los esquemas de alto orden son fundamentales para la aproximación precisa de las particularidades de los flujos que aparecen en las geometrías complejas. Esta tesis propone una metodología acoplada basada en el método de Galerkin discontinuo hibridizable de alto orden (HDG) y la técnica de descomposición propia generalizada (PGD). Las ecuaciones de Stokes geométricamente parametrizadas se resuelven empleando el innovador método HDG-PGD. Por un lado, los parámetros que describen la geometría del dominio actúan como extra-coordinadas y la PGD permite construir una aproximación separada de la solución. Por otra parte, la formulación mixta de HDG admite la separación exacta de los términos introducidos por la descripción paramétrica del dominio en productos de funciones dependientes de las incógnitas espaciales o paramétricas. Los resultados de convergencia validan la metodología y estudios de casos más realistas, inspirados en los dispositivos de micronatación con geometrías variables, muestran el potencial del marco propuesto de HDG-PGD en el diseño de formas parametrizadas. Los modelos reducidos basados en la PGD también permiten construir superficies de respuesta separadas para la fuerza de arrastre. Se realiza una comparación entre las superficies de respuesta obtenidas mediante la PGD a priori y a posteriori. Se exponen una análisis crítica de las dos técnicas reportando las ventajas y desventajas de ambas en términos de costes computacionales y precisión
    corecore