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Abstract

Since the inception of discontinuous Galerkin (DG) methods for elliptic problems,
there has existed a question of whether DG methods can be made more computationally
e!cient than continuous Galerkin (CG) methods. Fewer degrees of freedom, approxima-
tion properties for elliptic problems together with the number of optimization techniques,
such as static condensation, available within CG framework make it challenging for
DG methods to be competitive until recently. However, with the introduction of a
static-condensation-amenable DG method Ð the hybridizable discontinuous Galerkin
(HDG) method Ð it has become possible to perform a realistic comparison of CG and
HDG methods when applied to elliptic problems. In this work, we extend upon an
earlier 2D comparative study, providing numerical results and discussion of the CG and
HDG method performance in three dimensions. The comparison categories covered
include steady-state elliptic and time-dependent parabolic problems, various element
types and serial and parallel performance. The postprocessing technique, which allows
for superconvergence in the HDG case, is also discussed. Depending on the linear
system solver used and the type of the problem (steady-state vs time-dependent) in
question the HDG method either outperforms or demonstrates a comparable perfor-
mance when compared with the CG method. The HDG method however falls behind
performance-wise when the iterative solver is used, which indicates the need for an
e"ective preconditioning strategy for the method.

Keywords: High-Order Finite Elements, Spectral/ hp Elements, Discontinuous
Galerkin Method, Hybridization, Parallel Computing, Postprocessing, Super-
convergence

1 Introduction

Due to the large number of numerical methods for solving partial di!erential equations (PDEs),
computational scientists and engineers are often faced with a choice of method to solve a
given scientific problem. Typically, this choice is not based purely on numerical properties
of a given method such as its asymptotic convergence rates, ability to handle complicated
geometry or specific feature-capturing properties, but also on other more practical aspects
such as robustness, time-to-implement and computational cost. In previous work [30] the
authors presented a comparative study of the performance of the continuous and discontinuous
Galerkin methods in the context of symmetric second-order elliptic PDEs, with the goal of
providing guidance as to why one may select one versus the other based on these criteria. The
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performance results and comparison were based on the data obtained from two-dimensional
numerical simulations. In this paper we significantly extend the scope of the aforementioned
2D study by comparing the performance of CG and DG methods both in serial and parallel
in three dimensions.

The CG method has a rich history, having been utilised in a large number of numerical
studies, and so we refer the interested reader to [25, 50–52] for a comprehensive discussion of
the formulation and implementation of the method. Whilst DG methods are a more recent
development, they too are now widely used as a spatial discretisation and are especially
popular when considering convection dominated systems, as a DG discretisation often results
in beneficial properties such as local conservation [11]. However, in recent years there has
been much interest in creating e"cient implicit DG discretisations of elliptic operators, given
that DG methods do not need to necessarily enforce a continuous solution function as is the
case in CG, which makes them more amenable to applications such as shock capturing when
coupled with appropriate stabilisation.

The discretisation of elliptic operators has traditionally fallen into the realm of the CG
method, where the size of the matrix system is substantially smaller than the equilvalent
DG system since degrees of freedom associated with vertices, edges and faces which connect
elements only appear once in the global system. Furthermore, through the application of the
lesser-known static condensation (or substructuring) technique, the size of the matrix system
can be further reduced. In this approach, given an appropriate choice of basis functions which
make a distinction between boundary and interior modes, the CG system can be condensed by
taking the Schur complement of the boundary system one (or indeed multiple) times. Whilst
this reduced boundary system has no special structure in general, the interior system is block
diagonal and can be trivially inverted. At higher orders, and particularly in three dimensions,
this dramatically reduces execution time, and has meant that implicit DG methods have
struggled to compete from the perspective of computational e"ciency.

Recently however, the hybridized DG (HDG) method, introduced by Cockburn et al. [15]
attempts to address this issue by reducing the size of the linear system to be solved in exchange
for an additional cost incurred during its construction. In essence, the HDG method applies
a static condensation technique within the DG framework, so that the only globally coupled
degrees of freedom are those located on the mesh skeleton or trace space, greatly reducing
the global system size. One additional benefit of the HDG method is its superconvergence
property, whereby a solution obtained at polynomial order p can converge with order p + 2
through the application of a local post-processing technique on each element.

The HDG method has proven to be a popular method and has, in recent years, been
applied in the context of steady-state di!usion [9, 10, 16, 18], Maxwell’s equations [32, 33, 36],
convection-di!usion problems [7,13,34,35], linear elasticity [45], Timoshenko beam model [4,5],
elastodynamics [37], Stokes equations [12, 17, 19, 34], compressible [26, 49] and incompressible
Navier-Stokes, and Oseen equations [6, 37, 39, 40]. We note, however, that the majority of
these works focus either on the theoretical aspects of the method such as formulation and
analysis for a specific equation type, or the specific benefits such as accurately captured
solution features that the HDG method can o!er.

The goal of our work is to perform an assessment of the performance of the HDG method
in 3D and compare it with the CG method, which can be considered the performance “meter
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stick” in the realm of numerical methods for elliptic PDEs. On one hand, such a comparison
will provide scientific computing practitioners with the HDG method performance information
and guide them in the choice of the method to solve a given problem; on the other hand,
our work will serve as a feedback for numerical computing theoreticians by improving the
understanding of the benefits and shortcomings of the theoretically proven properties under
a set of specific implementation choices.

To our knowledge, this is the first work that encompasses a broad set of factors and
comparison categories: this study (a) is performed in 3D; (b) uses various element types;
(c) accounts for the use of local postprocessing in the HDG method; (d) accounts for static
condensation in the CG discretisation; and (e) discusses large-scale parallel performance and
implementation choices.

We note that there is a limited amount of published work which documents some of these
features. Of the few published studies that discuss performance-related topics, most focus on
one particular aspect of the points above. For example, [41] measures scalability of the 2D
HDG method for the compressible Navier-Stokes equations up to 32 cores, and [24] derives
theoretical floating point operation counts for CG, DG and HDG schemes in 2D and 3D.
However, from a practical perspective, there is still a pressing need to examine how these
methods perform through directly measuring their execution times, in both the setting of
large-scale computational resources that are needed for real-world 3D simulations, and in a
manner that provides a fair comparison against existing benchmark CG discretisations.

As we see it, there are two main aspects of the “fair comparison” of two numerical methods:
the “fairness” and the scope and depth of the comparison. In our case, we strive towards
fairness by using the same object-oriented spectral element framework Nektar++ [3] as the
foundation for the implementation of both methods, which guarantees that both solvers will
have the same basic underlying functionality in terms of numerical quadrature, elemental
matrix operations and linear system solvers.

In terms of the scope of this work, our intention is to study problems that are likely
to arise in common use cases. We therefore focus on elliptic steady-state and parabolic
time-dependent problems, as these often form the building blocks of more complex systems
and can therefore give a good indicator as to the performance of each method in a wider
range of applications. In particular, the following aspects are covered:

¥ serial performance for smaller test cases using direct solvers;

¥ parallel performance up to 4,096 cores for larger test cases using iterative solvers;

¥ the e!ect of structured meshes of hexahedra and tetrahedra in serial and parallel;

¥ the e!ect of unstructured meshes in parallel to assess scalability of each method; and

¥ the e!ect of HDG postprocessing to achieve superconvergence of the solution field (for
the cases where superconvergence property holds).

The scope of this work therefore encompasses a wide range of potential application areas and
significantly builds upon the two-dimensional results that have been previously presented.

The results presented in this paper demonstrate that, for steady-state second-order elliptic
problems, the HDG method (with postprocessing and resulting superconvergence) outperforms
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the CG method starting at a polynomial order between one and three, depending on mesh
size and elements shape. The HDG method demonstrates at worst competitive and at best
superior performance (depending on the linear system solver chosen) when compared to the
CG method in a time-dependent parabolic PDE setting. In parallel execution, where an
iterative linear system solver is used, the HDG method is significantly outperformed by the
CG method even when postprocessing is utilised. This performance gap indicates the need
for the robust preconditioners developed specifically for the HDG method, a research area
that is beginning to be addressed (see [14,41]). The additional degrees of freedom that are
present in the HDG system between common edges and vertices of faces have an additional
e!ect on performance. However, on a per-iteration basis (with the use of postprocessing in
HDG case) both methods have approximately the same performance characteristics up to
large core counts.

We also note that not all of these parameters are relevant to a given application area.
Superconvergence of the HDG method may not always be easily achievable, or indeed
achievable at all, particularly in case of nonlinear problems. In the interests of fairness, we
base our conclusions here on the best case scenario for each method. Wherever possible, we
also discuss relative performance when superconvergence is not taken into account.

The paper is organized as follows. In Section 2 we describe domain partitioning, finite
element spaces and polynomial expansions. This is followed by the formulations of the CG
and HDG methods in Section 3. We give an outline of our parallelization strategy in Section 4.
Section 5 contains numerical comparison of the CG and HDG methods performance in both
serial and parallel settings. The paper is concluded by the contribution summary in Section 6.

2 Domain Partitioning, Finite Element Spaces and Poly-
nomial Expansions

In this section we introduce the preliminaries that will be used for the CG and HDG methods
formulation in Section 3. We define the partitioning of the domain in Section 2.1, the finite
element spaces in Section 2.2 and the polynomial expansions used in Section 2.3.

2.1 Partitioning of the Domain

We begin by discretizing our domain. We assume T (#) is a three-dimensional tessellation of
#. Let # e ! T (#) be a non-overlapping element within the tessellation such that if e1 "= e2

then # e1
!

# e2 = #. We denote the number of elements (or cardinality) of T (#) by Nel. Let
! # e denote the boundary of the element # e (i.e. #̄ e \ # e) and ! # e

i denote an individual face
of ! # e such that 1 $ i $ N e

b where N e
b denotes the number of faces of element e. We then

denote by $ the set of boundaries ! # e of all the elements # e of T (#). Finally, we denote by
N! the number of faces (or cardinality) of $.

For simplicity, we assume that the tessellation T (#) consists of conforming elements.
We say that $l is an interior face of the tessellation T (#) if there are two elements of the
tessellation, # e and # f , such that $l = # e %# f and the area of $l is not zero. We say that
$l is a boundary face of the tessellation T (#) if there is an element of the tessellation, # e,
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such that $l = # e %! # and the area of $ l is not zero.
As it will be useful later, let us define a collection of index mapping functions, that allow

us to relate the local faces of an element # e, namely, ! # e
1, . . . , ! # e

N e
b
, with the global faces

of $, that is, with $1, . . . , $N! . Thus, since the j -th face of the element # e, ! # e
j , is the l-th

face $l of the set of edges $, we set " (e, j ) = l so that we can write ! # e
j = $! (e,j ) . Similarly,

since the interior face $l is the intersection of the boundaries of the two elements # e and # f ,
we set #(l, +) = e and #(l, &) = f so that we can write $l = ! # " (l,+) %! # " (l, ! ) . Here the ±
convention is arbitrary.

2.2 The Finite Element Spaces

Next, we define the finite element spaces associated with the partition T (#). To begin, for a
three-dimensional problem we set

Vh := { v ! L2(#) : v|" e ! P(# e) ' # e ! T (#) } , (1a)

! h := { $ ! [L2(#)] 3 : $|" e ! ! (# e) ' # e ! T (#) } , (1b)

M h := { µ ! L2($) : µ|! l ! P($l) ' $l ! $} , (1c)

where P($l ) = TP ($l ), P(# e) = NP (# e) are the spaces of polynomials of total degree P defined
on a standard triangular and tetrahedral regions, and P($l ) = QP ($l ), P(# e) = H P (# e) are
the spaces of tensor-product polynomials of degree P defined on a standard quadrilateral
and hexahedral regions correspondingly. The above polynomial spaces are defined as

TP ($l) = { %p
1%q

2; 0 $ p + q $ P ; (x1, x2) ! $l ; &1 $ %1, %2; %1 + %2 $ 1} ,

QP ($l) = { %p
1%q

2; 0 $ p, q$ P ; (x1, x2) ! $l ; &1 $ %1, %2 $ 1} ,

NP (# e) = { %p
1%q

2%r
3;0 $ p + q+ r $ P ; (x1, x2, x3) ! # e; &1 $ %1, %2, %3; %1 + %2 + %3 $ 1} ,

H P (# e) = { %p
1%q

2%r
3;0 $ p, q, r $ P ; (x1, x2, x3) ! # e; &1 $ %1, %2, %3 $ 1} ,

where xi = xi (%1, %2) for TP ($l) and QP ($l) and xi = xi (%1, %2, %3) for NP (# e) and H P (# e).
Similarly ! (# e) = [NP (# e)]3 or ! (# e) = [H P (# e)]3.

2.3 Elemental Polynomial Expansion Bases

In our numerical implementation, we have applied a spectral/hp element discretization which
is described in detail in [28]. Here we briefly describe the C0-continuous hexahedral and
tetrahedral expansions within the standard regions which we have adopted in this work.
We have chosen this type of basis since it provides the C0 continuity required for the CG
method as well as allows the decomposition of these expansions into an interior and boundary
modes [28, 43], which is also beneficial to the HDG method implementation.

A commonly used hierarchical C0 polynomial expansion [28, 42] is based on the tensor
product of the integral of Legendre polynomials or equivalently generalized Jacobi polynomials
P1,1

p (%) such that

&i (pqr)(x (! )) = ' a
p(%1)' a

q(%2)' a
r (%3) 0 $ p, q, r $ P
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where

' a
p(z) =

"
#

$

1! z
2 p = 0

1! z
2

1+ z
2 P1,1

p (z) 0 < p < P
1+ z

2 p = P
,

! = (%1, %2, %3), x = (x1, x2, x3) and x (! ) represents the mapping from the standard region
# st = {& 1 $ %1, %2, %3 $ 1} to # e.

Within a tetrahedral domain a compatible C0 expansion can also be developed and is
based on an orthogonal expansion described by Sherwin and Karniadakis [43]. This C0

expansion takes the form of a generalized tensor product

&i (pqr)(x (! )) = ' a
p(#1)' b

pq(#2)' c
pqr(#3)

where

' b
pq(z) =

"
%%#

%%$

' q(z) p = 0, 0 $ q $ P&
1! z

2

' p+1
1 $ p < P, q = 0&

1! z
2

' p+1 &
1+ z

2

'
P2p+1 ,1

q! 1 (z) 1 $ p < P, 1 $ q+ p < P
' q(z) p = P,0 $ q $ P

' c
pqr(z) =

"
%%%%%%%#

%%%%%%%$

' b
qr(z) p = 0, 0 $ q, r $ P

' b
pr (z) q = 0, 0 $ p, r $ P

&
1! z

2

' p+ q+1
1 $ p, q$ P, r = 0&

1! z
2

' p+ q+1 &
1+ z

2

'
P2p+2 q+1 ,1

r ! 1 (z) 1 $ p < P, 1 $ p + q+ r < P
' b

pr (z) q = P,0 $ p, r $ P
' b

qr(z) p = P,0 $ q, r $ P

and we use a collapsed coordinate system

#1 = 2
(1 + %1)

(1 & %2)
& 1, #2 = 2

1 + %2

1 & %3
& 1, #3 = %3.

Once again, x (! ) represents a mapping from # st = {& 1 $ %1, %2, %3; %1 + %2 + %3 $ 1} to
# e. This expansion is the extension of the triangular C0 expansion, originally proposed by
Dubiner [21] and is detailed in [28,43]. The expansion used on the element faces, corresponding
to the finite element space M h, is denoted by ( i (pq) . Just as in the 3D case described above,
( i (pq) is the tensor product expansion on the quadrilateral faces and the generalized tensor
product expansion on the triangular faces.

3 The CG and HDG Methods

We will formulate the CG and HDG methods for the following elliptic di!usion problem with
mixed Dirichlet and Neumann boundary conditions:

&( 2u(x ) = f (x ), x ! # ,

u(x ) = gD (x ), x ! ! # D , (2)

n á ( u(x ) = gN (x ), x ! ! # N ,
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where ! # D
(

! # N = ! # and ! # D
!

! # N = #. The formulation above can be generalized
in many ways and lead to a variety of di!erent systems. In light of the comprehensive
implementation discussion of both methods in 2D setting, presented in [30], and considering
that the extension to 3D is a trivial task we limit ourselves to a rather basic formula-
tion/implementation discussion in this section and refer an interested reader to the original
2D paper for more details.

Both the statically condensed CG method and the HDG method can be viewed as
following the same pipeline: construction of a collection of elemental (local) operators which
are then judiciously assembled through a static-condensation-aware procedure to yield a
global system whose solution determines the degrees of freedom on the boundary of the
elements. This boundary system is significantly smaller than the full system one would
solve without employing the Schur complement (the linear algebra underpinning of the
static-condensation procedure) of the corresponding assembled global system. Once the
solution has been obtained on the boundaries of the elements, the primary solution over each
element can be determined independently through a forward-application of the elemental
operators.

It is well known that the approximation uCG given by the CG method is an element of
the space of continuous functions in Vh satisfying

uCG = I h(gD ) on ! # D ,
)

"
( v á ( uCGdx =

)

#" N

v gN ds+

)

"
v fdx , (3)

for all test functions v ! V 0
h where

V 0
h = { v ! Vh | v = 0 on ! # D } .

Here I h is a suitably defined interpolation operator whose image is the space of traces on
! # D of functions in V 0

h .
In order to define the HDG method we have to start by rewriting the original problem (2)

in auxiliary or mixed form as two first-order di!erential equations by introducing an auxiliary
flux variable q = ( u. This gives us:

&( á q = f (x ) x ! # ,

q = ( u(x ) x ! # ,

u(x ) = gD (x ) x ! ! # D ,

q án = gN (x ) x ! ! # N .

The HDG method seeks an approximation to (u, q), (uHDG , qHDG ), in the space Vh ) ! h, and
determines it by requiring that

*

" e"T (")

)

" e
(( v áqHDG ) dx &

*

" e"T (")

)

#" e
v (n e á+qHDG ) ds =

*

" e"T (")

)

" e
v f dx , (5a)

*

" e"T (")

)

" e
(w áqHDG ) dx = &

*

" e"T (")

)

" e
(( á w ) uHDG dx +

*

" e"T (")

)

#" e
(w án e) +uHDG ds,

(5b)
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for all (v,w ) ! Vh(#) ) ! h(#), where the numerical traces +uHDG and +qHDG are defined in
terms of the approximate solution (uHDG , qHDG ).

The remainder of this section will be split in three parts: local problems, global formulation
and postprocessing. In the first two parts we will present the formulation of the two methods
side by side to highlight the similarities between the statically condensed CG method and
the HDG method. In the third part we will outline the local postprocessing procedure for
the HDG method.

3.1 Local Problems

By a local problem we mean the procedure through which we express the numerical solution
on an element through the solution on its boundary. In other words, we want to solve the
original Equation (2) on a single element under the assumption that the Dirichlet boundary
conditions for that element are known.

3.1.1 The CG method

We begin by noting that, if we assume that the function ) , which belongs to the space
M 0

h = { v ! M h | v ! C0} of continuous functions in M h, is known, the equation satisfied by
the restriction of uCG to an arbitrary element # e ! T h is the solution of the following local
problem:

uCG = ) on ! # e,
)

" e
( v á ( uCGdx =

)

" e
v fdx for all v ! P(# e) such that v = 0 on ! # e. (6)

This formulation follows from the standard global formulation of the CG method by taking
the test functions v di!erent from zero only on the element # e . This implies that, if we
define by U$ and by Uf the local solutions to (6) when f = 0 and when ) = 0, respectively
(i.e. the homogeneous and heterogeneous solutions), we can write

uCG = U$ + Uf . (7)

The discrete problem represented by Equation (6) can also be recast into an elemental matrix
problem. To do so, we first define

uCG =
*

n

&e
n(x ) ûCG [n] =

*

n

&b
n(x ) ûb[n] +

*

n

&i
n(x ) ûi [n] (8)

where the &i
n are functions which are defined to be zero on the element boundary ! # e and

&b
n are functions that have support on the element boundaries. The array ûCG [n] holds the

degrees of freedom (modes) of the solution; ûb[n] and ûi [n] holds the degrees of freedom
(modes) on the boundaries and in the interior, respectively. We next introduce

L[n, m] =

)

" e
( &n á ( &mdx , L =

,
Lb,b Lb,i

Li,b Li,i

-
, f [n] =

)

" e
&n fd x (9)
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where the superscripts on the matrix L correspond to the decomposition of the functions &e
n

into the sets &b
n and &i

n . We can now restate Equations (6) as

v̂TLû = v̂T f (10)

where v =
.

n &e
n(x ) v̂[n]. Considering Equation (7), we can express U$ and Uf in terms

of their approximating expansions as follows: U$ =
.

n &e
n(x )Û$ [n] =

.
n &b

n(x )Û
b
$ [n] +

.
n &i

n(x )Û
i
$ [n] and Uf =

.
n &e

n(x )Ûf [n] =
.

n &b
n(x )Û

b
f [n] +

.
n &i

n(x )Û
i
f [n]. Let ) =

.
n &b

n(! # e))̂ [n]. By substituting these expressions into Equation (10) and solving for Û$

assuming f = 0 with known boundaries based upon ) , and solving for Ûf assuming ) = 0
with known right-hand-side f , we arrive at (respectively):

Û$ =

,
I

&(Li,i )! 1Li,b

-
)̂ , Ûf =

,
0 0
0 (Li,i )! 1

-
f . (11)

If we know f and ) (or equivalently f and )̂ ) we would be able to construct the solution
uCG , and so it therefore remains to find a way to characterize ) .

3.1.2 The HDG method

We begin by assuming that the function ) := +uHDG ! M h is known, for any element # e,
from the global formulation of the HDG method. The restriction of the HDG solution to
the element # e, (ue, qe) is then the function in Vh(# e) ) ! h(# e) and satisfies the following
equations:

)

" e
(( v áqe) dx &

)

#" e
v (n e á+qe) ds =

)

" e
v f dx , (12a)

)

" e
(w áqe) dx = &

)

" e
(( á w ) ue dx +

)

#" e
(w án e) ) ds, (12b)

for all (v,w ) ! Vh(# e)) ! (# e). To allow us to solve the above equations locally, the numerical
trace of the flux is chosen in such a way that it depends only on ) and on (ue, qe):

+qe(x ) = qe(x ) & $(ue(x ) & ) (x ))n e on ! # e (12c)

where $ is a positive function. For the HDG method taking $ to be positive ensures that the
method is well defined. The results in [9] indicate that a reasonable choice of $ is to be of
order one. Note that $ is a function of the set of borders of the elements of the discretization;
hence, it is allowed to be di!erent per element and per edge. Thus, if we are dealing with the
element whose global number is e, we denote the value of $ on the edge whose local number is
i by $e,i .

Similar to the CG formulation in Section 3.1.1 we denote by (U$, Q$) and (Uf , Qf ) the
solution of the (12a) and (12b) local problem when f = 0 and when ) = 0, respectively, and
define our approximation to be

(uHDG , qHDG ) = (U$, Q$) + (Uf , Qf ).
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We note that for the HDG decomposition, unlike in the CG case, the local problem involve
an approximation over ! # e. However similar to the CG problem solution to (12a) and (12b)
when f = 0 allows us to express U$, Q$ in terms of ) .

Let us start by defining

ue(x ) =
N e

u*

j =1

&e
j (x ) ûe[j ], qe

k(x ) =

N e
q*

j =1

&e
j (x ) q̂e

k
[j ], ) l(x ) =

N l
!*

j =1

( l
j (x ) )̂

l
[j ],

where ue(x ) : # e * R, qe(x ) : # e * R3 and ) l(x ) : $l * R.
After inserting the finite expansion of the trial functions into Equations (12a) and (12b),

and using the hybridized definition of the flux given in Equation (12c), the equations for the
local solvers can be written in matrix form as:

/
(De

1)T (De
2)T (De

3)T
0

1

2
q̂e

1
q̂e

2
q̂e

3

3

4 &
N e

b*

l=1

5
+E

e

1l
+E

e

2l
+E

e

3l

6
1

2
q̂e

1
q̂e

2
q̂e

3

3

4 +

N e
b*

l=1

$e,l
5
Ee

l ûe & Fe
l )̂

! (e,l)
6

= f e

(13a)

Meq̂e
k

= &(De
k)T ûe +

N e
b*

l=1

+F
e

kl )̂
! (e,l)

k = 0, 1, 2 (13b)

where f e[i ] = (&e
i , f )" e and the matrices are defined as follows:

De
k [i, j ] =

7
&e

i ,
#%e

j

#xk

8

" e
, Ee

l [i, j ] =
9
&e

i , &e
j

:
#" e

l
, Fe

l [i, j ] =
;

&e
i , ( ! (e,l)

j

<

#" e
l

,

Me[i, j ] =
&
&e

i , &e
j

'
" e , +E

e

kl [i, j ] =
9
&e

i , &e
j n

e
k

:
#" e

l
, +F

e

kl [i, j ] =
;

&e
i , ( ! (e,l)

j ne
k

<

#" e
l

.

Note, that the choice of the trace expansion that matches the elemental expansion restricted
to particular face, that is ( ! (e,l)

i (s) = &k(i )(s) (which is typical of a C0 expansion basis defined

in Section 2.3), insures that Ee
l contains the same entries as Fe

l and, similarly, +E
e

kl contains

the same entries as +F
e

kl .
Finally, if we concatenate all the unknowns into one vector v̂e = (ûe, q̂e

1
, q̂e

2
, q̂e

3
)T and

introduce we = (f e, 0, 0, 0)T , we can write equations (13) as:

Aev̂e + Ce)̂
e

= we. (14)

From Equation (14) it follows that:

[Û$, Q̂
$
]T = &(Ae)! 1Ce)̂

e
and [Ûf , Q̂

f
]T = (Ae)! 1we.

Again, just like in the CG method formulation, once we know ) and f , we can find uHDG

and qHDG .
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3.2 Global Formulation

In Sections 3.1.1-3.1.2 we have expressed the solution within an element through the solution
on its boundary for both numerical methods. Now we need to find a way to characterize )
globally in order to obtain the statically condensed trace system. Our goal here is to derive
a restriction of the global equation for ) to one element of the following form: Ke)̂

e
= F e,

where F e contains the local contributions (such as forcing terms and Neumann boundary
condition terms) to the right-hand-side of the global linear system. Once we have the local Ke

matrices, we can either assemble them into the global linear system matrix or keep them “as
is” together with the global-to-local map, depending on the choice of the linear system solver.
If we choose to assemble the global system matrix, we can do so using the global-to-local
spreading operator A , that takes the unique trace space coe"cient values %and “spreads”
them to the local (elemental) face coe"cients vector %l . If we denote the “portion” of A that
corresponds to the particular element by A e (A e%= )̂

e
) then the assembled system matrix

can be expressed as K =
. |T (") |

e=1 (A e)TKeA e and the right hand side as F =
. |T (") |

e=1 (A e)T F e.
We are then left with the following problem to solve: K %= F .

3.2.1 The CG method

It is reasonably straightforward to see that ) is the element of the space M 0
h such that

) = I h(gD ) on ! # D ,
)

"
( Uµ á ( U$ =

)

"
Uµ f +

)

#" N

Uµ gN for all µ ! M 0
h such that Uµ = µ on ! # e, (15)

where we note that U$ is related to ) through problem (6) when f = 0 and Uµ is similarly
related to µ. Indeed, to see that the weak formulation (15) holds, insert the expression of
the approximate solution uCG given by Equation (7) into the standard formulation of the
CG method given by Equation (3), take the test function v to be Uµ , and note that we have=

" ( Uf á ( Uµ = 0, by definition of the local solutions Uf and Uµ . This last result can also

be demonstrated by evaluating
=

" ( Uf á ( Uµ = Û
T
f LÛµ using the definitions (9) and (11).

We can further highlight the connection between Equation (15) and the statically con-
densed CG problem by considering the elemental contribution to (15) using the matrix form
we introduced above. We can express the component of problem (15) restricted to element
# e as

µ̂T /
I, &Lb,i(Li,i )! 1

0
,
Lb,b Lb,i

Li,b Li,i

- ,
I

&(Li,i )! 1Li,b

-
)̂ = µ̂T

5
ge

N
+ f b & Lb,i(Li,i )! 1 f

¯
i
6

where µ =
.

n &b
n(! # e)µ̂ and ge

N
[n] is defined as

9
gN , &b

n

:
#" e# #" N

on the elements where

! # e %! # N "= # and as zero otherwise. Multiplying out this equation then leads us to the
standard elemental Schur complement formulation of the statically condensed problem for )̂ :

/
Lb,b & Lb,i(Li,i )! 1Li,b0

)̂ = ge
N

+ f b & Lb,i(Li,i )! 1 f
¯

i , (16)
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which can then be assembled into the global trace linear system K %= F , where

K =
|T (") |*

e=1

(A e)TKeA e =
|T (") |*

e=1

(A e)T
/
Lb,b & Lb,i(Li,i )! 1Li,b0

A e

and

F =
|T (") |*

e=1

(A e)T
5
ge

N
+ f b & Lb,i(Li,i )! 1 f

¯
i
6

.

3.2.2 The HDG method

To determine ) in case of the HDG method, we require that the boundary conditions
be weakly satisfied and that the normal component of the numerical trace of the flux +q
given by Equation (12c) be single valued. This renders this numerical trace conservative, a
highly-valued property for this type of methods; see [2].

So, we say that ) is the element of M h such that

) = Ph(gD ) on ! # D , (17a)
*

" e"T h

)

#" e
µ +qe án e =

)

#" N

µ gN , (17b)

for all µ ! M 0
h such that µ = 0 on ! # D . Here Ph denotes the L2-projection into the space of

restrictions to ! # D of functions of M h.
After defining gN

l [i ] to be
9
gN , ( l

i

:
! l # #" N

on Neumann boundary faces and zero otherwise,

we can write Equation (17b) restricted to a single face in the matrix form:

,
+̄F

l,e

1
+̄F

l,e

2
+̄F

l,e

3

-
1

2
q̂e

1
q̂e

2
q̂e

3

3

4 +

,
+̄F

l,m

1
+̄F

l,m

2
+̄F

l,m

3

-
1

2
q̂m

1
q̂m

2
q̂m

3

3

4 + ($e,i + $m,j )Ḡl )̂
l
& $e,i F̄l,eue & $m,j F̄l,m um = gN

l ,

where we are assuming that l = " (e, i) = " (m, j ), that is, that the elements e and m have
the common internal face $l . The matrices are defined as follows:

F̄l,e
[i, j ] =

9
( l

i , &e
j

:
! l

+̄F
l,e

k [i, j ] =
9
( l

i , &e
j n

e
k

:
! l Ḡl

[i, j ] =
9
( l

i , ( l
j

:
! l .

Using the notation introduced in Section 3.1.2 Equation (17b) for a single face can be written
in a more compact form as:

Beve + Ge)̂
e

+ Bmvm + Gm )̂
m

= gl
N

. (18)

If we sum the face contributions from Equation (18) over all the faces in the mesh, concatenate
the individual face Neumann conditions gl

N
into g

N
and replace )̂

e
by A e%we get

|T (") |*

e=1

(A e)T [Beve + GeA e%] = g
N

. (19)
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The last step is to express ve from Equation (14) (the local problem) and plug it into Equation
(19) above. This will give us our global system for the trace unknowns:

K %= F , (20)

where

K =
|T (") |*

e=1

(A e)TKeA e =
|T (") |*

e=1

(A e)T
/
Ge & Be(Ae)! 1Ce0A e

and

F = g
N

&
|T (") |*

e=1

(A e)TBe(Ae)! 1w. (21)

3.3 The HDG postprocessing

To end the presentation of the HDG method, we highlight how one can postprocess the
approximate solution to obtain a new approximation of the scalar variable with the order
of convergence increased by one when the polynomial degree P is larger than zero. For a
detailed discussion of the postprocessing in the context of the HDG method, including the
flux postprocessing, we refer the reader to [16] and the references therein. Below we will give
a brief outline of the postprocessing technique we used in our implementation.

The postprocessed numerical solution ue
$ on the element # e is the function in TP +1 (# e)

defined by

(( ue
$, ( w)" e = (qe, ( w)" e 'T P +1 (# e), (22a)

(ue
$, 1)" e = (ue, 1)" e . (22b)

We note that, if qe converges with order P + 1 and the average of ue on each element
superconverges with order P + 2, then the postprocessing ue

$ converges with order P + 2,
when P + 1. The conditions for superconvergence imposed upon the finite element space
depending on the element shape are discussed in [18]. Numerical results demonstrating
the L2 errors before and after postprocessing for hexahedral and tetrahedral elements (see
Section 5) indicate that the technique works as intended for both types of elements. In
our implementation we have expressed qe, used in Equation (22a), through ) e and ue using
Equation (12b). This was done to avoid solving local problems for qe in case only scalar
variable ue is required.

4 Parallel Implementation

In a three dimensional formulation, both CG and HDG discretisations lead to the creation of
matrix systems which, for even moderately sized meshes at low polynomial orders, quickly
become too large to store or solve in a practially useful amount of time on a single processor.
Strategies for dividing the problem amongst multiple processors are therefore essential to
consider simulations for even relatively small problems. The goal of this section is to describe
a parallelisation strategy for both HDG and CG systems, and through the examination of a
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model unsteady di!usion problem, compare the relative performance and scalability of these
methods across a large number of processors in the following section.

4.1 Parallelisation strategy

Whilst finite element methods are conceptually simple to parallelise owing to the existing
elemental decomposition of the domain, there are many numerical and technical hurdles to
overcome when implementing an e"cient and scalable parallel algorithm. Namely we must
partition the domain ‘evenly’, so that each process receives a computationally equal-sized
part of the whole problem, and also design an algorithm to solve the resulting matrix systems
in parallel without a single process needing to store the entirity of the spatial operator.

The focus of this work is on the latter problem. However we note that the approach taken
here is to construct the dual graph of the mesh, where each node of the graph represents
an element and edges connecting nodes denote the connection of two elements through the
trace space. This graph can then passed through a partitioner such as [8, 29] in order to
determine an appropriate number of subgraphs, each of which forms the mesh partition for
a given process. When the mesh is hybrid (i.e. heterogeneous element type) we assign an
appropriate weight to each element, such as the number of local degrees of freedom, so that
in the resulting matrix inversion each process receives a computationally equal portion of the
full problem.

The formulation of both CG and HDG algorithms leads to the construction of a large
sparse matrix system

K %= F (23)

for the statically condensed variable ) , where K represents the discrete Laplacian operator.
Parallel algorithms for inverting this system may be broadly categorised as either direct [1,46],
in which the matrix is inverted through a procedure such as Cholesky decomposition, or
iterative, whereby the solution is obtained through repeatedly applying the operator K in
some manner in order to converge to a solution.

In parallel, iterative algorithms such as the preconditioned conjugate gradient method [20]
have a distinct advantage over direct methods in that we can leverage the finite element
construction of K in order to more readily parallelise the problem. Let +K =

> Nel
e=1 Ke denote

the block-diagonal matrix with each block Ke being the local action of K on an element # e.
Then, by utilising the global-to-local operator A we can rewrite (23) as

K %= [A % +K A ]%,

where %l = A% is the vector of local coe"cients of % .
The use of this assembly mapping allows us to readily parallelise an iterative solve of

either the CG or HDG system. In order to calculate the matrix multiplication u = K v we
apply the following procedure:

1. Prior to the solve, each process p constructs the matrix +K p: the direct sum of the local
elemental matrices contained in the partition belonging to this process.

2. When we are required to perform a matrix multiplication applied to a vector of local
coe"cients vl

p, we first calculate ul
p = +K pvl

p.
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Figure 1: Illustration of communication patterns in CG and HDG, where each element
is on a di!erent process. HDG communication (gray arrows only) requires only pairwise
communication. However CG requires communication between shared vertices (blue and gray
arrows).

3. Each process then applies a local assembly operation A %
p to determine the unique

coe"cients up = A %
p up which lie on the process.

4. Finally, each process performs an inter-process assembly operation by sending its
contributions to any other processors which have common coe"cients. Any contributions
received from other processors are added to the vector up.

5. At the end of this procedure, each process has the global coe"cients u.

The HDG method has an advantage over the CG method in this procedure, since in the
formulation of the HDG method we utilise the trace space in order to decouple elements. This
implies that the inter-process communication is always pairwise, whereas in the CG method,
any processes which share a vertex or edge must perform a communication as illustrated in
Figure 1. In the worst case, for small unstructured tetrahedral meshes this may result in an
all-to-all communication if every element shares a common vertex or edge, although such
scenarios are unlikely. For the unstructured examples we consider in the following section,
vertex valencies of up to 44 are observed and communication patterns can therefore be very
demanding.

However, CG also has the advantage of smaller elemental matrix sizes. In unsteady
problems, the majority of the computational cost of the simulation comes from inverting the
matrix system, which in the PCG algorithm can be broken down into the time taken for
the local block matrix-vector products +K pvl

p and the communication cost incurred from the
assembly process.

In order to give a qualitative idea of how these matrix sizes may a!ect performance a
priori, in Figure 2 we compare the rank of an elemental block Ke for the CG method (NCG)
compared to the HDG method (NHDG ) as a function of polynomial order p and element type.
The two bar plots show a comparison at equal polynomial order (left) and one order lower
for HDG (right) in order to show the computational e!ects that the postprocessing technique
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Figure 2: Ratio of HDG to CG local matrix sizes for hexahedral and tetrahedral with (right)
and without (left) postprocessing taken into account. The dotted line indicates where matrix
dimensions are equal.

can achieve. We clearly see that when compared at equivalent order, HDG local matrices
are always larger than the equivalent boundary-condensed CG matrices. This e!ect is most
prohibitive for tetrahedral elements, where even at polynomial order 10 tetrahedral elements
still have a dimension ratio of around 4

3 . When HDG postprocessing is used, hexahedral
matrices are marginally smaller than their CG counterparts, but tetrahedral elements still
have a significant overhead.

There is, therefore, a balance to be struck between the possible increase in performance
from HDG communication versus the larger matrix sizes which occur in the HDG formulation.
It is also clear that for problems that do not permit superconvergence, HDG will su!er
from far larger elemental matrices than its CG counterparts, particularly at low polynomial
orders. We will investigate these properties by performing a series of numerical experiments
to determine the weak and strong scalability of each method in the following section.

5 Numerical Results

In this section we compare the performance of the CG and HDG methods using elliptic PDE
in three dimensions as a test case. We will start by comparing numerical errors for both
methods while solving the steady-state Helmholtz equation (postprocessing is employed in
HDG case). Next, we will discuss the serial implementation performance and its dependence
on the choice of the direct linear system solver, using the steady-state Helmholtz problem
as well as the time-dependent heat equation as a benchmark. We will make a few remarks
regarding the performance of the preconditioned conjugate gradient (PCG) linear system
solver for both numerical methods. Finally, we will conclude the results section by the parallel
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implementation performance discussion.
We now provide some of the experimental specifics. Tests for the serial implementation

were run on the machine equipped with 80 Intel(R) Xeon(R) E7-4870 2.40GHz processors and
750 GB of RAM running OpenSUSE 12.2 (x86 64). The code was compiled using gcc 4.8.1.
Tests for the parallel implementation were run on HECToR, the UK national supercomputer
service, which is a Cray XE6 machine comprising of 32-core nodes consisting of two 16-core
Interlagos AMD Opteron processors together with with 32GB of RAM and are connected
using a Cray Gemini interconnect. Tests were performed using between 1 and 128 nodes (32
and 4,096 cores respectively).

When considering the serial implementation we have opted for a direct linear system
solver under the assumption that serial codes are typically used for relatively small problems
where the use of direct solver is both permissible storage-wise and e!ective. For the parallel
implementation we utilise a PCG iterative method. Due to the existence of the extensive
preconditioning-related body of work for the CG method [22,44] and a relative scarcity of
such research in case of the HDG method, we opt to use a Jacobi preconditioner for both
numerical methods so that neither method is unfairly biased and communication costs due
to the preconditioner are minimal. The HDG method results were obtained with parameter
$ set to one.

In many test cases we will be dealing with regular meshes. Hexahedral meshes are generated
through a tensor product of one-dimensional evenly spaced segments, and tetrahedral meshes
are generated by splitting each hexahedron into six tetrahedra. We adopt the use of an
abbreviated notation n3 and n3 ) 6 instead of more commonly used n ) n ) n and n ) n ) n ) 6
to denote regular hexahedral and tetrahedral meshes respectively.

Remark 1 We note that the performance of a numerical method depends not only on the
choice of linear solver but also on some of the optimization choices that were made regarding
the method implementation. In order to assemble a finite element operator or evaluate the
result of such operator action, one can consider one of the three strategies: global (based on the
global interpretation of the spectral/hp finite element method), sum-factorization (that exploits
the tensorial nature of the basis) and local matrix approach. Any of the three strategies can
become optimal for a particular problem choice and parameter range. Generally, since higher
order spectral/hp finite element methods favor sum-factorization performance-wise, it is our
optimization strategy of choice for this section. More details regarding the above optimization
strategies can be found in [48].

Remark 2 In [18], the space for the numerical flux q that ensures superconvergence of the
HDG method on a hexahedral element is slightly larger than the standard tensor-product
space Qk (for details, see Table 6 in [18]). In our implementation, we use the Qk space
to represent the flux variable and still observe superconvergence properties on hexahedral
elements numerically.

5.1 Postprocessing, Errors and Convergence Orders

To verify each method, we begin by examining the L2 errors for both the CG and HDG
methods, with the use of postprocessing in the latter case. As a test case we use a Helmholtz
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NCG
Hexahedra Tetrahedra

NHDG
L2

CG L2
HDG L2

CG L2
HDG

3 1.944e-02 8.301e-02 1.686e-01 1.323e-01 2
4 2.126e-03 6.046e-03 5.522e-02 4.367e-02 3
5 1.833e-04 3.449e-04 1.673e-02 1.373e-02 4
6 1.325e-05 2.504e-05 4.431e-03 3.981e-03 5
7 8.201e-07 1.460e-06 1.085e-03 9.973e-04 6
8 4.460e-08 7.863e-08 2.388e-04 2.283e-04 7
9 2.151e-09 3.828e-09 4.707e-05 4.562e-05 8

Table 1: L2 errors of the scalar variable u for CG and HDG methods for Helmholtz equation
on 93 hexahedral mesh and 63 ) 6 tetrahedral mesh.

equation of the form

( 2u(x ) & µu(x ) = f (x ) x ! # ,

u(x ) = gD (x ) x ! ! # D ,

where µ = 1, # = [0 , 1]3 and f (x ) and gD (x ) are selected to give an exact solution of the
form

u(x ) = sin(5*x ) sin(5*y ) sin(5*z ).

We first measure the L2 errors of the scalar variable u for the CG method and the
postprocessed L2 errors of u for the HDG method on regular tetrahedral and hexahedral
meshes comprising of 1296 and 729 elements respectively. Corresponding results are presented
in Table 1, where NCG and NHDG denote the number of 1D modes in each direction of the
tensorial 3D expansion. The results for the HDG method are shifted by one polynomial order
for the ease of comparison and to reflect the superconvergence property of the HDG method.
We can see that the postprocessing technique indeed raises the convergence order by one
and the HDG method with polynomials of order P produces errors comparable with those
produced by the CG method with polynomials of order P + 1.

5.2 Serial performance

Having verified each method we now analyse the timing data in order to measure the
performance of each method. We start by considering the time it takes to solve the steady-
state Helmholtz problem using a serial implementation of both methods. Execution time
measured includes all the stages of a typical finite element code: we start by loading the mesh
from a file and initializing all the data structures and end by the numerical solution evaluation
at the quadrature points. In case of the HDG method, the postprocessing procedure and
evaluation of the postprocessed solution is included in the runtime. We note that the serial
implementation of the steady-state problem postprocessing accounts for around 20 & 30% of
the execution time for P = 1, depending on the mesh used. This quickly drops below 10% as
the polynomial order increases and levels o! at around 3 & 5% of the total execution time at
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NCG
DSC DMSC

NHDG
CG HDG HDG

CG CG HDG HDG
CG

3 4.92 6.07 1.24 7.46 4.96 0.66 2
4 80.96 48.44 0.60 48.32 31.51 0.65 3
5 564.31 243.17 0.43 297.90 169.73 0.57 4
6 2661.04 947.12 0.36 1103.36 791.51 0.72 5
7 8765.75 2709.26 0.31 3397.99 2642.24 0.78 6
8 25450.47 6917.71 0.27 8789.20 7051.14 0.80 7
9 58228.23 16177.59 0.28 19580.75 17786.10 0.91 8

Table 2: Execution time for the CG and HDG methods on 93 hexahedral mesh, using direct
static condensation (DSC) and direct multi-level static condensation (DMSC) solvers.

higher polynomial orders. The run time contribution of the postprocessing will be smaller in
the case of a time-dependent problem, as it is done only once, and in case the of a parallel
implementation since there is no inter-element dependency for this operation.

The statically condensed linear system is solved directly using the Cholesky factorisation
implementation in LAPACK and dense format matrices. Before assembling the matrix, we
reorder using the reverse Cuthill-McKee algorithm to reduce the bandwidth of the system and
the resulting factorisation. We have found that this combination of dense format and RCM
is e"cient, often outperforming sparse-format approaches due to the lower matrix sparsity
found at higher polynomial orders.

Since in the previous section it was demonstrated that the postprocessing does increase
the numerical solution order by one, we shift the timing results of the CG method by one;
that is, we for example compare the CG solution of order 5 with the HDG solution of order
4. However, from this table, one may also infer relative performance by looking at o!set rows
for problems where superconvergence is not available.

Runtime data is presented in Tables 2 and 3 for regular hexahedral and tetrahedral
meshes using both direct static condensation (DSC) and direct multi-level static condensation
(DMSC) solution strategies. We apply the multi-level algorithm in a local fashion as described
in [43], so that the global system is constructed at only the lowest level. Time is measured in
seconds and HDG

CG denotes the ratio of corresponding runtimes. As these results are calculated
in serial, we deliberately restrict our results to consider polynomial orders in the range P $ 8.
As the runtimes indicate, very high polynomial orders quickly become computationally
intractable on a single processor.

Analyzing the results presented in Tables 2 and 3 we can see that superconvergence
achieved through postprocessing allows the HDG method to be competitive with the CG
method and outperform the latter as the polynomial order increases. In case of the DMSC
solver, the HDG method consistently outperforms CG from a polynomial order of one, whereas
for the DSC solver the HDG method outperforms the CG method from the third or fourth
polynomial degree, depending on the element type. We do however reiterate that the observed
behavior is only valid for the direct solve of the statically condensed linear system.

The use of multi-level static condensation results in some interesting performance obser-
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NCG
DSC DMSC

NHDG
CG HDG HDG

CG CG HDG HDG
CG

3 0.73 3.28 4.52 3.46 2.92 0.84 2
4 4.86 12.29 2.53 14.02 9.05 0.65 3
5 42.04 46.71 1.11 59.39 29.30 0.49 4
6 220.04 144.82 0.66 154.89 92.03 0.59 5
7 819.23 399.07 0.49 777.43 297.04 0.38 6
8 2282.90 885.17 0.39 2057.15 796.64 0.39 7
9 5747.78 1852.25 0.32 4081.03 1712.52 0.42 8

Table 3: Execution time for the CG and HDG methods on 63 ) 6 tetrahedral mesh, using
direct static condensation (DSC) and direct multi-level static condensation (DMSC) solvers.

NCG
DSC DMSC

NHDG
CG HDG HDG

CG CG HDG HDG
CG

3 3.3687 3.7979 1.13 1.9001 2.3727 1.25 2
4 22.1862 19.2747 0.87 7.4255 6.2906 0.85 3
5 106.7327 77.9770 0.73 25.8663 20.8083 0.80 4
6 311.8601 220.7129 0.71 82.3704 75.9543 0.92 5
7 831.7730 378.4930 0.46 164.9608 157.2287 0.95 6
8 2148.8804 1020.5737 0.47 313.3912 354.5623 1.13 7
9 3512.1737 1916.7294 0.55 594.2661 637.5448 1.07 8

Table 4: Average time taken to perform 100 timesteps of the di!usion equation for the CG
and the HDG methods on a 93 hexahedral mesh. Direct static condensation (DSC) and direct
multi-level condensation (DMSC) solvers are used. Time is measured in seconds.
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vations. Overall, it is clear that CG benefits far more from using DMSC than HDG. This
performance di!erence can be attributed to the method that is used to determine the degrees
of freedom that form in each level of static condensation. We first construct a graph that
represents the mesh connectivity of the global system. The graph is then passed to a nested
bisection algorithm within the partitioning software METIS [29]. The resulting separatrix
is then inverted in a bottom-up manner as described in [47] to form each level of static
condensation.

In the HDG method, the coupling of connectivity through element faces, but not edges
and vertices, means that this graph has a far less complex structure when compared to its
CG counterpart. In turn, the nested bisection algorithm does not recurse to as many levels
as can be achieved in the CG method. Since the linear system to be solved resides at the
lowest level, the HDG formulation results in an increased number of degrees of freedom at
this level when compared to the CG. Indeed in severe cases, the lack of recursion means that
the overheads of having multiple levels can sometimes increase execution time. An example
of this can be seen in the the simple hexahedral mesh of Table 2 at NHDG = 6 and 7, where
HDG with DMSC has a longer runtime than DSC.

5.3 Unsteady di"usion equation

In the case of an unsteady equation, setup costs are often negligible when compared to the
number of timesteps required to produce a solution up to the final required time.

The exemplar elliptic PDE used for these tests is the traditional di!usion equation for a
scalar variable u,

!u
!t

& ( 2u = 0, (24)

which occurs frequently in the modelling of various physical phenomena, and thus can give
an indication of how the CG and HDG methods perform in the setting of a more complex
system, such as operator splitting schemes for the Navier-Stokes equations [27].

As in the previous section we take the domain to be a cube [0, 1]3 and enforce homogeneous
Dirichlet boundary conditions. For the purposes of error comparison we utilise an exact
solution and initial condition of the form

u(x , 0) = sin(*x ) sin(*y ) sin(*z ), u(x , t) = e! 3&2tu(x , 0).

Since the initialization (and postprocessing for the HDG method) are performed only once
for each simulation, and the timestep size as well as the final time may vary from simulation
to simulation, we will compare the time each method requires to perform N timesteps, rather
than the total simulation runtime. In this particular case we have used the second-order
diagonally implicit Runge-Kutta (DIRK2) [23] scheme for time integration, the timestep was
taken to be 10! 6 to minimise temporal error and we run the simulation for 1000 timesteps of
which the first 100 are discarded to exclude the initialization time from our comparison. We
average the time it takes to perform 100 timesteps over the remaining 900 steps.

Whilst HDG postprocessing time is excluded from the analysis, the orders of both methods
are shifted by one with respect to one another to account for HDG superconvergence as in
the previous section. Results for the 93 hexahedral mesh are presented in Table 4.
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We observe that under these conditions and factoring out the initialization and post-
processing time, the HDG method outperforms the CG method when DSC solver is used.
Each method exhibits similar performance characteristics when the DMSC solver is used:
the ratio of runtimes is within 1.00 ± 10% range for higher polynomial orders. We note that
for the unsteady di!usion equation, we are not inverting the full linear system matrix at
each time-integration step (or rather stage, since we are using DIRK2 scheme) but do the
backward/forward substitution using the precomputed Cholesky factors. This accounts for
the di!erence in solve time ratios ( HDG

CG ) between the steady-state and unsteady cases.
Also, it is important to note that even with minor modifications to equation (24), one

can lose the superconvergence property. In this case, we observe that the CG system is
significantly faster than that of the HDG scheme, by a factor between 2 and 4 depending on
polynomial order.

5.4 Iterative linear system solver

We conclude the discussion of the serial implementation performance by making a few
remarks on the use of the iterative solver, namely PCG with diagonal preconditioner, for both
numerical methods. Based on the numerical experiments performed, there are key points
that can be observed:

1. There is a dependence between the HDG method parameter $, that penalizes the jump
in the flux q on the face shared by the two neighbor elements, and the number of PCG
iterations required to achieve a given tolerance.

2. While using just a diagonal preconditioner for the HDG and the CG methods, we can
observe that the statically condensed linear system matrix for the CG method requires
substantially fewer iterations for PCG to converge than its HDG counterpart. This
illustrates that the HDG method requires a specifically designed preconditioner to be
competitive in the realm of iterative solvers.

Let us consider the example of the data from which the above conclusions were drawn. In
Table 5 we provide the number of iterations of the PCG solver required to solve a statically
condensed linear system to within a relative tolerance of += 10! 9. Again, the CG method
polynomial order is shifted by one to account for HDG postprocessing. To demonstrate the
reliance of the iteration count on $, we vary $ between 1 and 10,000 and compare this against
the CG method with a Jacobi preconditioner used for both methods. We observe that there
is a slight reduction (followed by a growth) in the iteration count for the HDG method with
the parameter $ value increase with an optimal value around 100. Even with the one order
shift between the two methods, the conditioning of the linear system matrix produced by the
HDG method is much worse than in case of its CG counterpart. This therefore calls for the
development of an e"cient HDG preconditioner as future work, in the same manner as [38]
has done for DG methods for the compressible Navier-Stokes equations.

To emphasise this point, in Table 6 we consider some alternative forms of preconditioner
for both HDG and CG systems. For each element of the trace, we collect the matrix entries
of the global system # , invert each block and assemble them in a block diagonal matrix to
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NHDG
Value of $ in the HDG method

CG NCG
1 10 100 1,000 10,000

2 130 133 168 305 494 51 3
3 323 317 327 555 1465 98 4
4 520 514 501 601 1326 148 5
5 766 753 715 758 1379 197 6
6 959 951 930 934 1345 247 7
7 1210 1189 1170 1132 1428 303 8
8 1422 1400 1366 1360 1426 357 9

Table 5: Number of iterations taken for a PCG solve with diagonal preconditioner to converge
to within a relative tolerance of + = 10! 9. Both the CG method and HDG method with
various values of parameter $ are considered on a 53 ) 6 tetrahedral mesh.

form a block-Jacobi preconditioner. This leads to very little improvement for the CG system,
but for the HDG significantly improves the iteration count. To further highlight the e!ect
of the preconditioner, we also consider two choices for the CG scheme: a low energy block
preconditioner, in which a basis transformation is applied to make the resulting global system
more diagonally-dominant, and a linear space conditioner for the coarse linear finite element
space which is combined with the low energy preconditioner. With these choices we see even
more improvement over the HDG system.

However, each of these choices has di!erent costs in terms of set-up, communication and
the action of the preconditioner itself on the global coe"cients. For example, the HDG
system needs to use a more expensive block preconditioner to attain the same iteration count
as the Jacobi-preconditioned CG system. This is important because in the following section,
we will report timings of the matrix solve which are performed using the iterative solver.

Therefore, for the purposes of drawing a fair comparison in these experiments, we need
a metric which gives a sense of relative cost between the schemes. We will therefore use a
simple Jacobi preconditioner for both methods, and measure time which is averaged over
both a number of timesteps and also the total number of PCG iterations required to converge
to the solution. This per-iteration timing value gives an indication as to how each method
would perform in the presence of an optimal preconditioner, and also allows us to consider the
e!ects of communication when taking into account the parallel matrix-vector multiplications.

5.5 Parallel performance

We begin our discussion of the parallel HDG performance results by first describing the test
problem that has been used to benchmark the HDG scheme. Firstly, we posit that the use
of a parallel solver is most likely to occur in time-dependent problems. Our tests therefore
focus on this aspect and do not include any set-up costs which may be associated with matrix
construction. As before then, we examine the properties of the unsteady di!usion solver as
defined in Section 5.3. We measure per-iteration timings as noted at the end of the previous
section.
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NHDG HDG block CG block CG low energy CG linear space NCG

2 130 51 37 29 3
3 157 98 53 35 4
4 203 150 62 38 5
5 223 204 69 40 6
6 245 252 74 41 7
7 258 295 78 42 8
8 279 345 82 44 9

Table 6: Number of iterations taken for a PCG solve with various preconditioners to within
a relative tolerance of + = 10! 9. Both the CG method and HDG method with $ = 1 are
considered on a 53 ) 6 tetrahedral mesh.

101 102 103 104

Nproc

10! 3

10! 2

10! 1

Ti
m

e/
ite

ra
tio

n

P = 3, CG
P = 3, HDG
P = 5, CG
P = 5, HDG
P = 7, CG
P = 7, HDG

101 102 103 104

Nproc

10! 3

10! 2

10! 1

Ti
m

e/
ite

ra
tio

n

P = 4, CG
P = 3, HDG
P = 6, CG
P = 5, HDG
P = 8, CG
P = 7, HDG

101 102 103 104

Nproc

10! 3

10! 2

10! 1

Ti
m

e/
ite

ra
tio

n

P = 3, CG
P = 3, HDG
P = 5, CG
P = 5, HDG
P = 7, CG
P = 7, HDG

101 102 103 104

Nproc

10! 3

10! 2

10! 1

Ti
m

e/
ite

ra
tio

n

P = 4, CG
P = 3, HDG
P = 6, CG
P = 5, HDG
P = 8, CG
P = 7, HDG

Figure 3: Weak scalings showing time per iteration for between 1 and 128 nodes (32 and
4,096) processors for hexahedral mesh (top) and tetrahedral mesh (bottom). The di!erent
figures show e!ects with (left) and without (right) HDG postprocessing.
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5.5.1 Weak scaling

We initially examine the weak scaling of both methods, whereby as the number of processors
increases, the problem size in terms of both number of elements and polynomial order is
kept constant on each processor. An ideal numerical method which scales perfectly should
therefore show the same runtime as the number of processors increases.

On each processor we consider two meshes: a 33 mesh of hexahedra and a 23 ) 6 mesh of
tetrahedra. The number of elements is deliberately fixed to be the same at each polynomial
order in order to assess the relative communication costs of each method. At lower polynomial
orders, there are very few degrees of freedom per process, and therefore communication costs
are the dominant force in the timings of each simulation. Scalability will therefore be very
poor. At high polynomial order however, local matrix sizes are much larger and therefore
communication costs form less of the overall runtime; we can therefore expect much better
scaling.

In this series of simulations we can therefore observe both whether the HDG method gains
any benefits in execution time from the simpler communication patterns, and additionally if
the use of postprocessing o!ers an advantage for the HDG scheme at equivalent polynomial
order to overcome the larger matrix sizes which are inherent to the formulation.

The timings for hexahedral and tetrahedral meshes are shown in Figure 3. On the left
hand side we see CG and HDG methods compared at the same order, and on the right we see
timings for CG which are one polynomial order higher to observe the e!ects of postprocessing
of the HDG results. We can draw two immediate conclusions from these data. Firstly, the
impact of a larger local matrix size for the HDG method is clearly seen even at low polynomial
order on the left hand side, with significantly longer runtimes. However, when postprocessing
is implemented, this di!erence is not as pronounced for the tetrahedron and almost identical
for the hexahedron as predicted by the illustration given in Figure 2.

The second observation is that asides from P = 2 on the tetrahedral mesh, the HDG
method and CG method scale with very similar trends. We may surmise that certainly
at higher polynomial orders, the use of an e"cient parallel gather-scatter operation allows
the CG method to scale as e!ectively as the HDG method in these tests. However it is
interesting to note that at P = 2 for a tetrahedral mesh, where the CG method must
communicate to a wider range of processors given the higher valency of vertices and edges
than the hexahedral mesh, the HDG method does scale with a smaller slope than the CG
method. This indicates the potential for e!ective communication performance of HDG at
lower orders, and on meshes of tetrahedra where communication patterns are more complex
for the CG method. This aspect is particularly important, since many problems of practical
interest in complex three-dimensional geometries utilise unstructured meshes with high vertex
valency. We therefore investigate this aspect in particular in the following section.

5.5.2 Strong scaling

In the second series of simulations, we perform a strong scaling test in which the global
problem size is kept constant as the number of processors increases. This is a more practical
test, in the sense that a given problem is more likely to be divided onto more processors
by an end-user in order to obtain a decrease in execution time. It is also more di"cult
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Figure 4: Strong scaling of time-dependent di!usion problem between 1 and 128 nodes (32
and 4,096 processors respectively) at polynomial order P = 9 for both CG and HDG (right)
on a unstructured mesh of a rabbit aorta intercostal pair (left).

to attain optimal performance in this test at lower polynomial orders, since at some point
the latency and bandwidth of communication in combination with the small per-process
computation cost will in general limit scalability. To this end we consider the scaling of each
method on two unstructured curvilinear tetrahedral meshes which are used in the study of
biological flows. The first mesh, which we examine at a high polynomial order, is a small
mesh of an intercostal pair of a rabbit aorta comprising of approximately 8,500 tetrahedra.
At a lower order we instead examine the full mesh of the aortic arch which instead contains
approximately 1.5 ) 105 elements.

The strong scaling of each method for the intercostal pair is shown in Figure 4. The
speedup quoted on the vertical axis is relative to the time taken on a single 32-processor
node. At high polynomial order we clearly see that both methods scale well. Even at 4,096
processors, where each process contains only two or three tetrahedra, e"ciency remains high.
At times the scaling is seen to be super-linear; whilst counterintuitive, this is commonly seen
on modern multi-core hardware [31] due to resource contention. At lower numbers of nodes,
the matrix-vector multiplication used in the iterative solve requires intensive memory access,
meaning that much of the processor time is spent fetching data from the main memory store,
where the limiting factor is memory bandwidth. As the problem size decreases however,
matrices are able to be stored on processor cache which is far quicker to access, meaning that
per-processor execution time is greatly reduced and super-linear scaling can be observed.

To validate this e!ect is not specific to HECToR, we have performed a replica experiment
on ARCHER, the successor to HECToR. ARCHER is a Cray XC30 system, with each
node possessing two 2.7 GHz 12-core E5-2697v2 processors, with an improved interconnect.
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Figure 5: Strong scaling of time-dependent di!usion problem between 24 and 4,096 processors
at polynomial order P = 9 for both CG and HDG (right) on a unstructured mesh of a rabbit
aorta intercostal pair (left).

Figure 5 shows that a similar and indeed more exaggerated behaviour occurs when scaling
up to 128 nodes (3,072 cores).

The main observation that can be drawn from Figures 4 and 5 however is that the HDG
method generally outperforms the CG method in terms of strong scalability. We note that for
the intercostal mesh, the average vertex valency is 12 and maximum valency 44. When the
number of elements per core is low, CG communication patterns are therefore significantly
complex. The results here go some way to demonstrating that the simplified communication
patterns of the HDG method can lead to a more e"cient implementation when considering
per-iteration timings.

To demonstrate the scalability of each method at lower polynomial orders we consider
the same series simulation but now performed for the full rabbit aortic arch. In this case,
communication patterns will be significantly more complex due to the larger mesh size. We
therefore consider only results obtained from ARCHER as this has the a faster interconnect.
In Figure 6 we see that a similar picture of scalability occurs for this mesh as well, although
due to the higher communication costs, the super-linear e!ect is far less pronounced.

5.5.3 Summary of parallel results

Overall we may conclude that in parallel, the HDG and CG methods observe similar or slightly
higher execution times per iteration, but only if HDG postprocessing is utilised. However,
we note that in general the number of iterations that is taken to converge to the solution
in the PCG method is higher for HDG than CG. However, with a better preconditioning
strategy, we may expect that iteration counts for both methods can be reduced. We note
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Figure 6: Strong scaling of time-dependent di!usion problem between 1 and 128 processors
at polynomial order P = 4 for both CG and HDG (right) on a unstructured mesh of a rabbit
aortic arch (left).

that in terms of strong scaling, HDG has some benefits over CG where the communication
cost is high – either from a low number of elements per process at high order, or a large
number of unstructured tetrahedra per process at low order. Furthermore we note that many
common CG preconditioning strategies rely on the solution of the coarse linear space at each
iteration of the PCG algorithm, particularly when solving Poisson-type problems occuring in
for example CFD applications, which further hinder strong scaling of the method [22]. If
HDG preconditioning strategies can be developed which avoid this then the di!erence in
scalability for real-world flow problems may be far more pronounced.

6 Conclusions

In this paper, we have presented a comprehensive overview of the performance properties of
both statically-condensed CG and HDG methods both in serial and in parallel with di!erent
solver strategies, and across a range of test problems which have been deliberately chosen
to indicate performance in a variety of theoretically interesting and practically relevant
problems. The field of potential categories and problem types one may use for numerical
method comparison is vast and by no means does this work claim to cover them all. However,
where the problem of interest is time-dependent and does not involve the reconstruction of
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matrix systems, or elliptic and within scope of direct solvers, this work gives a good indication
as to how each method will perform.

The results demonstrate that in serial execution where direct solvers are used, HDG either
outperforms or exhibits extremely similar execution times as the CG method. For steady-state
elliptic problems, HDG outperforms CG at anywhere between polynomial orders one and
three, with the time taken to generate matrices, solve the elliptic problem and produce the
solution field ranging between 25% and 90% of the equivalent CG runtime, depending on the
choice of solver and element type. For the unsteady di!usion problem, whilst this di!erence
is less pronounced if multi-level static condensation is used, HDG is still able to provide an
equivalent performance level to the CG method. We note that in these problems, the local
postprocessing method which allows one to obtain a superconverged solution field is crucial
in allowing the HDG method to perform far better than the CG method.

On the other hand, when an iterative solver is used to invert the matrix system, the
HDG method can struggle to attain the same performance level as CG. In this case the
use of postprocessing is essential for the HDG method to exhibit equivalent performance
characteristics. This arises from the di!erence in size between local boundary matrices for
the methods, so that the action of the matrix operator becomes more expensive in the case
of the HDG method. Indeed, even when postprocessing is used, in the HDG formulation
some elements such as the tetrahedron still have larger boundary matrices and thus increased
execution times. When the iterative solver is applied in parallel we therefore see similar
execution times to the CG method. In parallel, where an iterative solver is the preferred
choice, this therefore has the consequence of reduced performance and HDG methods have
little advantage over their CG counterparts. One exception to this however is in problems
where very few elements are stored per process, where communication costs are higher and the
simplified communication patterns present in the HDG formulation can o!er better scalability
in comparison to CG.

One should keep in mind that the conclusions regarding the comparative performance
of two methods when iterative solver is used are based on the per-iteration time data. If
one considers the time it takes to solve the linear system using an iterative solver, the CG
method is clearly ahead of the HDG method in terms of the number of iterations it requires
to converge to a solution. This clearly points to the fact that the development of good
preconditioning strategies for the HDG method is one of the stepping stones on the way to
its competitive parallel performance.
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