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We introduce a space–time discontinuous Galerkin (DG) finite element method for the
incompressible Navier–Stokes equations. Our formulation can be made arbitrarily high-
order accurate in both space and time and can be directly applied to deforming domains.
Different stabilizing approaches are discussed which ensure stability of the method. A
numerical study is performed to compare the effect of the stabilizing approaches, to show
the method’s robustness on deforming domains and to investigate the behavior of the con-
vergence rates of the solution. Recently we introduced a space–time hybridizable DG
(HDG) method for incompressible flows [S. Rhebergen, B. Cockburn, A space–time hybrid-
izable discontinuous Galerkin method for incompressible flows on deforming domains, J.
Comput. Phys. 231 (2012) 4185–4204]. We will compare numerical results of the space–
time DG and space–time HDG methods. This constitutes the first comparison between
DG and HDG methods.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

This is our third article in a series devoted to obtaining accurate and efficient numerical schemes for solving the incom-
pressible Navier–Stokes equations on deforming domains. Examples of applications these schemes may be used for include
fluid–structure interaction in wind turbine simulations [14] or flows with free-surfaces, such as water waves and sloshing [24].

Accurately solving partial differential equations by a numerical method on moving and deforming domains, however, is
non-trivial. Many schemes fail to automatically preserve uniform flow on moving or deforming meshes. This requirement is
used to derive the Geometric Conservation Law (GCL) [17] and in [13,17] it is shown that the GCL is essential for the time-
accuracy of the solution.

Recently, Persson et al. [20] introduced a discontinuous Galerkin (DG) method for solving the compressible Navier–Stokes
equations on deformable domains. They introduced a continuous mapping between a fixed reference configuration and the
time-varying domain. The Navier–Stokes equations are then written in the reference configuration, where the equations are
solved using a DG method in space and Runge–Kutta method in time. This method is simple and allows the use of explicit
time-stepping, however, it does not automatically satisfy the GCL and an extra equation needs to be solved to prevent loss of
accuracy.

A different approach is that of the space–time DG method (see e.g. [16,22,25,26]). The space–time formulation of the DG
method results in a conservative numerical discretization on deforming meshes and it automatically satisfies the GCL. The
. All rights reserved.

en), cockburn@math.umn.edu (B. Cockburn), j.j.w.vandervegt@utwente.nl (J.J.W. van der Vegt).

http://dx.doi.org/10.1016/j.jcp.2012.08.052
mailto:srheberg@umn.edu
mailto:cockburn@math.umn.edu
mailto:j.j.w.vandervegt@utwente.nl
http://dx.doi.org/10.1016/j.jcp.2012.08.052
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


340 S. Rhebergen et al. / Journal of Computational Physics 233 (2013) 339–358
method is implicit in time and so requires efficient solvers, e.g. multigrid methods [27,28]. In this article we follow the
space–time DG approach.

Our first article in this series introduced the space–time DG formulation for the Oseen equations [26]. The scheme can be
made arbitrarily high-order accurate in both space and time and is well suited for hp-adaptation. The method was shown to
be unconditionally stable and continuity, coercivity and stability were proven. Furthermore a full hp-error analysis was
presented.

In our second article, we introduced a space–time hybridizable DG (HDG) formulation for incompressible flows [22]. We
showed that the HDG method displays optimal rates of convergence not only for the velocity and pressure fields, but also for
the velocity gradient. This has not yet been achieved with DG methods. Another advantage of an HDG method over the DG
method is that for higher order polynomial approximations, the computational cost of the HDG method is smaller than that
of the DG method. As discussed in [22], the number of unknowns in the global system of the HDG method is of the order
OðpdÞ compared to Oðpdþ1Þ of the DG method, where p is the polynomial order and d is the dimension of the problem. It
was also shown in [15] that for p > 4, the HDG method can be made more efficient than the continuous Galerkin method.

In this third article, we provide the Navier–Stokes extension of [26] resulting in a space–time DG method that can directly
be applied to deforming domain problems. To solve the Navier–Stokes equations, we employ a Picard iteration technique. At
every iteration, we therefore need to solve the Oseen equations. Solving the Oseen equations or the Navier–Stokes equations,
results in the divergence-free velocity constraint being satisfied only weakly. While this is no problem for the Oseen equations
[26], for the Navier–Stokes equations it means that stability of the scheme cannot be proven, unless a post-processing or mod-
ification of the weak formulation is applied. For the analysis of the Oseen equations of the space–time DG method, see [26].
The analysis of the DG method for the Oseen equations is given in [6] and for the Navier–Stokes equations in [7,8,10]. From
numerical results in the literature, it appears that even though we cannot prove stability without modifying the weak formu-
lation or applying a post-processing, the scheme is stable [3,22,23]. Our numerical results in Section 4 also show this. We will,
however, also discuss two stabilization techniques. The first adds nonconservative terms to the weak formulation [11,12].
While this is an easy way of ensuring a stable scheme, local conservativity is lost. For the incompressible Navier–Stokes equa-
tions, this however might not be problematic as large gradients in the solution, which are associated with shocks and/or large
discontinuities, are not present. We also introduce a space–time BDM projection to stabilize the method (see [7,10] for stan-
dard DG BDM projections). The BDM projection is such that if the divergence-free velocity constraint is satisfied weakly, the
BDM projected velocity field is exactly divergence free on the element and its jump in the normal direction across element
faces is zero. An advantage of this stabilization method is that local conservativity is preserved. The disadvantage, however,
is that it is not trivial to obtain arbitrarily high order BDM spaces in higher dimensions. Let pt and ps denote the polynomial
order in time and space, respectively. We consider here only 3 dimensional space–time BDM spaces for pt ¼ ps ¼ 1 and 2. Fu-
ture work involves the expansion of space–time BDM spaces to more general situations, including pt – ps and 4 dimensional
space–time.

As mentioned above, we recently introduced a space–time HDG method for incompressible flows [22] with the idea of
reducing the globally coupled degrees of freedom in order to obtain a more efficient DG method. In this article we test this
statement by comparing the space–time HDG method with the natural extension of the space–time DG method for Oseen
equations [26] to the Navier–Stokes equations. Comparisons between HDG and continuous Galerkin methods have been
studied in [15], however, this is the first comparison between HDG and DG methods. The comparison is made for polynomial
approximations in which pt ¼ ps þ 1 and pt ¼ ps with ps ¼ 1 and ps ¼ 2. We show that for these polynomial approximations,
the space–time DG method is as efficient, if not more efficient, as the space–time HDG method in terms of L2 errors of the
velocity and pressure vs. the total number of degrees of freedom. In terms of CPU times and memory usage, the space–time
HDG method seems slightly more efficient.

In [22] we found, for the space–time HDG method, that if we take the polynomial approximation of time equal to that of
space, pt ¼ ps, we were unable to obtain optimal rates of convergence for the pressure. Increasing the polynomial approxi-
mation in time to one order higher than that in space, pt ¼ ps þ 1, restored the optimal rates of convergence of the pressure.
We show a similar behavior for the space–time DG method.

The outline of this article is as follows. We introduce the space–time formulation of the incompressible Navier–Stokes
equations in Section 2. In Section 3 we introduce the space–time DG method for the Navier–Stokes equations, we discuss
the stability of the method and introduce the space–time BDM projections. A numerical study in two dimensions on deform-
ing domains will be conducted in Section 4. We will demonstrate convergence properties of the method, compare results of
the different stabilization methods and compare results of the space–time DG and the space–time HDG method. For com-
pleteness, a short summary of the space–time HDG method for the Navier–Stokes equations is given in Appendix A. Conclud-
ing remarks are given in Section 5.

2. Incompressible Navier–Stokes equations

Denote by Xt � Rd a bounded, time-dependent flow domain at time t in d spatial dimensions. Its boundary is denoted by
@Xt . Furthermore, let �x ¼ ðx1; x2; . . . ; xdÞ be the spatial variables. The time-dependent Navier–Stokes equations in Xt are given
by
ui;t þ ðuiujÞ;j � mðui;jÞ;j þ ðdijpÞ;j ¼ fi; ui;i ¼ 0; in Xt ; ð1Þ



S. Rhebergen et al. / Journal of Computational Physics 233 (2013) 339–358 341
where u 2 Rd is the velocity field, p :¼ p=q 2 R the kinematic pressure, q the fluid density, m 2 Rþ the kinematic viscosity,
and f 2 Rd a prescribed external body force. We use here index notation with the summation convention on repeated indices,
the comma notation to denote partial differentiation and we let dij denote the Kronecker delta function. Throughout this arti-
cle, we will use i; j ¼ 1;2; . . . ; d and j ¼ 0;1;2; . . . ; d.

To solve the Navier–Stokes equations, we use a Picard iteration scheme [4,22] for which at each Picard iteration the linear
Oseen problem has to be solved. For this, let the initial guess uð0Þ be a given convective divergence free velocity field and
iterate over k:
uðkÞi;t þ ðu
ðkÞ
i uðk�1Þ

j Þ;j � mðuðkÞi;j Þ;j þ ðdijpÞ;j ¼ fi; uðkÞi;i ¼ 0; in Xt ; ð2Þ
(k ¼ 1;2; . . .) until a certain convergence criterium has been met. In the following, for notational purposes, we take uðkÞ ¼ u
and uðk�1Þ ¼ �w.

Similar to what we did in [22], we consider the space–time DG method for the Oseen equation (2) noting that the Navier–
Stokes equation (1) are solved by the Picard iteration. We consider the Oseen equations directly in a space–time domain
E � Rdþ1 in which the space–time position vector is given by x ¼ ðx0; �xÞ with x0 ¼ t. Introducing w ¼ ð1; �wÞ, the Oseen equa-
tion (2) can be written in the following space–time formulation:
ðuiwjÞ;j � mðui;jÞ;j þ ðdijpÞ;j ¼ fi; ui;i ¼ 0; in E: ð3Þ
For 0 < t < T, the boundary of the space–time domain, @E is divided into disjoint sets, @E ¼ Cm [ Cp, with Cm and Cp, respec-
tively, inflow and outflow boundaries defined by:
Cm :¼ fx 2 @E : wjnj < 0g; Cp :¼ fx 2 @E : wjnj P 0g:
Furthermore, Cm ¼ CDm [X0, with CDm the part of Cm with a Dirichlet boundary and X0 the part of Cm with the initial con-
dition. We also subdivide Cp ¼ XT [ CDp [ CN , with XT the part of @E at the final time T;CDp the part of Cp with a Dirichlet
boundary condition and CN the part of Cp with a Neumann boundary condition. Furthermore, CD ¼ CDm [ CDp the part of
the space–time boundary with a Dirichlet boundary condition. These definitions correspond to those given in [26]. The
boundary conditions are given as
u ¼ u0; on X0; u ¼ gD; on CD; m�nju;j � p ¼ gN; on CN ; ð4Þ
with u0 a given initial velocity field, gD and gN given data defined on (part of) the boundary. No boundary condition is im-
posed on XT . If only Dirichlet boundary conditions are defined, we impose

R
Xt

pd�x ¼ 0, to obtain a unique solution.
To obtain the DG weak formulation, it is necessary to consider the Oseen equations in its velocity–pressure-gradient

formulation:
rij ¼ ui;j; in E; ð5aÞ

ðwjuiÞ;j � mrij;j þ dijp;j ¼ fi; in E; ð5bÞ

ui;i ¼ 0; in E: ð5cÞ
3. The space–time DG method

Divide the domain Xtn into Nn non-overlapping spatial elements Kn, and similarly for the domain Xtnþ1 . A space–time ele-
ment Kn can now be obtained by connecting Kn to Knþ1 via linear interpolation in time. At curved boundaries, a higher order
accurate interpolation may be necessary. The space–time domain Eh, limited to the time interval ðtn; tnþ1Þ, defines a space–
time slab En

h. The tessellation T n
h of En

h consists of all space–time elements Kn. The tessellation of Eh is given by T h :¼ [nT n
h.

The element boundary @Kn of a space–time element Kn contains three parts Kn;Knþ1 andQn ¼ @Kn n ðKn [ Knþ1Þ. The outward
space–time normal vector on @K is denoted by n ¼ ðn0; �nÞ, with n0 the temporal and �n the spatial part of n.

Following the notation of [26], several sets of faces in the tessellation can be defined. In E, denote the set of all faces by F ,
the set of all interior faces by F int and the set of all boundary faces on @E by F bnd. In the space–time slab En, the set of all faces
is denoted by F n, while the set of all interior faces is denoted by Sn

I . Faces separating two space–time slabs are denoted by Sn
S .

On boundary faces, let Sn
D and Sn

N denote the sets of faces with, respectively, Dirichlet and Neumann boundary conditions.
The set of Dirichlet faces can be subdivided as Sn

D ¼ S
n
Dm [ S

n
Dp, with Sn

Dm and Sn
Dp the faces on Cm and Cp, respectively. Finally,

Sn
ID ¼ S

n
I [ S

n
D and Sn

IDN ¼ S
n
I [ S

n
D [ S

n
N .

We consider approximations of the velocity uðxÞ, pressure pðxÞ and velocity gradient rðxÞ, to lie in the finite element
spaces V ðpt ;psÞ

h ;Q ðpt ;psÞ
h and Rðpt ;psÞ

h , respectively, which are defined as:
V ðpt ;psÞ
h :¼ fv 2 L2ðEÞd : v jK � FK 2 ðPðpt ;psÞðK̂ÞÞd;8K 2 T hg;

Q ðpt ;psÞ
h :¼ fq 2 L2ðEÞ : qjK � FK 2 Pðpt ;psÞðK̂Þ;8K 2 T hg;

Rðpt ;psÞ
h :¼ f�s 2 L2ðEÞd�d : �sjK � FK 2 ðPðpt ;psÞðK̂ÞÞd�d

;8K 2 T hg:

ð6Þ
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Here FK : K̂ ! K is an iso-parametric mapping from K̂, an open unit hypercube in Rdþ1, to an element K 2 T h. Furthermore,
Pðpt ;psÞðK̂Þ denotes on K̂ the space of polynomials of degree at most pt in the time direction and of degree at most ps in the
spatial coordinate direction. By L2ðXÞ we denote the space of square integrable functions on X.

The trace of a function xðKLÞ 2Wh, with Wh one of the finite element space defined in (6), on the boundary @KL is defined
as xL :¼ lime#0xðx� enLÞ, with nL the unit outward space–time normal at @KL [16].

The left and right traces of a function x 2Wh at an internal face S 2 Sn, with S ¼ @KL \ @KR, are denoted by xL and xR,
respectively. Because of the discontinuous function approximation, xL – xR, so that it will be useful to define the average
operator: fxg ¼ 1

2 ðxL þxRÞ and the jump operator: sxtj ¼ ðxÞ
L�nL

j þ ðxÞ
R�nR

j .

3.1. The space–time discontinuous Galerkin method

In the derivation of the space–time DG weak formulation, we will need definitions of the local and global lifting operators.
For this, we follow the definitions given in [26]. The local lifting operator, RS is defined as:
X

K2T n
h

Z
K
RSij ð#ijÞsij dx ¼

Z
S
#ijfsijgds; 8s 2 Rðpt ;psÞ

h ; 8S 2 Sn
ID: ð7Þ
The local lifting operator is zero outside the two elements connected to face S. The global lifting operator, R is defined as:
X
K2T n

h

Z
K
Rijð#ijÞsij dx ¼

X
S2Sn

ID

Z
K
RSij ð#ijÞsij dx; 8s 2 Rðpt ;psÞ

h : ð8Þ
On Dirichlet boundary faces, S 2 [nSn
D, let
X

K2T n
h

Z
K
RSij ðPgD

i �njÞsij dx ¼
Z
S

gD
i �njsL

ij ds; 8s 2 Rðpt ;psÞ
h ; 8S 2 Sn

D; ð9Þ
with P the L2 projection on Rðpt ;psÞ
h . For the global lifting operator,
X

K2T n
h

Z
K
RijðPgD

i
�njÞsij dx ¼

X
S2Sn

D

Z
S

gD
i

�njsL
ij ds; 8s 2 Rðpt ;psÞ

h : ð10Þ
Finally, let
RID
ij ð#ijÞ ¼ �Rijð#ijÞ þ RijðPgD

i
�njÞ: ð11Þ
We will now derive the space–time DG weak formulation for the Oseen equations. For this we follow the framework de-
scribed in [1,26].

The auxiliary variable. The space–time DG weak formulation for the auxiliary equation is obtained by multiplying (5a)
with an arbitrary test function s 2 Rðpt ;psÞ

h , integrating by parts in space twice over a space–time element K 2 T n
h and summa-

tion over all elements K 2 T n
h to obtain for all s 2 Rðpt ;psÞ

h :
X
K2T n

h

Z
K
rijsij dx ¼

X
K2T n

h

Z
K
sijui;j dxþ

X
K2T n

h

Z
Q
sL

ijðûr
i � uL

i Þ�nL
j ds; ð12Þ
where we introduced the numerical flux ûr after the first integration by parts. Note that since we integrated by parts only in
space, we only have to consider the weak formulation in the space–time slab En since there are no fluxes between the dif-
ferent space–time slabs. It is more convenient to use integrals over the element faces S than element boundaries Q. Follow-
ing [1]:
X

K2T n
h

Z
Q
sL

ijðûr
i � uL

i Þ�nL
j ds ¼

X
S2Sn

IDN

Z
S
fsijgsûr

i � uitj dsþ
X
S2Sn

I

Z
S
fûr

i � uigssijtj ds: ð13Þ
For the numerical flux ûr, we make a similar choice as in [26]:
ûr ¼ fug; on Sn
I ; ûr ¼ gD; on Sn

D; ûr ¼ uL; on Sn
N: ð14Þ
With this choice of the numerical flux, the weak formulation (12) is now equal to:
X
K2T n

h

Z
K
rijsij dx ¼

X
K2T n

h

Z
K
sijui;j dx�

X
S2Sn

ID

Z
S
fsijgsuitj dsþ

X
S2Sn

D

Z
S
sL

ijg
D
i �nL

j ds: ð15Þ
To obtain an explicit expression for the auxiliary variable, use the definition of a global lifting operator RID, (11) so see that:
X
K2T n

h

Z
K
sijRID

ij ðsuitjÞdx ¼ �
X
S2Sn

ID

Z
S
fsijgsuitj dsþ

X
S2Sn

D

Z
S
sL

ijg
D
i �nL

j ds: ð16Þ
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Introducing (16) into (15) and using the fact that this relation must be valid for arbitrary test functions s, we can express
r 2 Rðpt ;psÞ

h as:
rij ¼ ui;j þRID
ij ðsuitjÞ; a:e: 8x 2 En: ð17Þ
The momentum equation. The space–time DG weak formulation for the momentum equation is obtained by multiplying
(5b) with an arbitrary test function v 2 V ðpt ;psÞ

h , integrating by parts over a space–time element K 2 T n
h and summation over

all elements K 2 T n
h to obtain for all v 2 V ðpt ;psÞ

h :
Tc þ Td þ Tp ¼
X
K2T h

Z
K

v ifi dx; ð18Þ
in which
Tc :¼ �
X
K2T h

Z
K

v i;jwjui dxþ
X
K2T h

Z
@K

vL
i
duc
i wj nL

j ds; ð19aÞ

Td :¼
X
K2T h

Z
K
mv i;jrij dx�

X
K2T h

Z
Q

vL
i mr̂ij�nL

j ds; ð19bÞ

Tp :¼ �
X
K2T h

Z
K

v i;jdijpdxþ
X
K2T h

Z
Q

vL
i dijp̂�nL

j ds; ð19cÞ
where nL ¼ ðnL
0; �n

LÞ is the outward normal vector at @K. The diffusive and pressure terms, Td and Tp, respectively, are exactly
the same as those presented in [26]. The convective term, Tc , however will need extra attention due to w not being point-
wise divergence free. For uiwj; p and r, the numerical fluxes duc

i wj , p̂ and r̂, respectively, are introduced to account for the
multivalued traces at @K. We next discuss the choice of numerical fluxes and the derivation of each term separately. For this
we follow [26] for Td and Tp. Afterwards we discuss the derivation of the convective term Tc .

Write the boundary integrals in (19b) and (19c) as face integrals [1] to find
X
K2T h

Z
Q

vL
i ð�mr̂ij þ dijp̂Þ�nL

j ds ¼
X

S2[nSn
IDN

Z
S
f�mr̂ij þ dijp̂gsv itj dsþ

X
S2Sn

I

Z
S
fv igs� mr̂ij þ dijp̂tj ds: ð20Þ
Following [26], the numerical fluxes for r̂ and p̂ are chosen as:
r̂ ¼ frg on Sn
I ; r̂ ¼ rL on Sn

D; p̂ ¼ fpg on Sn
I ; p̂ ¼ pL on Sn

D;

ðmr̂ij � dijp̂Þ�nL
j ¼ gN

i ; on Sn
N:

ð21Þ
Substitute (21) in (20) and replace r by (17). The sum of the diffusion and pressure terms, Td þ Tp, then becomes:
Td þ Tp ¼
X
K2T h

Z
K
mv i;jui;j dxþ

X
K2T h

Z
K
mv i;jRID

ij ðsuitjÞdx�
X
S2[nSn

N

Z
S

gN
i vL

i ds�
X
S2[nSn

ID

Z
S
mfui;jgsv itj ds

�
X
S2[nSn

ID

Z
S
mfRID

ij ðsuitjÞgsv itj ds�
X
K2T h

Z
K

v i;ipdxþ
X
S2[nSn

ID

Z
S
fpgsv iti ds: ð22Þ
By (16), the second term on the right hand side of (22) is evaluated to
X
K2T h

Z
K
mv i;jRID

ij ðsuitjÞdx ¼ �
X
S2[nSn

ID

Z
S
mfv i;jgsuitj dsþ

X
S2[nSn

D

Z
S
mvL

i;jg
D
i

�nL
j ds: ð23Þ
The fifth term on the right hand side of (22), using (11), can be written as
X
S2[nSn

ID

Z
S
mfRID

ij ðsuitjÞgsv itj ds ¼ �
X
S2[nSn

ID

Z
S
mfRijðsuitjÞgsv itj dsþ

X
S2[nSn

D

Z
S
mRijðPgD

i
�njÞvL

i
�nL

j ds: ð24Þ
To improve computational efficiency and memory use, the global lifting operator R is replaced by the local lifting operator
RS using
�
X
S2[nSn

ID

Z
S
mfRijðsuitjÞgsv itj dsþ

X
S2[nSn

D

Z
S
mRijðPgD

i
�njÞvL

i
�nL

j ds

� �
X
S2[nSn

ID

Z
S
mgfRSij ðsuitjÞgsv itj dsþ

X
S2[nSn

D

Z
S
mgRSij ðPgD

i
�njÞvL

i
�nL

j ds; ð25Þ
where g is a positive constant that has to be greater than the number of spatial faces of element K [26]. The final form of the
sum Td þ Tp can now be written as:
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Td þ Tp ¼
X
K2T h

Z
K
mv i;jui;j dx�

X
S2[nSn

ID

Z
S
mfv i;jgsuitj dsþ

X
S2[nSn

D

Z
S
mvL

i;jg
D
i

�nL
j ds�

X
S2[nSn

N

Z
S

gN
i vL

i ds

�
X
S2[nSn

ID

Z
S
mfui;jgsv itj dsþ

X
S2[nSn

ID

Z
S
mgfRSij ðsuitjÞgsv itj ds�

X
S2[nSn

D

Z
S
mgRSij ðPgD

i
�nbjÞvL

i
�nL

j ds

�
X
K2T h

Z
K

v i;ipdxþ
X
S2[nSn

ID

Z
S
fpgsv iti ds: ð26Þ
Finally, we consider the convection term Tc , (19a). Writing the boundary integrals of (19a) as element face integrals [1]:
X
K2T h

Z
@K

vL
i
duc
i wj nL

j ds ¼
X
S2F

Z
S
fduc

i wjgsv itj dsþ
X
S2F int

Z
S
fv igs duc

i wjtj ds: ð27Þ
We define the convective flux duc
i wj as an upwind flux:
duc
i wj ¼ fuigfwjg þ Cu

suitj; on F int; duc
i wj ¼ u0; on X0;duc

i wj ¼ gD
i wL

j ; on CDm; duc
i wj ¼ uL

i wL
j ; on Cp;

ð28Þ
where Cu ¼ 1
2 jfwjnjgj. At the faces Kðtþn Þ and Kðt�nþ1Þ this means that:
ûc ¼ uL at Kðt�nþ1Þ; ûc ¼ uR at Kðtþn Þ: ð29Þ
Substituting (28) in (27), the expression for Tc becomes
Tc ¼ �
X
K2T h

Z
K

v i;jwjui dxþ
X
S2F int

Z
S
ðfuigfwjg þ Cu

suitjÞsv itj dsþ
X
S�Cp

Z
S

uL
i wL

j nL
j v

L
i dsþ

X
S�CDm

Z
S

gD
i wL

j nL
j v

L
i ds

�
Z

X0

ðu0ÞivL
i ds�

X
K2T h

Z
K

a
2

uiv iwj;j dxþ
X
S2F int

Z
S

a
2
fuiv igswjtj ds; ð30Þ
where a ¼ 0 or a ¼ 1. The last two terms in (30) were added for stability reasons (see also [11,12]). We explain these terms
and the choice of a in Section 3.2.

The space–time DG weak formulation for the momentum equations becomes: Find u 2 V ðpt ;psÞ
h and p 2 Q ðpt ;psÞ

h , such that for
all v 2 V ðpt ;psÞ

h :
Oðu;v ; wÞ þ Aðu;vÞ þ Bðp;vÞ ¼ Nðv ; wÞ þ FðvÞ þ GðvÞ; ð31Þ

in which
Oðu;v ; wÞ : ¼ �
X
K2T h

Z
K

v i;jwjui dxþ
X
S2F int

Z
S
ðfuigfwjg þ Cu

suitjÞsv itj dsþ
X
S�Cp

Z
S

uL
i wL

j nL
j v

L
i ds

�
X
K2T h

Z
K

a
2

uiv iwj;j dxþ
X
S2F int

Z
S

a
2
fuiv igswjtj ds; ð32Þ

Aðu;vÞ :¼
X
K2T h

Z
K
mv i;jui;j dx�

X
S2[nSn

ID

Z
S
mfv i;jgsuitj ds�

X
S2[nSn

ID

Z
S
mfui;jgsv itj dsþ

X
S2[nSn

ID

Z
S
mgfRSij ðsuitjÞgsv itj ds; ð33Þ

Bðp; vÞ :¼ �
X
K2T h

Z
K

v i;ipdxþ
X
S2[nSn

ID

Z
S
fpgsv iti ds: ð34Þ
The linear forms are given by
Nðv ; wÞ :¼ �
X
S�CDm

Z
S

gD
i wL

j nL
j vL

i ds; ð35Þ

FðvÞ :¼ �
X
S2[nSn

D

Z
S
mvL

i;jg
D
i

�nL
j dsþ

X
S2[nSn

N

Z
S

gN
i vL

i dsþ
X
S2[nSn

D

Z
S
mgRSij ðPgD

i
�nbjÞvL

i
�nL

j dsþ
Z

X0

ðu0ÞivL
i ds; ð36Þ

GðvÞ :¼
X
K2T h

Z
K

v ifi dx: ð37Þ
From the above forms (32)–(37), only the convective form Oðu; v; wÞ in (32) is different from that given in [26], which is due
to w not being exactly point-wise divergence-free. All results in [26] regarding stability therefore hold for terms (33)–(37). In
Section 3.2 we consider the stability of Oðu;v ; wÞ given by (32).
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The continuity equation. The space–time DG weak formulation for the continuity equation is obtained by multiplying (5c)
with an arbitrary test function q 2 Q ðpt ;psÞ

h , integrating by parts in space over a space–time element K 2 T n
h and summation

over all elements K 2 T n
h to obtain for all q 2 Q ðpt ;psÞ

h :
�
X
K2T n

h

Z
K

q;j uj dxþ
X
K2T n

h

Z
Qn

qLûp
j
�nL

j ds ¼ 0; ð38Þ
with ûp the numerical flux that has to be introduced to account for multivalued traces onQn. We write the boundary integral
terms in (38) as face integral terms [1] so that we obtain:
�
X
K2T n

h

Z
K

q;j uj dxþ
X
S2Sn

IDN

Z
S
fûp

j gsqtj dsþ
X
S2Sn

I

Z
S
fqgsûp

j tj ds ¼ 0; ð39Þ
The numerical flux ûp is taken as in [26]:
ûp
j ¼ fujg þ csptj on Sn

I ; ûp ¼ gD on Sn
D; ûp ¼ uL on Sn

N; ð40Þ
with c > 0 a stabilizing term. Substituting the numerical flux (40) in (39) and integrating back by parts, we find that the weak
formulation for the continuity equation is given by: Find u 2 V ðpt ;psÞ

h such that for all q 2 Q ðpt ;psÞ
h :
X

K2T n
h

Z
K

quj;j dx�
X
S2Sn

I

fqgsujtj dsþ
X
S2Sn

I

Z
S
csptjsqtj dsþ

X
S2Sn

D

Z
S
ðgD

j � uL
j Þ�nL

j qL ds ¼ 0;
or, in compact form taking all space–time slabs into account:
�Bðq;uÞ þ Cðp; qÞ ¼ HðqÞ; ð41Þ
in which B is defined in (34) and
Cðp; qÞ :¼
X
S2[nSn

I

Z
S
csptisqti ds; ð42Þ
and
HðqÞ :¼ �
X
S2[nSn

D

Z
S

gD
i

�nL
i qL ds: ð43Þ
Space–time DG weak formulation. The space–time DG weak formulation can now be written as: Find u 2 V ðpt ;psÞ
h and

p 2 Q ðpt ;psÞ
h , such that for all v 2 V ðpt ;psÞ

h and q 2 Q ðpt ;psÞ
h :
Oðu; v; wÞ þ Aðu; vÞ þ Bðp; vÞ ¼ Nðv; wÞ þ FðvÞ þ GðvÞ;
� Bðq;uÞ þ Cðp; qÞ ¼ HðqÞ:

ð44Þ
3.2. Stability

We now determine the stability for the trilinear form Oðu;v; wÞ, as given by (32). As mentioned in Section 3.1, all other
terms in the space–time DG formulation (44) are the same as those given in [26] so that we do not consider these here again.

3.2.1. Controlling the energy
Consider the trilinear form Oðu;v ; wÞ, (32), and replace v by u to find:
Oðu;u; wÞ : ¼ �
X
K2T h

Z
K

ui;jwjui dxþ
X
S2F int

Z
S
ðfuigfwjg þ Cu

suitjÞsuitj dsþ
X
S�Cp

Z
S

uL
i wL

j nL
j uL

i ds

�
X
K2T h

Z
K

a
2

uiuiwj;j dxþ
X
S2F int

Z
S

a
2
fuiuigswjtj ds:
Using ui;jwjui ¼ � 1
2 uiuiwj;j þ 1

2 ðuiuiwjÞ;j we obtain:
Oðu;u; wÞ : ¼ 1
2

X
K2T h

Z
K

uiuiwj;j dxþ
X
S2F int

Z
S
fuigfwjgsuitj dsþ

X
S2F int

Z
S

Cu
suitjsuitj ds� 1

2

X
K2T h

Z
@K

uL
i uL

i wL
j nL

j ds

þ
X
S�Cp

Z
S

uL
i wL

j nL
j uL

i ds�
X
K2T h

Z
K

a
2

uiuiwj;j dxþ
X
S2F int

Z
S

a
2
fuiuigswjtj ds: ð45Þ
Consider now the following equalities
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�1
2

X
K2T h

Z
@K

uL
i uL

i wL
j nL

j ds ¼ �1
2

X
S2F

Z
S

suitjfuiwjgds� 1
2

X
S2F int

Z
S
fuigsuiwjtj ds ¼ �1

2

X
S�Cm

Z
S

uL
i uL

i wL
j nL

j ds

� 1
2

X
S�Cp

Z
S

uL
i uL

i wL
j nL

j ds� 1
2

X
S2F int

Z
S

suitjfuiwjg þ fuigsuiwjtj dsþ 1
2

Z
X0

uL
i uL

i ds;
and
fuiwjg ¼ fuigfwjg þ
1
4

suitkswjtk; suiwjtj ¼ fuigswjtj þ suitjfwjg:
The trilinear form Oðu; u; wÞ can be written as:
Oðu;u; wÞ : ¼ 1
2

X
K2T h

Z
K

uiuiwj;j dx�
X
K2T h

Z
K

a
2

uiuiwj;j dx� 1
2

X
S2F int

Z
S
fuiuigswjtj dsþ

X
S2F int

Z
S

a
2
fuiuigswjtj ds

� 1
2

X
S�Cm

Z
S

uL
i uL

i wL
j nL

j dsþ 1
2

X
S�Cp

Z
S

uL
i uL

i wL
j nL

j dsþ
X
S2F int

Z
S

Cu
suitjsuitj dsþ 1

2

Z
X0

uL
i uL

i ds; ð46Þ
where we used fuiuig ¼ fuigfuig þ 1
4 suitksuitk and suitjsuitkswjtk ¼ suitksuitkswjtj. We do not have control over the first four

terms on the right hand side in (46). Therefore, one possibility of ensuring stability of the scheme, is to set a ¼ 1 and thereby
eliminating these terms. By setting a ¼ 1, however, we give up local conservation, but gain control over the energy. The
property of local conservation is important in flows in which shocks and/or large discontinuities in the solution emerge.
For the incompressible Navier–Stokes equations, such solutions do not appear so that setting a ¼ 1 can be a justified tech-
nique for controlling the energy. We will call this the nonconservative stabilization. See also [11,12] for successful application
of this technique in the case of standard DG.

A second possibility is to set a ¼ 0 and force the first and third terms on the right hand side in (46) to be zero. This can be
done by requiring:
wj;j ¼ 0; 8K 2 T h; and swjtj ¼ 0; 8S 2 F int: ð47Þ
This approach maintains the local conservation of the scheme and it allows control over the energy. Obtaining requirements
(47) can be done by a BDM-projection [5], which we discuss in Section 3.2.2. In the following we denote this form of stabil-
ization as the BDM stabilization.

In Section 4.1 we discuss numerical results of the nonconservative and BDM stabilization and compare these results to
those obtained when no stabilization (a ¼ 0 and no BDM-projection) is used.

3.2.2. An equal order in space and time BDM-projection
As seen in Section 3.2.1, one option to obtain a stable Picard-iteration (2) is to require that the convective velocity field

w 2 Rdþ1 be exactly divergence free. Solving the space–time DG discretization (44) results in a velocity u that is not exactly
divergence-free. For this reason we post-process, element-wise, the velocity u ¼ ð1;uÞjK to obtain PKu that satisfies (47) and
set wjK ¼ PKu, which is to be used in the next Picard-iteration. This post-processing is slightly different from that given in
[7,10] since we consider here space–time hexahedron elements. We consider equal order approximations in space and time,
pt ¼ ps ¼ k for d ¼ 2 (which requires a 3-dimensional space–time BDM-projection). Future work will consider BDM-projec-
tions in which pt – ps and 4-dimensional BDM-projections for d ¼ 3 problems.

For u 2 ðPðk;kÞðbKÞÞ3 we consider projections onto ðBDMkðbKÞÞ3 [5]. The BDMk space is given by
ðBDMkÞ3 :¼ ðPkðK̂ÞÞ3�k
‘¼0 curlnð0;0; n0n

‘þ1
1 nk�‘

2 Þ�k
‘¼0 curlnðnk�‘

0 n1n
‘þ1
2 ;0;0Þ�k

‘¼0 curlnð0; n‘þ1
0 nk�‘

1 n2;0Þ; ðk P 1Þ;
where
curlnð0;0; n0n
‘þ1
1 nk�‘

2 Þ ¼ ð‘þ 1Þn0n
‘
1n

k�‘
2 ; �n‘þ1

1 nk�‘
2 ; 0

� �T
;

curlnðnk�‘
0 n1n

‘þ1
2 ;0;0Þ ¼ 0; ð‘þ 1Þnk�‘

0 n1n
‘
2; �nk�‘

0 n‘þ1
2

� �T
;

curlnð0; n‘þ1
0 nk�‘

1 n2;0Þ ¼ �n‘þ1
0 nk�‘

1 ; 0; ð‘þ 1Þn‘0n
k�‘
1 n2

� �T
:

Here n0; n1 and n2 are the local coordinates on the space–time reference element bK. Let u 2 V ðk;kÞh be computed from the dis-
cretization of (44) and let u ¼ ð1;uÞ. We now define an element-wise post-processing projection PK and set wjK ¼ PKu.
Important to note is that we require the projected velocity to be in the space w ¼ PKu 2 BDMk. The local post-processing
is defined by
Z

@K
wL

j nL
j uds ¼

Z
@K

ûp
j nL

j uds; 8u 2 Pðk;kÞð c@KÞ; ð48aÞ

Z
K

wj/j dx ¼
Z
K

uj/j dx; 8/ 2 ðPðk�2;k�2ÞðK̂ÞÞ3 ðk P 2Þ; ð48bÞ
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(requirement (48b) can be dropped for k < 2). Now, note the following. For all q 2 Pðk�1;k�1Þ:
X
K2T n

h

Z
K

wj;jqdx ¼
X
K2T n

h

�
Z
K

wjq;j dxþ
Z
@K

wjnL
j qL ds

� �
¼
X
K2T n

h

�
Z
K

ujq;j dxþ
Z
@K

ûp
j nL

j qL ds
� �

¼
X
K2T n

h

�
Z
K

u0q;0 dxþ
Z
@K

ûp
0nL

0qL ds�
Z
K

ujq;j dxþ
Z
Q

ûp
j
�nL

j qL ds
� �

¼
X
K2T n

h

�
Z
K

q;0 dxþ
Z
@K

nL
0qL ds

� �
¼ 0;
where the second equality holds by (48), the fourth equality holds by (38) for all q 2 Pðk;kÞ, and so in particular also for all
q 2 Pðk�1;k�1Þ � Pðk;kÞ and since u0 ¼ 1, and the fifth equality follows directly by integration by parts of the volume integral.
The above spaces have the following dimensions:
dim ðBDMkðbKÞÞ3 ¼ ðkþ 1Þðkþ 2Þðkþ 3Þ
2

þ 3ðkþ 1Þ;

dim ðPðk;kÞðbKÞÞ3 ¼ ðkþ 1Þðkþ 2Þðkþ 3Þ
2

;

dimPðk;kÞð c@KÞ ¼ 1
2
ðkþ 1Þðkþ 2Þ;
so that we have the following equalities between the number of equations and unknowns:
dimðBDMkðbKÞÞ3 ¼ dim ðPðk�2;k�2ÞðbKÞÞ3 þ 6dimPðk;kÞð c@KÞ ¼ ðkþ 1Þðk2 þ 5kþ 12Þ
2

:

where the 6 is due to the 6 faces of @K.
Piola transform. For w ¼ PKu 2 BDMk, the BDM projection is defined on the reference element. This means that on the ref-

erence element the velocity-field w is divergence-free and that the velocity jumps in the normal direction are zero. To main-
tain these properties on the physical element, the Piola transformation is required. The Piola transformation PK for a vector
v 2 BDMk is defined as
vðxÞ ¼ vðFKðnÞÞ ¼ PKv̂ðnÞ ¼ jDFKðnÞj�1DFKðnÞv̂ðnÞ; ð49Þ
where DFK is the Jacobian of the iso-parametric mapping FK : K̂ ! K and jDFKj its Jacobian (see [5, p. 97]). Note that in (48a)
and (48b) the Piola transform is only applied to w 2 BDMk.

4. Numerical test cases

We apply now the space–time DG method to different test cases. We will determine rates of convergence, compare the
different stabilization methods and give a comparison between results from a space–time DG and HDG method. We recently
introduced the space–time HDG method in [22]. A short summary of the method is given in Appendix A.

In the Picard iteration scheme (2), used to solve the Navier–Stokes equations, we consider the scheme to be converged if
the residual of the discrete system drops nine orders in magnitude compared to the residual computed in the first Picard
iteration of each time step.

All test cases in this section are implemented using the software package hpGEM [21]. The direct LU solver available in
PETSc [2] is used to solve the global linear system arising from the discretization. All integrals of the weak formulation, also
those at deformed surfaces, are computed by the same technique. The integrals are mapped from physical space to a refer-
ence space (an open unit hypercube in Rdþ1, with d the spatial dimension). On this reference space we use a standard Gauss-
integration technique. The Gauss points and weights are chosen depending on the numerical order of the (H)DG-scheme so
that no numerical errors are introduced by the integration method.

4.1. Stabilization methods

In this section we will discuss the use of BDM stabilization, nonconservative stabilization and No stabilization. For this, we
use a test case proposed in [22]. Consider the Navier–Stokes equations on a deforming space–time domain E. The deforma-
tion of the space–time domain is based on the following transformation of a uniform space–time slab ðt; t þ DtÞ � ð0;1Þ2 for
t P 0, t þ Dt 6 T ¼ 1:
xi ¼ xu
i þ A

1
2
� xu

i

� �
sin 2p 1

2
� xu

� þ t�
� �� �

;

t� ¼
t if xu

0 ¼ t

t þ Dt if xu
0 ¼ t þ Dt

�
; xu

� ¼
x2 if i ¼ 1
x1 if i ¼ 2

�
;

where A is the amplitude. We set A ¼ 0:1. On inflow boundaries we consider Dirichlet boundary conditions while Neumann
boundary conditions are set on outflow boundaries. The source terms fiðxÞ and the boundary data on CD and CN are such that
the exact solution is given by:
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Fig. 1. Snapshots of the deforming domain and a 32� 32 mesh for test case 4.1.

Table 1
History of convergence for test case 4.1: the unsteady Navier–Stokes equations (m ¼ 0:01) with exact solution (50) using a linear polynomial approximation at
T ¼ 1. The numerical parameters are g ¼ 5 and c ¼ 1.

N ju1 � uh
1jL2ðXÞ ju2 � uh

2jL2ðXÞ
jp� phjL2ðXÞ ju1 �wh

1jL2ðXÞ ju2 �wh
2jL2ðXÞ

Its.

Error Order Error Order Error Order Error Order Error Order

No stab.
8 8.86e�3 – 6.12e�3 – 4.44e�2 – – – – – 19.0

16 1.57e�3 2.5 1.29e�3 2.2 8.72e�3 2.3 – – – – 16.3
32 5.07e�4 1.6 3.74e�4 1.8 6.77e�3 0.4 – – – – 12.3
64 8.55e�5 2.6 6.74e�5 2.5 1.82e�3 1.9 – – – – 9.2

Noncons. stab.
8 8.72e�3 – 5.95e�3 – 4.29e�2 – – – – – 10.7

16 1.58e�3 2.5 1.23e�3 2.3 8.14e�3 2.4 – – – – 9.3
32 5.07e�4 1.6 3.72e�4 1.7 6.73e�3 0.3 – – – – 7.7
64 8.59e�5 2.6 6.68e�5 2.5 1.87e�3 1.8 – – – – 6.3

BDM stab.
8 8.78e�3 – 5.89e�3 – 4.06e�2 – 1.06e�2 – 7.12e�3 – 7.3

16 1.60e�3 2.5 1.20e�3 2.3 7.53e�3 2.4 1.81e�3 2.6 1.17e�3 2.6 6.6
32 5.09e�4 1.7 3.70e�4 1.7 6.66e�3 0.2 6.17e�4 1.6 4.14e�4 1.5 6.0
64 8.64e�5 2.6 6.65e�5 2.5 1.94e�3 1.8 9.44e�5 2.7 5.89e�5 2.8 5.3

Table 2
History of convergence for test case 4.1: the unsteady Navier–Stokes equations (m ¼ 0:01) with exact solution (50) using a quadratic polynomial approximation
at T ¼ 1. The numerical parameters are g ¼ 5 and c ¼ 1.

N ju1 � uh
1jL2ðXÞ ju2 � uh

2jL2ðXÞ
jp� phjL2ðXÞ ju1 �wh

1jL2ðXÞ ju2 �wh
2jL2ðXÞ

Its.

Error Order Error Order Error Order Error Order Error Order

No stab.
8 7.34e�4 – 5.26e�4 – 1.46e�3 – – – – – 14.7

16 6.11e�5 3.6 4.36e�5 3.6 9.63e�4 0.6 – – – – 11.7
32 1.17e�5 2.4 8.88e�6 2.3 1.12e�4 3.1 – – – – 8.4
64 7.83e�7 3.9 6.71e�7 3.7 7.36e�5 0.6 – – – – 6.2

Noncons. stab.
8 7.18e�4 – 5.21e�4 – 1.32e�3 – – – – – 9.0

16 5.95e�5 3.6 4.30e�5 3.6 8.97e�4 0.6 – – – – 7.4
32 1.16e�5 2.4 8.85e�6 2.3 1.11e�4 3.0 – – – – 6.0
64 7.76e�7 3.9 6.75e�7 3.7 7.42e�5 0.6 – – – – 4.8

BDM stab.
8 7.10e�4 – 5.18e�4 – 1.22e�3 – 1.22e�3 – 8.34e�4 – 6.8

16 5.85e�5 3.6 4.25e�5 3.6 8.62e�4 0.5 8.97e�5 3.8 5.90e�5 3.8 6.2
32 1.16e�5 2.3 8.84e�6 2.3 1.13e�4 2.9 1.93e�5 2.2 1.34e�5 2.1 5.5
64 7.74e�7 3.9 6.84e�7 3.7 7.64e�5 0.6 1.19e�6 4.0 8.46e�7 4.0 5.0
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u1ðx; y; tÞ ¼ � expðxÞðy cosðyÞ þ sinðyÞÞ sinðtÞ;
u2ðx; y; tÞ ¼ expðxÞy sinðyÞ sinðtÞ;
pðx; y; tÞ ¼ expðxÞ cosðyÞ cosðtÞ þ ð1� expð1ÞÞ sinð1Þ cosðtÞ:

ð50Þ



Table 3
History of convergence of the Navier–Stokes equations (m ¼ 0:01) at T ¼ 1. Computed using space–time DG (g ¼ 5, c ¼ 1) and space–time HDG (d ¼ 0:001). Top
half pt ¼ ps ¼ 1. Bottom half: pt ¼ ps þ 1 ¼ 2.

ðpt ; psÞ N ju1 � uh
1jL2ðXÞ ju2 � uh

2jL2ðXÞ
jp� phjL2ðXÞ Condition number

Error Order Error Order Error Order

DG
(1,1) 8 8.86e�3 – 6.12e�3 – 4.44e�2 – 1.59e+3

16 1.57e�3 2.5 1.29e�3 2.2 8.72e�3 2.3 6.34e+3
32 5.07e�4 1.6 3.74e�4 1.8 6.77e�3 0.4 3.21e+4
64 8.55e�5 2.6 6.74e�5 2.5 1.82e�3 1.9 2.03e+5

HDG
(1,1) 8 8.62e�3 – 7.71e�3 – 2.05e�2 – 1.86e+4

16 1.88e�3 2.2 1.73e�3 2.2 8.09e�3 1.3 7.85e+4
32 5.46e�4 1.8 4.94e�4 1.8 5.56e�3 0.5 8.91e+5
64 1.24e�4 2.1 1.19e�4 2.1 7.02e�4 3.0 7.73e+6

DG
(2,1) 8 4.82e�3 – 3.05e�3 – 6.11e�3 – 9.08e+3

16 1.09e�3 2.1 6.90e�4 2.1 1.57e�3 2.0 3.56e+4
32 2.61e�4 2.1 1.68e�4 2.0 1.92e�4 3.0 1.79e+5
64 6.42e�5 2.0 4.17e�5 2.0 1.05e�4 0.9 1.09e+6

HDG
(2,1) 8 5.03e�3 – 4.57e�3 – 1.46e�2 – 5.46e+4

16 1.19e�3 2.1 1.18e�3 2.0 1.98e�3 2.9 4.23e+5
32 2.94e�4 2.0 3.02e�4 2.0 3.22e�4 2.6 1.72e+6
64 7.43e�5 2.0 8.06e�5 1.9 1.04e�4 1.6 1.58e+9

Table 4
History of convergence e of the Navier–Stokes equations (m ¼ 0:01) at T ¼ 1. Computed using space–time DG (g ¼ 5, c ¼ 1) and space–time HDG (d ¼ 0:001).
Top half pt ¼ ps ¼ 2. Bottom half: pt ¼ ps þ 1 ¼ 3. � Due to large memory requirements, we limited the computation of this value to a grid of 50� 50 elements.

ðpt ; psÞ N ju1 � uh
1jL2ðXÞ ju2 � uh

2jL2ðXÞ
jp� phjL2ðXÞ Condition number

Error Order Error Order Error Order

DG
(2,2) 8 7.34e�4 – 5.26e�4 – 1.46e�3 – 2.31e+4

16 6.11e�5 3.6 4.36e�5 3.6 9.63e�4 0.6 9.98e+4
32 1.17e�5 2.4 8.88e�6 2.3 1.12e�4 3.1 5.38e+5
64 7.83e�7 3.9 6.71e�7 3.7 7.36e�5 0.6 3.38e+6

HDG
(2,2) 8 7.50e�4 – 9.11e�4 – 7.58e�3 – 8.81e+4

16 6.69e�5 3.5 4.74e�5 4.3 4.44e�4 4.1 2.38e+5
32 1.16e�5 2.5 8.84e�6 2.4 6.76e�5 2.7 4.86e+6
64 1.11e�6 3.4 7.87e�7 3.5 5.46e�5 0.3 1.44e+7

DG
(3,2) 8 2.34e�4 – 1.75e�4 – 2.82e�4 – 1.15e+5

16 1.83e�5 3.7 1.25e�5 3.8 3.53e�5 3.0 5.00e+5
32 3.10e�6 2.6 2.30e�6 2.4 5.63e�6 2.6 2.69e+6
64 2.26e�7 3.8 1.50e�7 3.9 1.30e�6 2.1 1.64e+7

HDG
(3,2) 8 3.00e�4 – 2.75e�4 – 1.64e�3 – 1.92e+6

16 2.17e�5 3.8 1.89e�5 3.9 8.53e�5 4.3 5.13e+5
32 3.31e�6 2.7 2.31e�6 3.0 3.45e�6 4.6 3.23e+6
64 3.53e�7 3.2 2.80e�7 3.0 3.96e�7 3.1 4.90e+6⁄
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We consider a grid with N � N elements and time step Dt ¼
ffiffiffi
2
p

=N, where N is N ¼ 8, 16, 32, 64. We take m ¼ 0:01, g ¼ 5 and
c ¼ 1. Fig. 1 shows the deformation of the domain and mesh with N ¼ 32. Tables 1 and 2 show the rates of convergence for
the velocities and pressure and, if the BDM stabilization is applied, also the rates of convergence of the BDM-projected veloc-
ity. In the last column of Tables 1 and 2, the average amount of Picard-iterations per time step needed for 9 orders of con-
vergence of the residual, are given. For the velocity field, expected rates of convergence are obtained. The pressure, however,
shows suboptimal convergence rates, as was noted also in [22]. In [22] we showed that proper rates of convergence for the
pressure can be achieved if we take the polynomial approximation in time 1 order higher than the polynomial approxima-
tion in space. We will discuss this issue further in Section 4.2. Here, however, we consider only equal order polynomial
approximations in space and time to make the comparison among BDM stabilization, nonconservative stabilization and No sta-
bilization. It can clearly be seen from Tables 1 and 2 that using BDM stabilization or nonconservative stabilization, has a
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Fig. 2. The L2-errors of the velocities and pressure against the total number of degrees of freedom of the global system.
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significant positive effect on reducing the number of Picard iterations per time step compared to not using any stabilization
for coarse meshes. However, as the mesh is refined, the difference in the number of Picard iterations per time step needed for
convergence between the stabilization methods decreases. The errors in the L2-norm and convergence rates using BDM sta-
bilization, nonconservative stabilization or No stabilization are not significantly different.

4.2. A numerical comparison between space–time DG and HDG

In this section we numerically compare the space–time DG method with the space–time HDG method. We consider the
same test case of Section 4.1. We consider a grid with N � N elements and time step Dt ¼

ffiffiffi
2
p

=N, where N is N ¼ 8, 16, 32, 64.
We take m ¼ 0:01. In the space–time DG method, we set g ¼ 5 and c ¼ 1. In the HDG method we set d ¼ 0:001.

In Tables 3 and 4 rates of convergence for the velocities and pressure are given for the space–time DG and HDG methods.
Both space–time DG and HDG computations show irregular behavior in the convergence rates of the pressure when pt ¼ ps.
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Fig. 3. The L2-errors of the velocities and pressure against the normalized CPU times.
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In [22] we found for the space–time HDG method that taking the polynomial approximation in time one order higher than
the polynomial approximation in space restored the proper convergence rates of the pressure. Tables 3 and 4 show that the
space–time DG method also obtains a better rate of convergence for the pressure if pt ¼ ps þ 1 compared to pt ¼ ps with a
much better accuracy of the pressure. The analysis in [26] of the space–time DG method for the Oseen equations, shows that
the pressure converges at a rate of hpsþ1

2. This is the average rate of convergence we obtain here.
To compare the space–time DG and HDG methods, we plot the L2-errors of the velocities and pressure against the total

number of degrees of freedom of the global system, the CPU times (normalized with the biggest CPU time of our computa-
tions) and memory usage (normalized with the biggest memory usage of our computations), see Figs. 2–4. In the case of the
space–time DG method, the total number of degrees of freedom of the global system is given by 3mpt ;ps

Ne, with mpt ;ps
the

number of basis-functions per element for a Ppt ;ps polynomial approximation on the elements and Ne the total number of
elements. For the space–time HDG method, the total number of degrees of freedom of the global system is given by
3mf

pt ;ps
Nf with mf

pt ;ps
the number of basis-functions per face for a Ppt ;ps polynomial approximation on the faces and Nf the
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Fig. 4. The L2-errors of the velocities and pressure against the normalized memory usage.
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number of (spatial) faces. From Fig. 2(a)–(c) it can be seen that the space–time DG method is slightly more accurate than the
space–time HDG method in terms of L2-error vs. degrees of freedom. Fig. 3(a)–(c) shows the L2-error vs. CPU times. For the
ps ¼ 1 computations, the space–time DG method has a slight advantage over space–time HDG, while the opposite is true for
the ps ¼ 2 computations. For the pt ¼ ps þ 1 ¼ 3 computation on the finest grid, the space–time HDG method performs much
better than the space–time DG method. A similar conclusion can be found for the L2-error vs. the memory usage (see
Fig. 4(a)–(c)). For the ps ¼ 1 computations, the space–time DG method has a slight advantage over space–time HDG. For
the ps ¼ 2 computations, both methods behave approximately the same. Furthermore, note that if pt ¼ ps þ 1 we are just
as accurate for the velocity terms as when taking pt ¼ ps (see Figs. 2(a), (b), 3(a), (b) and 4(a), (b)) but taking pt ¼ ps þ 1 re-
sults in much better convergence rates for the pressure (see Figs. 2(c), 3(c) and 4(c)). In summary, from Figs. 2–4 we see that
the main difference between the space–time DG and HDG methods is in the computation of the pressure for pt ¼ ps þ 1 ¼ 3.
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The CPU-time and memory use, however, are strongly implementation dependent. To give a fair comparison we have used as
much overlapping code as possible using the software package hpGEM [21] coupled to PETSc [2].



Fig. 7. Snapshots of the vorticity for test case 4.3 on a 40� 30 grid using pt ¼ ps þ 1 ¼ 3. The pictures shown here were computed using the nonconservative
stabilization space–time DG method.
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In Fig. 5 we plot the condition number of the global system and the number of non-zeros in the global system against the
total number of degrees of freedom of the global system. We see in Fig. 5(a) that the condition number of the space–time DG
method is approximately an order smaller for the same polynomial approximation than that of the space–time HDG method,
the exception being the pt ¼ ps þ 1 ¼ 3 computation. This could mean that the space–time DG method is easier to solve. Note
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that, with the exception of the pt ¼ ps þ 1 ¼ 2 computation, the condition number for the space–time HDG method remains
approximately the same for varying polynomial approximations. For the space–time DG method, as the polynomial approx-
imation increases, the condition number increases. Furthermore, from Fig. 5(b) we see that, for the same number of global
degrees of freedom, the global matrix of the space–time DG method is sparser than that of the space–time HDG method. This
results in less memory requirements for the space–time DG method.

An advantage of the HDG method compared to the DG method is that while the DG method only provides suboptimal rates
of convergence for the velocity gradient (see e.g. [6]), the HDG method results show optimal rates of convergence for the
velocity gradients [18,19,22]. Due to this optimal rate of convergence for the velocity gradients, a simple element-by-element
postprocessing [18,19] for the HDG method can be devised resulting in super-convergence rates for post-processed velocities.
This could make the space–time HDG method more efficient than the space–time DG method. That said, if a DG method can be
devised such that its velocity gradients converge with optimal rates, the HDG post-processing could also be applied to the DG
method, possibly resulting also in super-convergence rates for the DG computed velocity fields. We refer to [9] in which it is
explained how such a DG method may be devised. However, as it is noted in [9], the main drawback of such a DG method is
that it will be very difficult to implement.
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Fig. 8. The pressure coefficient Cp at different time instances for test case 4.3. We use a space–time DG method with No stabilization (line) and
nonconservative (dots) stabilization on a 40� 30 grid using pt ¼ ps þ 1 ¼ 3. We remark that h = 0�, 90�, 180� and 270� denote the points
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4.3. An expanding/contracting cylinder

We consider now a more challenging test case for the space–time DG method. For this we consider a time-dependent
problem with moving boundary and deforming mesh to get information about the performance of the algorithm. Our test
case is a model problem for the flow around underwater flexible hoses, e.g. used for pumping oil from reservoirs to tankers.
For this purpose we will consider the flow around an expanding and contracting cylinder. We let the radius rðtÞ of a cylinder
be time-dependent and varying according to the formula rðtÞ ¼ r0 þ a0 sinðptÞ. We take r0 ¼ 0:5 and a0 ¼ 0:2. The mesh at
time t ¼ 0 is shown in Fig. 6. The outer radius, R, is constant and fixed at R ¼ 28. The mesh consists of 40 rings and 30 sectors
with refinement near the cylinder boundary and in the wake of the cylinder.

We consider the space–time DG method using nonconservative and No stabilization with pt ¼ ps þ 1 ¼ 3. As physical param-
eters in this test case, we take Dt ¼ 0:005 and m ¼ 0:01. Numerical parameters are taken to be g ¼ 8 and c ¼ 10. In the Picard
iteration we require the residual to drop 9 orders in magnitude. Using a nonconservative stabilization, this is achieved each time
step in approximately 4–5 Picard iterations. Approximately 5–6 Picard iterations are needed when No stabilization is used.

As initial condition, we set u ¼ ð1;0Þ. On the inflow boundary we specify Dirichlet boundary conditions u ¼ ð1;0Þwhile on
the cylinder we specify u ¼ ð0;0Þ. A Neumann boundary condition is specified on the outflow in which we set gN ¼ 0.

Contour plots of the vorticity and the contraction and expansion of the cylinder are shown in Fig. 7 at different time in-
stances. Note that the vorticity is computed using the gradient of the velocity so that its order is one less than that of the
pressure and velocity fields. We show here the pictures computed using the nonconservative stabilization space–time DG
method, however, the pictures of the space–time DG method with No stabilization are identical. In Fig. 8 we compare the
pressure coefficient Cp ¼ ðp� p1Þ=ð12 q1u2

1Þ, p1 ¼ 0;q1 ¼ 1;u1 ¼ 1 along the cylinder boundary at different time instances
computed using the nonconservative and the No stabilization options. We see that the computed Cp is almost identical for
both methods, except for a slight deviation near the stagnation point, ð�rðtÞ;0Þ. To quantify, with respect to
maxðCpÞ �minðCpÞ, the difference is at most 3%.
5. Conclusions

We have introduced a space–time DG finite element method for the incompressible Navier–Stokes equations. To ensure
stability of the method we introduced a space–time BDM-projection and the more simpler stabilization method of adding
nonconservative terms to the weak formulation. From numerical experiments, using the BDM stabilization or the nonconser-
vative stabilization improves slightly the efficiency of the method compared to No stabilization, since less Picard iterations are
needed per time step to converge to a given tolerance. However, the finer the mesh, the less significant this effect becomes.

We numerically investigated also the use of using different orders of polynomial approximation in time, pt , and space, ps.
We found that when pt ¼ ps, the rates of convergence of the pressure were very irregular and suboptimal. Increasing the
polynomial approximation in time such that pt ¼ ps þ 1 improved the rates of convergence of the pressure, showing less
irregularity, although it is difficult to say whether the rates of convergence for the pressure are optimal. Rates of convergence
for the velocity fields are optimal. We showed that despite that the global number of degrees of freedom increase when
pt ¼ ps þ 1 compared to pt ¼ ps, using pt ¼ ps þ 1 is more efficient since the error of the solution in the L2-norm is smaller
for an equal amount of global number of degrees of freedom. The CPU times and memory usage are also less when using
pt ¼ ps þ 1 compared to pt ¼ ps to obtain a specified L2-error of the pressure.

Solutions of computations using the space–time DG method are compared with those obtained from a space–time HDG
method. We show that in terms of the L2 errors of the velocity and pressure vs. total number of degrees of freedom, CPU
times and memory usage, both methods perform approximately equally well. A reason for using the space–time DG method
is that more research has been done in efficiently solving the global systems arising from the discretization (see e.g. [27,28]
for multigrid methods for space–time DG methods). Also, the space–time DG method is less complex than the space–time
HDG method. Reasons to use the space–time HDG method, however, are that the space–time HDG method also computes the
velocity gradient with optimal rates of convergence. This has not been achieved yet with standard DG methods. It is due to
these optimal convergence rates that post-processing techniques can be developed for the HDG method so that post-pro-
cessed velocities converge with super-convergence rates [18,19].

Our final numerical computation shows the method’s ability to cope with a more challenging test case. We compute the
flow around an expanding and contracting cylinder. The radius of the cylinder is time-dependent so that the domain is con-
tinuously deforming. Results of the space–time DG method without stabilization are compared to using a nonconservative
stabilization. The number of Picard-iterations per time step are slightly less for the space–time DG method with nonconser-
vative stabilization. The numerical solutions, however, are almost identical. Only in the computation of the pressure coeffi-
cient, Cp, did we notice a slight deviation in the solution around the stagnation point, h = 180�.
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Appendix A. The space–time hybridizable discontinuous Galerkin method

In [22] we introduced a space–time hybridizable discontinuous Galerkin (HDG) method for incompressible flows. For
completeness we summarize here the weak formulation and refer to [22] for more details.

Besides the discontinuous finite element spaces defined in (6), the space–time HDG method also requires spaces for the
approximate trace of the velocities and pressure:
Mðpt ;psÞ
h ¼ fl 2 L2ðFÞd : ljS � FS 2 ðPðpt ;psÞðŜÞÞd;8S 2 Fg;

Wðpt ;psÞ
h ¼ fw 2 L2ðFÞ : wjS � FS 2 Pðpt ;psÞðŜÞ;8S 2 Fg:
The space–time HDG weak formulation for the Oseen equations, needed in each Picard-step, is given by: find an approxima-
tion ðr;u; pÞ 2 Rðpt ;psÞ

h � V ðpt ;psÞ
h � Q ðpt ;psÞ

h such that for all K 2 T h:

velocity gradient equation:
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momentum equation:
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i v i d�x; ðA:1bÞ

mass equation:

�
X
K2T h

Z
K

uiq;i dxþ
X
K2T h

Z
Qn
K

ûi�ni þ Spðp� p̂Þ
� 	

qds ¼ 0; ðA:1cÞ

for all ðs;v ; qÞ 2 Rðpt ;psÞ
h � V ðpt ;psÞ

h � Q ðpt ;psÞ
h . Here S 2 Rn�n is a second order tensor of stabilization parameters and Sp a scalar sta-

bilization parameter. By defining S ¼ hId and Sp ¼ 4h� 2wjnj
� 	�1, where Id 2 Rd�d is the identity matrix, h ¼ maxðjwjnjj; dÞþ

m=‘; ‘ a representative diffusive length scale and d > 0 is a given constant, the existence and uniqueness of the Oseen problem
can be proven to exist [22]. Furthermore, in (A.1), the approximation of the traces û and p̂ are required. These are determined
such that continuity of the normal component of the numerical trace of the total ‘‘momentum’’-flux and ‘‘mass’’-flux is
enforced. This is achieved by requiring
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for all ðl;wÞ 2 ðMh;WhÞ. The Dirichlet and Neumann boundary conditions are imposed by:
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ûili ds ¼
Z
S

gD
i li ds; 8S 2 [nSn

Dm;Z
S
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