2,366 research outputs found

    Statistical Analysis of Bus Networks in India

    Full text link
    Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe that the networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, like Internet, WWW and airline, which are virtual, bus networks are physically constrained. The presence of various geographical and economic constraints allow these networks to evolve over time. Our findings therefore, throw light on the evolution of such geographically and socio-economically constrained networks which will help us in designing more efficient networks in the future.Comment: Submitted to PLOS ON

    Research on Passenger Flow Control Plans for a Metro Station Based on Social Force Model

    Get PDF
    To better utilise the service capacity of the limited facilities of a metro station, as well as ensure safety and transport efficiency during peak hours, a large passenger flow control plan is studied through theoretical analysis and numerical simulation. Firstly, by passenger data collection and data analysis, the characteristics of the inbound and outbound passenger flow of a T metro station are analysed. Secondly, AnyLogic evacuation simulation models for the T Station during peak hours, peak hours without/with passenger flow control are established based on real passenger flow data as well as the station structures and layouts by using the AnyLogic software. The results show that there are no obvious congestions in the station hall, and the travel delay is significantly reduced when effective passenger flow control measures are taken. By controlling the speed, direction and movement path of passengers, as well as adjusting the operation of escalators, entrances and automatic ticket-checking machines, passenger flow can become more orderly, transport efficiency can also be improved, and congestion in the station can be well mitigated

    Complex Network Analysis of Highway Network in Guangdong Province in China

    Get PDF
    In this paper, complex network theory is introduced to analyze the highway network in Guangdong Province (GDHN), the topology structure of GDHN was presented using the L space methodology. Then the network properties, such as degree distribution, closeness centrality, betweenness centrality, have been applied to analyze the statistical features of the GDHN. The results shows that the hubs supporting the communication of different highways are mostly located in the Pearl River Delta area. The highway development levels between different regions are very unbalanced. At last, some suggestions about the future construction of GDHN are proposed

    Inundation resilience analysis of metro-network from a complex system perspective using the grid hydrodynamic model and FBWM approach : a case study of Wuhan

    Get PDF
    The upward trend of metro flooding disasters inevitably brings new challenges to urban underground flood management. It is essential to evaluate the resilience of metro systems so that efficient flood disaster plans for preparation, emergency response, and timely mitigation may be developed. Traditional response solutions merged multiple sources of data and knowledge to support decision-making. An obvious drawback is that original data sources for evaluations are often stationary, inaccurate, and subjective, owing to the complexity and uncertainty of the metro station’s actual physical environment. Meanwhile, the flood propagation path inside the whole metro station network was prone to be neglected. This paper presents a comprehensive approach to analyzing the resilience of metro networks to solve these problems. Firstly, we designed a simplified weighted and directed metro network module containing six characteristics by a topological approach while considering the slope direction between sites. Subsequently, to estimate the devastating effects and details of the flood hazard on the metro system, a 100-year rainfall–flood scenario simulation was conducted using high-precision DEM and a grid hydrodynamic model to identify the initially above-ground inundated stations (nodes). We developed a dynamic node breakdown algorithm to calculate the inundation sequence of the nodes in the weighted and directed network of the metro. Finally, we analyzed the resilience of the metro network in terms of toughness strength and organization recovery capacity, respectively. The fuzzy best–worst method (FBWM) was developed to obtain the weight of each assessment metric and determine the toughness strength of each node and the entire network. The results were as follows. (1) A simplified three-dimensional metro network based on a complex system perspective was established through a topological approach to explore the resilience of urban subways. (2) A grid hydrodynamic model was developed to accurately and efficiently identify the initially flooded nodes, and a dynamic breakdown algorithm realistically performed the flooding process of the subway network. (3) The node toughness strength was obtained automatically by a nonlinear FBWM method under the constraint of the minimum error to sustain the resilience assessment of the metro network. The research has considerable implications for managing underground flooding and enhancing the resilience of the metro network

    Forecasting the All-Weather Short-Term Metro Passenger Flow Based on Seasonal and Nonlinear LSSVM

    Get PDF
    Accurate metro ridership prediction can guide passengers in efficiently selecting their departure time and simultaneously help traffic operators develop a passenger organization strategy. However, short-term passenger flow prediction needs to consider many factors, and the results of the existing models for short-term subway passenger flow forecasting are often unsatisfactory. Along this line, we propose a parallel architecture, called the seasonal and nonlinear least squares support vector machine (SN-LSSVM), to extract the periodicity and nonlinearity characteristics of passenger flow. Various forecasting models, including auto-regressive integrated moving average, long short-term memory network, and support vector machine, are employed for evaluating the performance of the proposed architecture. Moreover, we first applied the method to the Tiyu Xilu station which is the most crowded station in the Guangzhou metro. The results indicate that the proposed model can effectively make all-weather and year-round passenger flow predictions, thus contributing to the management of the station

    A Worldwide State-of-the-Art Analysis for Bus Rapid Transit: Looking for the Success Formula

    Get PDF
    This paper’s intended contribution, in terms of providing an additional angle in the existing Bus Rapid Transit (BRT) state-of-the-art knowledge spectrum, is a dual one. On the one hand, it provides a detailed description of the mode, re-defining BRT as an overall concept by identifying, discussing, and categorizing in a systematic way its strengths and its weaknesses in comparison with rail-based solutions and conventional bus services. On the other hand, it presents in detail a number of selected scheme-oriented applications from around the world, looking into some of the basic ingredients behind BRT’s success (or failure) stories. This is a scientific effort that could inform the reader about the current status of BRT internationally and about the challenges and opportunities that exist when trying to materialize BRT’s potential as an effective urban passenger solution that could challenge the merits of more conventional mass-transit options

    Analysis of Public Bus Transportation of a Brazilian City Based on the Theory of Complex Networks Using the P-Space

    Get PDF
    The city of Curitiba, located at Southern Brazil, is recognized by its urban planning structured on three pillars: land use, collective transportation, and traffic. With 3.8 million people in its metropolitan area, the public transport system deals with approximately 2.5 million passengers daily. The structure and properties of such a transportation system have substantial implications for the urban planning and public politics for sustainable development of Curitiba. Therefore, this paper analyzes the structure of the public transportation system of Curitiba through the theory of complex networks in a static approach of network topology and presents a comparative analysis of the results from Curitiba, three cities from China (Shanghai, Beijing, and Guangzhou), and three cities from Poland (GOP, Warszawa, and ƁódĆș). The transportation network was modeled as a complex network with exact geographical coordinates of its bus stops. In all bus lines, the method used was the P-Space. The results show that this bus network has characteristics of both small-world and scale-free networks

    Holiday Destination Choice Behavior Analysis Based on AFC Data of Urban Rail Transit

    Get PDF
    For urban rail transit, the spatial distribution of passenger flow in holiday usually differs from weekdays. Holiday destination choice behavior analysis is the key to analyze passengers’ destination choice preference and then obtain the OD (origin-destination) distribution of passenger flow. This paper aims to propose a holiday destination choice model based on AFC (automatic fare collection) data of urban rail transit system, which is highly expected to provide theoretic support to holiday travel demand analysis for urban rail transit. First, based on Guangzhou Metro AFC data collected on New Year’s day, the characteristics of holiday destination choice behavior for urban rail transit passengers is analyzed. Second, holiday destination choice models based on MNL (Multinomial Logit) structure are established for each New Year’s days respectively, which takes into account some novel explanatory variables (such as attractiveness of destination). Then, the proposed models are calibrated with AFC data from Guangzhou Metro using WESML (weighted exogenous sample maximum likelihood) estimation and compared with the base models in which attractiveness of destination is not considered. The results show that the ρ2 values are improved by 0.060, 0.045, and 0.040 for January 1, January 2, and January 3, respectively, with the consideration of destination attractiveness
    • 

    corecore