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Abstract: The upward trend of metro flooding disasters inevitably brings new challenges to urban
underground flood management. It is essential to evaluate the resilience of metro systems so that
efficient flood disaster plans for preparation, emergency response, and timely mitigation may be
developed. Traditional response solutions merged multiple sources of data and knowledge to
support decision-making. An obvious drawback is that original data sources for evaluations are
often stationary, inaccurate, and subjective, owing to the complexity and uncertainty of the metro
station’s actual physical environment. Meanwhile, the flood propagation path inside the whole
metro station network was prone to be neglected. This paper presents a comprehensive approach to
analyzing the resilience of metro networks to solve these problems. Firstly, we designed a simplified
weighted and directed metro network module containing six characteristics by a topological approach
while considering the slope direction between sites. Subsequently, to estimate the devastating effects
and details of the flood hazard on the metro system, a 100-year rainfall–flood scenario simulation
was conducted using high-precision DEM and a grid hydrodynamic model to identify the initially
above-ground inundated stations (nodes). We developed a dynamic node breakdown algorithm
to calculate the inundation sequence of the nodes in the weighted and directed network of the
metro. Finally, we analyzed the resilience of the metro network in terms of toughness strength and
organization recovery capacity, respectively. The fuzzy best–worst method (FBWM) was developed
to obtain the weight of each assessment metric and determine the toughness strength of each node
and the entire network. The results were as follows. (1) A simplified three-dimensional metro
network based on a complex system perspective was established through a topological approach
to explore the resilience of urban subways. (2) A grid hydrodynamic model was developed to
accurately and efficiently identify the initially flooded nodes, and a dynamic breakdown algorithm
realistically performed the flooding process of the subway network. (3) The node toughness strength
was obtained automatically by a nonlinear FBWM method under the constraint of the minimum error
to sustain the resilience assessment of the metro network. The research has considerable implications
for managing underground flooding and enhancing the resilience of the metro network.

Keywords: resilience analysis; metro network; flood simulation; dynamic breakdown; FBWM

1. Introduction

Floods are one of the most devastating and frequent natural disasters in the world [1].
From 1960 to 2014, floods have directly caused USD 2.5 billion in economic losses and
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1254 deaths annually [2]. In recent decades, most urban areas with high vulnerability
worldwide have been exposed to the risk of flood hazards due to rapid urbanization and
varying climate change [3–7]. The United Nations indicates that urban flood disasters have
caused massive damage to infrastructure and livelihoods, resulting in billions in economic
losses and cascading effects on the public assets such as metro infrastructure [3]. By 2050,
the global population of cities will grow by more than two-thirds, and the critical urban
infrastructure networks, such as energy, power, and transportation systems, will increase
dramatically [8]. This rapid urbanization has contributed to high-density economies
and facilitated urban development. Still, it has also resulted in higher risk and more
vulnerability of cities to the threat of flooding hazards. Worse still, the frequency and
intensity of flood events are expected to increase in the coming years due to more frequent
extreme precipitation events [9–11].

With the expansion of urbanization, urban underground space has been exploited
and used to various degrees. As a vital part of the urban transportation system, the metro
undertakes many public responsibilities and plays an essential role in alleviating traffic
congestion and benefiting commuters. By 2018, 56 countries and 178 cities worldwide oper-
ated metros with an average of 168 million passengers per day, and this number is growing
every year [12]. However, metro systems below the ground are the first places where flood-
ing invades. Long-term subsidence and dense passenger traffic cause the metro system
to be more vulnerable to flooding and at greater risk than other infrastructure. In recent
years, metro floods have been increasing in severity and frequency due to the impermeable
concrete surface and untimely update of drainage facilities [13,14]. In July 2021, the flood
inundated the Shenzhoulu station, resulting in six stations on Line 21 of Guangzhou Metro
being suspended for 7 h, with a direct economic loss of CNY 9115 million (Figure 1a). On 18
July 2021, the protective walls of Zhengzhou Metro line 5 were destroyed by heavy rain, and
a flood flowed into the metro tunnel, causing 500 passengers to be trapped and 14 deaths
(Figure 1b). On 2 September 2021, flooding occurred at approximately 46 places in the
New York metro, almost shutting down the entire metro network (Figure 1c). Thus, metro
flooding disasters should be highly emphasized by urban safety management personnel.

Figure 1. The metro stations were flooded. (a) Shenzhoulu station of Guangzhou metro line 21 on 30
July 2021. (b) Station of metro line 5 flooded during heavy rainfall on 18 July 2021, in Zhengzhou.
(c) The New York metro station was attacked on 2 September 2021.

Research on metro flood disasters, such as flood simulation and disaster risk manage-
ment, is crucial for urban metro resilience assessment [15–17]. Previous research mainly
studied the static risk assessment of metro lines and highly vulnerable metro stations [18].
A few studies focused on evaluating urban flood risk using the rainfall index system and
multi-criteria decision-making methods; others deeply researched the emergency response
capability of public emergency departments in urban floods. For example, Lyu evaluated
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the flood risk of the Guangzhou metro system by a GIS-based modeling approach and
obtained the high-risk metro lines and nodes [19]. Wang studied the influence of ground
subsidence on the increasing flood risk of the metro system and finally found that land
subsidence is an essential factor affecting flood risk [20]. Yin used FloodMap to assess the
impact of coastal floods on on-road emergency response in New York [21]. However, there
is a gap in research considering the inundation resilience analysis of underground floods
for the metro system from a network perspective. Due to the varying elevations of each
station and the interconnectedness of the stations, a failure at a single station would bring
down the entire system or even trap a large number of people, making rescue difficult.
Therefore, there is an urgent need to study the cascading effect of nodes (stations) of the
metro network to better cope with metro flooding caused by heavy rainfall in the process
of urban resilience management [22].

Structured network analysis methods could be employed in many applications, from
traffic planning to scheduling, evacuation planning, network resilience, and robustness
assessment [23,24]. The network topology analysis approach could be carried out to study
the disaster resistance of metro networks [25,26]. Some studies have considered passenger
flow and passenger paths in network construction [24,27]. Meanwhile, a set of indicators
has been developed to quantify metro networks, for example, connectivity, clustering, and
shortest paths [28,29]. Due to their common functional characteristics, metro networks in
different cities also have similar statistical properties [30,31]. However, floodwater intrusion
into the metro has a direction and speed, and the previously constructed network is no
longer suitable for the dynamic investigation of flood hazards. Therefore, it is necessary
to establish a novel and practical metro network for disaster resilience analysis, which
combines the dynamic and structural characteristics of disasters.

Resilience is the ability of a system to respond to damage and varies with the intensity
of the hazard. The acquisition of an accurate estimate of the extent and intensity of flood
inundation is an essential prerequisite for resilience assessment. For metro networks,
damage caused by flooding could spread from the ground to the subsurface. Current
metro flood hazard analysis on the ground was based on the statistical analysis of historical
rainfall data to quantify hazards such as average rainfall and average rainy day [13,20,32].
However, the flood evolution and metro flood details are not available by the methods
mentioned above to better perceive the flood risk. Modeling approaches specialize in
simulating and obtaining evaluation parameters to predict future hydrological responses in
different scenarios [33–35]. Two-dimensional flood inundation models commonly used for
simulation include MIKE 21, SOBEX, JFLOW, and UIM [36–38]. The above models could
get more accurate information about flooding with time and space, such as water depth and
flow velocity at different moments and locations, but requires high-resolution topography
and roughness data. Additionally, these raw data need to be converted to a specific input
format before being fed into the computational model, and the conversion process of files in
different formats commonly results in some loss of information and accuracy. In addition,
traditional two-dimensional hydrodynamic models are complex and time-consuming to
manipulate and compute and cannot be adapted to real-time applications. Therefore, recent
hydrodynamic models make an effort to simplify calculations and increase efficiency [39].
The grid hydrodynamic model was a spatially distributed and physically based rainfall–
runoff model that was conveniently and efficiently integrated with the GIS system and
directly simulated using DEM data [40,41].

However, there is still very limited research on how flooding spreads within the metro
network. Despite the evidence that urban flooding has a probability of intruding into the
subway of up to 50% [42], existing studies have not investigated the issue of flood propaga-
tion paths in the subway network. Toda had taken Kyoto City in Japan as an example to
analyze the flood spreading process and flow characteristics of ground floods inundating
underground space [43]. Based on the volume of fluid (VOF) method, Yoneyama simulated
the flood flow on the straight stairs in an underground area to obtain a more accurate
velocity field [44]. Wu combined the smoothed particle hydrodynamics (SPH) method



Remote Sens. 2022, 14, 3451 4 of 28

with a graphics processing unit (GPU) to calculate the step flow in the subsurface space,
obtaining a better step flow pattern with higher computational efficiency [45]. Forero-Ortiz
used Mike21 to simulate the evolution of surface water flow near Barcelona metro stations
and quantify extreme rainfall weather’s contribution to exacerbating metro accidents [46].
Previous studies have only focused on the intrusion characteristics and stepwise flow but
have not studied the dynamic inundation process between subway stations [47–51].

Resilience evaluation could be of great utility in enhancing prevention and emergency
response capabilities. The evaluation procedure generally involves the establishment of a
comprehensive indicator system, of which the determination of relative weights among
indicators is another important research aspect. In recent years, the indicator weights
comparison methods could be divided into multi-criteria decision methods (MCDM) and
machine learning (ML) techniques. MCDM methods that are used to compare the weights
of the indicators, such as the analytic hierarchy process (AHP), entropy weight method,
TOPSIS method (technique for order preference by similarity to an ideal solution), grey the-
ory, and fuzzy methods [51–56]. The disadvantage of these methods, however, is that they
rely excessively on the experience of experts to compare these indicators [57,58]. ML meth-
ods, such as artificial neural networks (ANN), support vector machine (SVM), Bayesian
network (B.N.), random forest (F.R.), and so on, has good application in classification and
index processing, especially when dealing with extensive sample data [49,59–61]. However,
in the case of a small sample, the performance of ML methods will be significantly reduced.

To solve those problems, we developed a hybrid approach from the perspective of
urban metro network flood management. The study’s objectives are (1) to establish a
simplified network based on flood characteristics, combining the metro topology features,
node functions, and node social attributes, (2) to use a grid hydrodynamic model to
identify nodes susceptible to flooding and develop a dynamic node breakdown algorithm
to simulate the subway’s flood propagation path and node inundation sequence, and
(3) to estimate toughness strength of the metro network using the FBWM method and
quantify organization recovery capacity. This paper is organized as follows. In Section 2,
the methodology and materials are introduced. The data sources and results are presented
in Section 3.

2. Methodology and Materials

The main objective of this study is to propose an integrated modeling approach for the
resilience of the metro system. The process consists of three steps. Firstly, we designed a
simplified weighted and directed network model of the metro by combining a topological
approach and the slope direction between sites. Subsequently, a 100-year rainfall flood
scenario simulation was conducted using high-precision DEM and a grid hydrodynamic
model to identify the initially above-ground inundated stations (nodes). A dynamic node
breakdown algorithm was also developed to calculate the inundation order of the nodes.
Finally, we evaluated the resilience of the metro network concerning its toughness strength
and organization recovery capacity, respectively. Figure 2 demonstrates the framework of
the methodology used in this paper.
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Figure 2. The framework of methodology.

2.1. Study Area

To validate the practicality of the proposed method, we chose Wuhan metro network
as an instance as there are countless rivers and abundant rainfall in Wuhan region, and the
metro was exposed to extremely high-level flood risk with respect to other cities. Wuhan
is located in the eastern Hubei Province of China (as shown in Figure 3a), at the Yangtze
River and the Hanjiang River junction. The city is intertwined with rivers and lakes, and
the waters cover a quarter of the city’s total area. Wuhan has a north subtropical monsoon
climate with an average annual temperature of 15.8–17.5 ◦C (as shown in Figure 3b). It has
an annual precipitation of 1150 mm to 1450 mm (as shown in Figure 3c), all concentrated
between June and August each year, accounting for about 40% of the annual precipitation
(as shown in Figure 3d). The city’s topography is dominated by low mountains, hills
and plains, most of which are below 50 m above sea level and with relatively low terrain.
Most of the geological layers on which the metro is located are clay, silt and silty soft soil.
In July 2016, three metro stations in Wuhan were submerged, and two were inundated
in June 2019. Therefore, Wuhan is characterized by frequently rainfall and low terrain
owing to the geography and climatology, and that is the main reason we decided to select
Wuhan as the research area. Since the construction of hydraulic facilities around the region
recently, the risk of large-scale Flooding in Wuhan has been significantly reduced. The
primary risk to the subway originates from the frequent heavy rainfall that caused the
water accumulation on the ground, and the water poured through the subway entrance
resulting in an emergency risk situation. Figure 3 illustrates the administration area, the
metro lines and climate of Wuhan.
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2.2. Network Modeling: Simplified Three-Dimensional Model of Metro Network under Flood
Evolution Scenario
2.2.1. Basic Network

Most of the urban metro stations are located underground, and there are elevation
differences between different metro stations. Compared with the traditional simplification
method, this paper made the subway network a complex network with three-dimensional
properties. Figure 4 shows a simplified schematic diagram of the urban metro.

The stations were abstracted as nodes in a simplified metro network, and the tunnels
between stations were treated as edges. Since stations have many entrances and exits and
ventilation systems, highly exposed nodes are usually the first places where floodwater
intrudes. Due to the differential elevations of the stations, flood water at the inundated
nodes flows through the edges to the nodes with lower topography. Thus, the subway net-
work could be modeled as a directed and weighted network, which reflects the topological
characteristics of the metro system and dynamically shows the spatial–temporal process of
flooding. The metro network was represented as a weighted and directed graph G = (N, E),
where N is the set of nodes of G, and E is the set of edges [62].
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Figure 4. Urban metro diagram. (a) Remote sensing image of the Wuhan city. (b) Two-dimensional
map of urban metro. (c) Three-dimensional map of urban metro.

2.2.2. Node Characteristics

The network in this paper assigned specific characteristics related to flooding. The
characteristics of nodes such as node degree, node strength, node betweenness, closeness
centrality, passenger flow, and GDP density were further sub-defined.

1. Node Degree

Node degree indicates the number of neighboring nodes that are directly connected
to the node. There are two connection directions between nodes, such as i → j(out) or
j→ i(in), as shown in Figure 5a. The node-out degree do

i represents the number of nodes
that flood flows from node i to other nodes, and the node-in degree di

i is described by the
number of nodes where the flood flows into node i. The parameter δij, whose values were
all assigned as 1, denotes the flood flow between node i and node j. The inflow was marked
as δi

ij and the outflow was specified as δo
ij. The node degree di is the sum of node input

degree and node output degree. The calculation formula is as follows:

di
i = ∑j∈E δi

ij, (1)

do
i = ∑j∈E δo

ij, (2)

di = di
i + do

i , (3)

2. Node Strength

The node strength indicates the capacity of the node to tolerate or transmit flood water.
The greater the node strength, the higher the flood risk to the node. In a weighted network,
node strength is defined as the sum of the weights of all the edges connected with node i.
The terrain difference between nodes determines the weight of edges. A metro node can
receive flood water from a higher node or propagate it to a lower node. The corresponding
relationship between terrain difference and edge weight is shown in the following table.
The maximum height variation between Wuhan metro stations is 29.6 m. To quantify the
relative levels of risk between stations, we categorized the height variation into five levels
and assigned different weights to each level depend on the flood flow direction as shown in
Table 1. δij is a constant, 1, indicating that node i and node j are directly connected. N is the
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number of network nodes and ωij is the weight of edges between nodes i and j. Similarly,
the node strength could also be described as Equation (4) and Figure 5b.

Di = ∑j 6=i∈N δijωij, (4)

Figure 5. (a) Node degree graph. (b) Node strength graph.

Table 1. Relationship between elevation and edge weight.

Difference of Terrain (m) Weights from Low to High
Terrain Nodes

Weights from High to Low
Terrain Nodes

0–6 0.5 0.6

6–12 0.4 0.7

12–18 0.3 0.8

18–24 0.2 0.9

24–30 0.1 1

3. Node Betweenness

Node betweenness, Ci, represents the ability of the node to diffuse flood, as shown in
Equation (5) below. In the formula, σi

st denotes the number of paths from point s to point t
through node i, and σst is the number of paths from point s to point t. Node betweenness
as the initial parameter is crucial in node importance evaluation which reflects the function
of flood diffusion as shown in Figure 6.

Ci = ∑s 6=v 6=t∈E
σi

st
σst

, (5)

Figure 6. Node betweenness graph.
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4. Closeness Centrality

When the nodes at the edge of the network and the center of the network have the
same node strength, it is necessary to consider the impact of these nodes on the operation
efficiency of the entire metro network. Close centrality shows the average shortest distance
from this node to all other nodes, which reflects the degree of proximity between these
nodes. The smaller the average shortest distance of a node is, the greater the closeness
centrality of this point is. If there is no path reachable between node i and node j, then dij is
defined as infinite, and its reciprocal is 0. The calculation formula is as follows:

Ci =
1
di

=
1

∑j=i dij
, (6)

5. Passenger Flow

Passenger flow is an index to measure the number of passengers, which is recorded
as Pi [13,18,24]. In this paper, the average annual passenger flow was used to separate
passenger flow into five different levels, from low to high. The higher the passenger flow,
the higher the corresponding importance.

6. GDP Density

The GDP density of nodes directly shows its social function and economic signifi-
cance [19,20]. In this paper, GIS was used to overlay the annual GDP and location charac-
teristics of the study area, and the GDP density of different metro stations was recorded
as Mi.

2.2.3. Node Toughness Strength

The toughness strength of a node we define as the vulnerability of the node to a
hazard. Node toughness strength reflects the resilience of nodes exposed to flood events. It
is inversely related to each of the above factors, and there is a cumulative effect between
the factors. Node toughness strength reflects the resilience of nodes exposed to flood
damage. In this paper, we defined the node toughness strength as Equation (7). The six
node characteristics and node strength have an inverse growth relationship.

xi =
1

ξ1di + ξ2Di + ξ3Bi + ξ4Ci + ξ5Pi + ξ6Mi , (7)

In the formula, ξ1, ξ2, ξ3, ξ4, ξ5, and ξ6 were node degree coupling coefficient, node
strength coupling coefficient, node betweenness coupling coefficient, closeness central-
ity coupling coefficient, passenger flow coupling coefficient, and GDP density coupling
coefficient, respectively.

2.3. Flood Hazard Simulation

The breakdown of the metro network occurs when there is continuous heavy rainfall.
Excess rainfall is driven by gravity to the surface and flows to lower terrain. The gathered
floodwater initially flows into the metro station entrances in low-lying areas, thereby
causing the spread of floodwater within the metro network.

2.3.1. Surface Flooding Simulation: Identification of Flood-Prone Metro Nodes

The breakdown of the metro network starts at the nodes that were first flooded.
Initially, we identified the nodes in the metro network that are susceptible to inundation
through submersion simulations. By setting different flood return periods and carrying
out simulations based on the grid hydrodynamic model, we could specify the inundated
metro nodes based on the simulation outcomes. If the inundation depth of the area exceeds
the height of the water barrier in front of the subway exit (0.6–1 m), the subway station is
considered to be inundated. Considering the accumulation of massive water around the
subway, the conventional emergency measure is to use sandbags for the interception; the
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height of sandbags is estimated to be about 1 m according to past practical experience, so
the height of the water barrier is defined as 1 m in this paper.

1. Inundation simulation

In this paper, a grid hydrodynamics-based cellular automata model was used to
simulate the rainfall flooding process [41]. The two-dimensional shallow water equations
were discretized and applied as a transformation rule to the cellular automata model. A
cellular automaton was composed of cellular space, a cellular state, a neighborhood, and a
transformation rule. A two-dimensional cell space was chosen, and a von Neuman-type cell
was used for the neighborhood, as shown in Figure 7a. The state of each cell in the cellular
automaton model at the next moment (water level, flow rate) was determined by the
previous moment’s state (water level, flow rate) of that cell and its neighboring cells. The
most critical part of the cellular automaton was the definition of the transformation rules.
Therefore, to accurately describe the flood evolution process, the two-dimensional shallow
water equations were discretized. The evolutionary relationship between water level and
flow was controlled by the de Saint-Venant system of equations (see Equations (8)–(10))

∂h
∂t

+
∂M
∂x

+
∂N
∂y

= 0, (8)

∂M
∂t

+
∂(uM)

∂x
+

∂(vM)

∂y
+ gh

∂Z
∂x

+ gn2u

√
u2 + v2

3
√

h
= 0, (9)

∂N
∂t

+
∂(uN)

∂x
+

∂(vN)

∂y
+ gh

∂Z
∂y

+ gn2v

√
u2 + v2

3
√

h
= 0, (10)
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Equation (8) is the continuous equation, and Equations (9) and (10) are the momentum
equations. Figure 7b shows the cellular space difference in three dimensions, where h is
the water depth, the distance of the water surface from the river bottom; Z is the water
level, the elevation of the free water surface relative to the base of the gauge; M and N
are the discharge in the x and y directions; u and v denote the average flow velocity in
the x and y directions, respectively; n is the Manning roughness; t is the time; and g is the
gravity acceleration.

The first term of the momentum equation reflects local acceleration, the second term
reflects convective acceleration, and the first and second terms are inertial. Due to the
flat terrain of the simulated floodplain area, the symbol of gh ∂Z

∂x varies with the fluctu-
ation of the flood. Referring to the simplified method of diffusion waves, we can say∣∣∣ ∂M

∂t + gn2u
√

u2+v2
3√h

− gh ∂Z
∂x

∣∣∣ � ∣∣∣ ∂(uM)
∂x + ∂(vM)

∂y

∣∣∣. The convection term is a nonlinear term,
which will cause the oscillation of the calculation results when solving Equations (9) and (10).
However, it has less impact on the calculation. This article omits this item. Simpli-
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fied shallow water equations in the x and y directions could be obtained, as shown
Equations (11)–(13).

Mk+1
i,j = Mk

i,j − g
∆t
(

hk
i,j + hk

i+1,j

)(
Zk

i+1,j − Zk
i,j

)
2∆x

− gn2
i,j

uk
i,j∆t

√(
uk

i,j

)2
+
(

vk
i,j

)2

3

√(
hk

i,j + hk
i+1,j

)
/2

, (11)

Nk+1
i,j = Nk

i,j − g
∆t
(

hk
i,j + hk

i,j+1

)(
Zk

i,j+1 − Zk
i,j

)
2∆y

− gn2
i,j

vk
i,j∆t

√(
uk

i,j

)2
+
(

vk
i,j

)2

3

√(
hk

i,j + hk
i,j+1

)
/2

, (12)

hk+1
i,j = hk

i,j −
∆t
(

Mk
i+1,j −Mk

i,j

)
∆x

−
∆t
(

Nk
i,j+1 − Nk

i,j

)
∆y

, (13)

where k is the number of cell iterations, and ∆t is the time step. The size of the grid is
defined by ∆x and ∆y. The position of the cell is defined by i and j. The water level value
of the unit is initialized, as well as the initial water velocity of u0

i,j = v0
i,j. The cellular space

difference diagram is shown in Figure 7b.
Since the explicit difference is usually unstable, the time step and distance step need to

be limited, as shown in Equation (14), where c is the wave speed, generally taken as
√

gH.

∆t ≤ ∆x
c

, (14)

2. Rain design

Rain intensity is determined using the recommended formula for the study area, the
form of expression of which is shown in Equations (15) and (16) [63].

i =
9.686(1 + 0.887lgP)

(t + 11.23)0.658 , (15)

q =
1614(1 + 0.887lgP)

(t + 11.23)0.658 , (16)

In Equations (15) and (16):
i—Design rainstorm intensity (mm/min);
P—Rainfall return period (a);
t—Duration of rainfall (min);
q—Design rainstorm intensity [L/(s·hm2)].
Short-term rainfall is determined using Chicago rain type; through the above

Equations (15) and (16) transformation, Equations (17) and (18) can be obtained as follows.
The duration of rainfall is 3 h. The rainfall process line is shown in Figure 8.

I1 =
a(

t1
r + b

)n+1

(
(1− n)t1

r
+ b
)

, (17)

I2 =
a(

t2
1−r + b

)n+1

(
(1− n)t2

1− r
+ b
)

, (18)
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Figure 8. Rainfall Process Line.

In Equations (17) and (18), I1 is the pre-peak rainfall intensity (mm/min), I2 is
the post-peak rainfall intensity (mm/min), t1 is the pre-peak rainfall duration (min),
t2 is the post-peak rainfall duration (min), r is the rain peak coefficient, n = 0.658,
a = 9.686(1 + 0.887lgP), and b = 11.23.

2.3.2. Inundation Sequence Simulation of Stations: Dynamic Node Breakdown Algorithm

The metro network in the flood scenario is a directed and weighted network. Flood
will spread along the tunnel to low terrain. Flood diffusion is a dynamic process varying
with time, so this paper discretizes the time and space variables. fi(t) is used to define
whether the node is invalid.

At the moment t0 when the inundation depth within 300 m around the metro station
is greater than the limit h0, the station is considered to be flooded, namely fi(t0) = 0. For
the node state at any time, fi(t) is used to define whether the node is invalid, as shown in
Equation (19).

fi(t) =
{

0, invalid
1, valid

, (19)

Therefore, as long as the breakdown time of the first node is known, the breakdown
nodes at different times and the characteristics of good nodes could be obtained by the
dynamic node breakdown algorithm.

Figure 9 shows the flow chart of metro flood propagation. The specific calculation
steps are as follows:

Step 1: Initialization parameters. Input node-in degrees, node-out degrees, edge
lengths, edge weights, node passenger flow, and GDP density to form six n × n initial
matrices.

Step 2: Calculation of flood diffusion length based on flood velocity and interval time.
Step 3: The characteristics matrix of each node is calculated.
Step 4: Based on the set of breakdown node points at the previous moment, we

determined the breakdown nodes at the next moment.
Step 5: Record the fi(t) of the breakdown node as 0 and clear it. Then, start searching

for the breakdown node of the next moment.
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2.4. Resilience Assessment Model of Metro Network

In this paper, the resilience of the metro network consists of two parts: its toughness
strength and organization recovery capacity. The fuzzy best–worst method (FBWM) was
used to obtain the weight of each assessment metric and determine the toughness strength
of each node and the entire network. Organizational recovery was represented by the
coverage of urban public emergency forces.

2.4.1. Toughness Strength Assessment Model for Metro Network
1© Calculation of node toughness strength index weights: FBWM

Before carrying out a comprehensive assessment based on FBWM, we first used a
simple fuzzy theory, a methodology to describe and process system uncertainty [17]. The
point of fuzzy set theory, which was adopted in this study, is that the degree of membership
for an element is usually within a specific interval [0, 1]. Any value within the interval
indicates that the component has a certain degree of membership, or, in other words, it has
a part belonging to the fuzzy set. The triangular fuzzy number is determined by (L, U, M)
and satisfies 0 ≤ L ≤ M ≤ U ≤ 1. L, M, and U denote the lower bounds, the most likely
value, and the upper bounds, respectively, as shown in Figure 10. The membership function
of triangular fuzzy number (TFN) Ã is as follows:

µÃ(A) =


0, A < L orA > U
A−L
M−L , L ≤ A ≤ M
U−A
U−M , M ≤ A ≤ U

, (20)
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Figure 10. Schematic diagram of each parameter in TFNs.

The operational laws of TFNs Ã = (L1, M1, U1) and B̃ = (L2, M2, U2) were as fol-
lows [57].

Ã± B̃ = (L1 ± L2, M1 ±M2, U1 ±U2),
Ã× B̃ = (L1L2, M1M2, U1U2),

Ã÷ B̃ =
(

L1
U2

, M1
M2

, U1
L2

)
,

(21)

Defuzzification was used to convert the fuzzy set into an accurate value as the output
to carry out the subsequent work. The graded mean integration representation (GMIR) of
fuzzy triangular numbers can be expressed below.

R
(

Ã
)
=

L + 4M + U
6

. (22)

This section aims to obtain the importance of nodes by calculating index weights.
FBWM (fuzzy best–worst method), proposed by Guo S in 2017, is a method to get the
weight of each indicator by comparing the importance of other indicators with the best
indicators and the worst indicators [57]. Using FBWM to calculate the weights of the indices
is a critical step in assessing the overall network resilience.

In this paper, the importance of each indicator was compared with each other according
to its contribution to flood risk. The relative importance of the indicators was transformed
into fuzzy triangular numbers based on Table 2.

Table 2. Transformation rules of Linguistic variables [57].

Linguistic Terms Membership Function
(L,M,N)

Equally important (EI) (1,1,1)
Weakly important (WI) (2/3,1,3/2)

Fairly important (FI) (3/2,2,5/2)
Very important (VI) (5/2,3,7/2)

Absolutely important (AI) (7/2,4,9/2)

The specific steps of FBWM are as follows.
Step 1: Determine the best and worst indicators. In this step, the importance of each

indicator is compared. The best indicator B and the worst indicator W are decided.
Step 2: Compare the importance of other evaluation indicators with the best indicator

B and the worst indicator W and record them as aBW , as shown in Figure 11.
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Figure 11. Importance comparison between indicators.

Step 3: Determine the optimal fuzzy weight value (w̃B, w̃W , w̃j) of the best indicator, the
worst indicator, and each other indicator, of which, w̃B =

(
Lw

B , Mw
B , Uw

B
)
,

w̃W =
(

Lw
W , Mw

W , Uw
W
)
, w̃j =

(
Lw

j , Mw
j , Uw

j

)
. In the previous step, the importance aBW

of each indicator compared with the best indicator B and the worst indicator W is ob-
tained. To obtain the optimal fuzzy weight, we needed to minimize the maximum value of∣∣∣ w̃B

w̃W
− ãBW

∣∣∣. Therefore, an optimization model was developed to solve this problem.

min max
j

{∣∣∣∣ w̃B
w̃W
− ãBW

∣∣∣∣} (23)

s.t.



n
∑

j=1
R
(
w̃j
)
= 1

Lw
j ≤ Mw

j ≤ Uw
j

Lw
j ≥ 0

j = 1, 2, . . . . . . , n

, (24)

Bringing max
j

{∣∣∣ w̃B
w̃W
− ãBW

∣∣∣} = ξ̃ into the above equation, the nonlinear constrained

optimization problem was transformed as follows.

minξ̃

s.t.



∣∣∣ w̃B
w̃W
− ãBW

∣∣∣ ≤ ξ

∑n
j=1 R

(
w̃j
)
= 1

Lw
j ≤ Mw

j ≤ Uw
j

Lw
j ≥ 0

j = 1, 2, . . . . . . , n

,
(25)

In the above Equation, ξ̃ =
(

Lξ , Mξ , Uξ

)
, and Lξ ≤ Mξ ≤ Uξ . The optimal target value

is ξ̃∗ = (K∗, K∗, K∗), K∗ ≤ Lξ .

min ξ̃∗

s.t.



(Lw
B ,Mw

B ,Uw
B )

(Lw
W ,Mw

W ,Uw
W)
−
(

Lw
BW , Mw

BW , Uw
BW
)
≤ ξ

∑n
j=1 R

(
w̃j
)
= 1

Lw
j ≤ Mw

j ≤ Uw
j

Lw
j ≥ 0

j = 1, 2, . . . . . . , n

,
(26)

According to the rule of triangular fuzzy number, Equation (26) could be calculated to
obtain the optimal fuzzy weight values of the best, worst, and other indicators, respectively.
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Step 4: The fuzzy weights w̃B, w̃W can be refined using GMIR, as shown in
Equations (27) and (28).

wB
∗ =

Lw
B + 4Mw

B + Uw
B

6
, (27)

wW
∗ =

Lw
W + 4Mw

W + Uw
W

6
. (28)

2© Toughness Strength of Metro Network

The toughness strength of the network consists of the node toughness strength. The
network toughness strength slowly decreases during the period when the metro network
is disrupted. Thus, the network toughness strength at a certain point in time is defined by
Equation (29).

X(t) = 2 ∑ xi −∑ x f
i ×

(
1 +

t
T

)
− 143.3963, (29)

In the formula, X(t) denotes the toughness strength of the metro network at moment
t. xi is the toughness strength of node i. x f

i is the toughness strength of the flooded node at
moment t. T represents the time taken for the entire metro network to fail.

2.4.2. Organization Recovery Capacity of Metro Network

Urban departments must respond to the incident sites as soon as possible once sud-
den metro flooding and emergency events happen. From the perspective of urban public
safety, the response of emergency departments can also indicate the resilience of the metro
network. We defined this resilience as organization recovery capacity. To evaluate the
organization recovery capacity of the metro network, we used the emergency response
coverage of police and fire departments as a criterion. In this paper, the accessibility of
submerged paths around the subway station was temporarily disregarded when conducting
the shortest route analysis, and potential traffic jams were not taken into account as well.
Since the rescue time is approximately inversely proportional to the straight-line distance,
only the influence of direct distance on the rescue time is considered in this paper for an
approximate estimation. GIS buffer analysis was carried out to determine the scope of
emergency response services within the adequate time. We used the GIS-based shortest
path method, the shortest distance between two points. The emergency response speed
was set to be 30 km/h by taking the positions of the above two types of public service
institutions as the starting point, combined with the influence of urban regional driving
speed and rainstorms. We set the reachable area of public emergency services within
the specified rescue time as a buffer zone to determine its coverage and organization
recovery capacity.

3. Results and Discussion
3.1. Data Source

The research data used in this paper contain eight components listed below. The
origins of the data are shown in Table 3.

Table 3. Data sources of the research in this article.

Data Source

Remote-sensing data http://eds.ceode.ac.cn/nuds/freedataquery
(accessed on 15 December 2021)

DEM (30 m × 30 m) http://www.gscloud.cn
(accessed on 20 November 2021)

Design Formula of Rainstorm Intensity Wuhan local standards DB4201/T 641 2020
(accessed on 6 December 2021)

Metro passenger flow in Wuhan https://iwuhan.org/webapps/WuhanMetroFlowDetail/
(accessed on 12 January 2022)

http://eds.ceode.ac.cn/nuds/freedataquery
http://www.gscloud.cn
https://iwuhan.org/webapps/WuhanMetroFlowDetail/
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Table 3. Cont.

Data Source

GDP density http://tjj.hubei.gov.cn/tjsj/
(accessed on 15 December 2021)

Number of metro stations https://www.wuhanrt.com/public_forward.aspx
(accessed on 15 December 2021)

Distance between metro stations https://www.wuhanrt.com/public_forward.aspx
(accessed on 7 November 2021)

Elevation within the metro network.
https://www.wuhanrt.com/public_forward.aspx

(accessed on 7 January 2022)
Fieldwork estimation(Estimated from subway floors)

The overall size of Wuhan is 8569.15 square kilometers. The remote sensing data
contains both urban buildings and water bodies. Short-time rainfall data and DEM data for
Wuhan were taken for the 3 h flood simulation of the grid hydrodynamic model. Metro
passenger flow and GDP density were the statistical data used to determine the importance
of the nodes. The height difference of metro stations and the distance between metro
stations were utilized for the metro node network breakdown simulations.

3.2. Flood Hazard Analysis of Metro Network
3.2.1. Flooded Node Breakdown Analysis

The first breakdown nodes are the flood-prone metro stations. The identification of
flood-prone nodes is the first step of metro flood resilience management. This paper used
the grid hydrodynamic model to simulate the 100-year rainfall in Wuhan city and obtain
the inundation depth map of 300 m near nine metro lines, as shown in Figure 12. Through
the simulation, we divided the water depth into five grades. When the water depth of the
area within 300 m around the metro station was between 1 and 3 m, we assumed that the
nodes were exposed to flood risk, and these nodes were considered flood-prone points.
Technically, we utilized the buffer zone analysis tool in GIS to get the zone within 300 m of
the subway station. The inundation-prone stations were identified by comparing whether
the inundation area and the buffer zone overlapped.
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By surficial hydrodynamic simulation, Dazhi Road Station of Metro Line 1, Fanhu
Station of Metro Line 2, Linjiaohu Station and Yunfei Road Station of Metro Line 3, Renhe
Road Station of Metro Line 4, Miaosu Road Station of Metro Line 6, Qushuilou Station of
Metro Line 7, Tongji Hospital Station, and Yangluo Development Zone Station of Metro
Line 11 are flood-prone stations. These points were input into the dynamic breakdown
node algorithm as initial breakdown points.

3.2.2. Node Dynamic Breakdown Process

In this paper, the breakdown process of Wuhan metro nodes in a 100-year flood
situation is implemented by MATLAB. There are 200 nodes and 431 edges in the Wuhan
Metro network. It takes 146.3 min from the initial inundation of the flood-prone sites to the
time when all nodes in the network become flooded. The inundation sequence is shown in
Figure 13a.

Figure 13. (a) Inundation sequence and (b) proportion of breakdown nodes over time.

Figure 13b shows the proportion of breakdown nodes varies with time. At around
20 min, the number of breakdown nodes increased rapidly. Hong Kong Road and Hongtu
Boulevard stations, which had the lowest toughness strength, were flooded within 20 min.
Additionally, the breakdown rate kept rising, reaching a maximum slope of 0.048 at 40 min.
After 40 min, the rate of breakdown nodes gradually decreased. The rate of decline in
the number of flooded nodes in the metro network continued to increase over 40 min.
Therefore, with limited resources and time, resiliency recovery measures within 40 min
could maximize efficiency for preventing more nodes from flooding. Additionally, the
higher the efficiency was, the less the economic damage and the sooner passengers would
be rescued from the flood.

When T was 0, the toughness strength of the initial breakdown nodes in the metro
network was 0. When the flood started to spread to other metro nodes, T was the 283rd
second. The duration of the period from 0 to 283 s was relatively short, but it provided
valuable time for the emergency to prepare relief supplies and rush to the disaster site.

When T was 20 min, the flooded nodes were distributed in the area around the initial
breakdown node. The percentage of breakdown nodes reached 22.5%, and the node
breakdown rate was 0.039. During this time, flooding spread rapidly to the surrounding
areas and the average toughness of the metro nodes was decreasing.

When T was 40 min, the proportion of breakdown nodes in the metro network rose
to 51%. Only 40 min had passed since the initial nodes were flooded, but the number of
breakdown nodes had exceeded half of the metro network nodes.

When T was 60 min, the percentage of breakdown nodes in the metro network was
already as high as 73%. The lowest toughness strength among the remaining nodes was
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the Baotong Temple station. This indicates that all key nodes of high importance but low
toughness strength would be inundated about 1 h after the floodwater flows into the metro.

3.3. Resilience Assessment of Metro Network
3.3.1. Evaluation of Node Toughness Strength Weights

To calculate the node toughness strength, we first need to acquire the relative weight
magnitude of each indicator as Equation (7). We proposed to measure the relative impor-
tance of nodes from five categories, the ability to receive floods, the ability to transmit
floods, the risk of human casualties, the risk of economic loss, and the significance of the
location, and assign an initial weighting ratio to each category. Nodes located in the urban
center and suburbs are distinct in economic status and social attributes, and transfer stations
bear more responsibility for passenger commuting than other ordinary nodes. If the nodes
with high toughness strength are flooded, the loss of the whole network is even heavier.
Similarly, prioritizing the critical nodes during rescue will improve rescue efficiency and
save resources. The relative importance of each indicator was determined by calculating
the contribution of each indicator to the five catalogs. The greater the contribution of
the indicator to these five capabilities, the lower the toughness strength of the node. The
evaluation outcomes of the relative importance of the six indicators are shown in Table 4.
In the table, Bj denotes the best indicator.

Table 4. The evaluation outcomes of the relative importance of the six indicators.

Indicators\Category
The Ability to
Receive Flood

(25%)

The Ability to
Transmit Flood

(25%)

The Risk of
Casualties

(20%)

The Risk of
Economic Loss

(20%)

The Importance
of Location

(10%)

Best
Indicators/Bj

Node degree 25% 25% - - - EI
Node strength - 25% - - - FI

Node betweenness 20% 20% - - WI
Closeness centrality - - - - 10% AI

Passenger flow - - 20% - - VI
GDP density - - - 20% - VI

According to the evaluation index system of node toughness strength, a fuzzy com-
parison of the advantages and disadvantages of six indexes was carried out. The best
index is node degree, and the worst index is closeness centrality. Then, the comparison
levels are transformed into fuzzy triangular numbers. Taking the sum of index weights
of 1 as a constraint, we established the target program expression according to the above
Equations (24)–(26).

The weight of each index is composed of an upper limit value, median value, and lower
limit value, which means that the indicator weight is not an exact value but in an interval.
To facilitate the calculation, we had to defuzzified the weights. The GMIR approach was
adopted to translate the fuzzy weights into exact values. The relative importance of the six
indicators is shown in Table 5.

Table 5. The relative importance coefficient of the indication.

Indicators Fuzzy Weight Comprehensive Weight

Node degree (0.3046, 0.3088, 0.3489) 0.3148
Node strength (0.1420, 0.1420, 0.1829) 0.1488

Node betweenness (0.2382, 0.2382, 0.3152) 0.2510
Closeness centrality (0.0830, 0.0834, 0.0951) 0.0853

Passenger flow (0.0919, 0.1051, 0.1130) 0.1042
GDP density (0.0919, 0.1051, 0.1130) 0.1042
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3.3.2. Node Toughness Strength Analysis

By calculating the data in Section 3.2, this paper obtained the node degree, node
strength, node betweenness, closeness centrality, passenger flow, and GDP density of each
node in the metro network, as shown in the figures below.

Figure 14a,b show that Hong Kong Road (junction of subway line 3, line 6, and line 7)
has the greatest node degree and node strength, for it has the largest number of connected
nodes. In Figure 14c, most metro nodes on Line 2 are at a high level of node betweenness,
followed by interchange nodes connecting multiple lines. As shown in Figure 14d, the
common denominator of nodes with high closeness centrality is the geographic location
as the center of the network. The reason is that these nodes located at the central part of
the network have a short average distance from other nodes. Similarly, in Figure 14e,f,
passenger traffic and GDP density vary with geographic location. Then, the toughness
strength of the nodes could be obtained by multiplying the node characteristics of each
node with the corresponding weight.

As can be seen in Figure 15, the average node toughness strength of the network was
1.9033 at the time of 0 min, after removing the nine nodes that had flooded. At 20 min, the
average nodal toughness strength was 1.6035. During these 20 min, the nodes that flooded
were those around the initial flooded node, and the common characteristic of these nodes
was that they had a low toughness strength. This indicates that nodes with low toughness
strength fail before nodes with high toughness strength. The average node toughness
strength was 1.0933 at 40 min and 0.6632 at 60 min. During this period, the average node
toughness strength decreased at an accelerated rate. The reason was that the nodes with
high toughness strength are failing with time. The correspondence between metro station
names and numbers is shown in Appendix A.
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Figure 15. Nodal toughness strength variation curve.

3.3.3. Toughness Strength Analysis of Network

The average node toughness strength reflects the relationship between the number of
nodes and the node toughness strength, but the effect of inundation time is not considered.
For the whole metro network, the longer the nodes were flooded, the lower the toughness
strength of the network could be. Therefore, when calculating the network toughness
strength, we considered the inundation time as a factor affecting the network toughness
strength. The two metrics of node inundation time and toughness strength for 20 and
40 min were visualized by GIS, as shown in Figure 16. It can be seen from the figure that
the nodes with lower toughness strength were flooded for a longer time.
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Figure 16. Diagram of inundation time and toughness strength of nodes at T = 20 min (a) and
T = 40 min (b).

Figure 17 shows the variation of the network toughness strength curve. We fitted
it using a linear function to better describe the downward trend of the network. The
decreasing trend of the network toughness strength was higher than the absolute value
of the slope of the fitted curve within 40 min. Despite the low toughness strength of the
nodes that flooded during this time, the proximity between the nodes resulted in a high
number of flooded nodes. The decreasing trend of network toughness strength was also
higher than the absolute value of the slope of the fitted curve after the metro was flooded
for 1 h and 50 min. The number of flooded nodes is low during this time, but the flooded
nodes possess a high toughness strength. This also accounted for the higher absolute value
of the slope.

Figure 17. Network toughness strength curve.

3.3.4. Organization Recovery Capacity Evaluation

The decreasing trend of network toughness strength was greater in 40 min than in
the other times. We could reasonably assume that a rescue within forty minutes has the
highest efficiency. According to the optimal rescue time, emergency response within 40 min
after the metro flooded is considered effective. We used the emergency response coverage
of the police and fire departments as a criterion for the organizational resilience of the
metro network. This paper took 20 min and 40 min as examples to carry out GIS buffer
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analysis to determine the scope of emergency response service. The 20 min and 40 min
emergency coverage of police offices and fire stations were visualized through GIS, as
shown in Figures 18 and 19.

Figure 18 shows the rescue range of police offices at 20 min and 40 min. When T is
20 min, the coverage rate of the police station to the breakdown nodes reaches 89.29%, and
six metro stations were not covered. However, only three of the flooded nodes were not
covered by the emergency services within 40 min, and the coverage rate reached 97.58%.

Figure 19 shows the rescue range of the fire stations at 20 min and 40 min. When T is
20 min, the coverage rate of the fire stations to the breakdown nodes is 89.29%. When T is
40 min, the coverage rate of the fire station reaches 94.64%. It could be seen from the figure
that when T is 20 min, three metro stations are not covered. When T is 40 min, the three
previously inundation nodes are still not covered, but the coverage rate reaches 94.64%.

Remote Sens. 2022, 14, x FOR PEER REVIEW  24  of  29 
 

 

 

Figure 18. Emergency response zone at T = 20 min (a) and T = 40 min (b). 

 

Figure 19. Emergency response zone at T = 20 min (a) and T = 40 min (b). 

It can be seen from Figures 18 and 19 that the organization recovery capacity of the 

metro network increases gradually with time by evaluating the rescue range of the two 

emergency departments. However, the network toughness strength is decreasing at the 

same moment. To maximize  the  resilience of  the entire metro network, an emergency 

response within 40 min is of the highest significance. The reason is that in the event of a 

flooding attack on the metro network, the emergency response within 40 min can cover 

more than 90% of the flooded metro stations. 

3.4. Resilience Enhancement Discussion of Metro Network 

1. Improve node toughness strength 

Low‐lying spots are prone to water accumulation, but conveniently neglected is that 

local low‐lying sites are more susceptible to the effects of flooding, even though they are 

located on relatively high terrain overall. The existence of elevation differences between 

nodes  is  also  a  fundamental  reason  for  the  susceptibility  of  nodes  to  flooding when 

performing subsurface flood simulations. The lowest points of the subway stations should 

be as consistent as possible. Excessive height differences may lead to the rapid spread of 

flooding. 

The six node characteristics are inversely proportional to the toughness strength of 

the nodes. The greater the number of nodes connected to the node, the more central the 

Figure 18. Emergency response zone at T = 20 min (a) and T = 40 min (b).
 

 

 

 
Remote Sens. 2022, 14, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/remotesensing 

Article 

 
Figure 19. Emergency response zone at T = 20 min (a) and T = 40 min (b). Figure 19. Emergency response zone at T = 20 min (a) and T = 40 min (b).

It can be seen from Figures 18 and 19 that the organization recovery capacity of the
metro network increases gradually with time by evaluating the rescue range of the two
emergency departments. However, the network toughness strength is decreasing at the
same moment. To maximize the resilience of the entire metro network, an emergency
response within 40 min is of the highest significance. The reason is that in the event of a
flooding attack on the metro network, the emergency response within 40 min can cover
more than 90% of the flooded metro stations.
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3.4. Resilience Enhancement Discussion of Metro Network

1. Improve node toughness strength

Low-lying spots are prone to water accumulation, but conveniently neglected is
that local low-lying sites are more susceptible to the effects of flooding, even though
they are located on relatively high terrain overall. The existence of elevation differences
between nodes is also a fundamental reason for the susceptibility of nodes to flooding
when performing subsurface flood simulations. The lowest points of the subway stations
should be as consistent as possible. Excessive height differences may lead to the rapid
spread of flooding.

The six node characteristics are inversely proportional to the toughness strength of the
nodes. The greater the number of nodes connected to the node, the more central the location,
and the higher the GDP density and traffic flow, which will lead to a lower toughness
strength and vulnerability of the node. These six characteristics should be balanced in
order to reduce the gap between the toughness strengths of nodes throughout the network.
However, this is difficult in actual practice. The location of the node determines the GDP
density and traffic flow and inevitably connects multiple nodes due to having a high
location advantage.

2. Determine the priority of rescue and evacuation nodes

Before the metro is flooded, as in the Zhengzhou metro incident, rainfall must have
exceeded the local flood warning line. After crossing the warning line, the emergency
department has to arrange the deployment of materials, equipment and rescue teams, also
called “preparation time”. If this period is not considered, relief efforts will miss the golden
rescue time and face severe casualties and economic losses. However, even if the emergency
department has preparation time, rescue time is still not enough since many metro nodes
have been flooded, and the remaining nodes are being flooded. Thus, a reasonable and
efficient rescue strategy is still a problem that we need to focus on due to limited resources
and time. The rescue of flooded nodes has been considered in this paper, but the evacuation
of non-flooded nodes has not been studied. Additionally, the evacuation of unflooded
nodes has an improvement on the organizational recovery capacity of the metro network.
Meanwhile, the prioritization of rescue and evacuation is also an important tool to enhance
the resilience of the metro network in the face of limited resources.

The longer the flooding inundates the metro, the greater the threat to the lives of
trapped passengers. In the case of limited rescue resources, the rescue force should pri-
oritize the nodes that have been flooded for a long time. Additionally, the metro node’s
six characteristics reflect the combined significance of network topology characteristics,
passenger flow, and economic density. To rescue efficiently, the characteristics of the nodes
should be considered when implementing the rescue. The breakdown of the metro network
at 20 min and 40 min is a critical time for implementing rescue.

The passenger flow in mega-city metros reaches 10,000 people every day. As floodwa-
ters spread rapidly and irreversibly when they flow into the subway, crowd evacuation
needs to be implemented urgently at the subway nodes without flooding. Consideration
should be paid to the toughness strength of nodes and the characteristics of neighboring
nodes while deciding on the priority evacuation nodes, as shown in Figure 20. Nodes with
low toughness strength are less able to resist flooding, so the crowd at these nodes should
be evacuated first.
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4. Conclusions

In the context of global warming and accelerated urbanization, pluvial flood seriously
threatens the safe operation of the urban metro. This paper proposed an urban metro
node inundation risk evaluation approach based on a simplified dynamic metro complex
network, grid shallow water dynamics model, and FBWM risk evaluation method. Wuhan
Metro was selected as the study site to estimate the flood risk and emergency response
capability during the 100-year flood return period. The conclusions are summarized
as follows:

1. The article establishes a simplified three-dimensional model of a complex metro
network by topological methods while considering the slope directions between
stations. The simplified dynamic network of metro nodes combines the topological
characteristics of the metro system with the features of flood evolution. This paper
presents research on urban metro flood risk from regional metro network resilience.

2. The grid hydrodynamic is modeled to fully utilize high-precision DEM data for
inundation prediction without preprocessing and meshing, significantly reducing
processing time. This alternative model provides comparable results to conven-
tional software for regional maximum flood extent, depth, and inundation duration.
The grid hydrodynamic model perfectly identified the surface flood-prone points in
this paper.

3. The dynamic node breakdown algorithm was developed to obtain the subsurface
flooding node sequence by inputting the node adjacency matrix and the distance
between nodes. The principle of the algorithm is easy to understand. The calculation
results are accurate and conform to the law of flood dispersion. The dynamic node
breakdown algorithm finally obtains the whole metro network flooded process and
the change of node toughness strength.

4. The node toughness strength was estimated by combining the natural and social
attributes of the nodes through the FBWM method. As a newer multi-criteria decision-
making method, FBWM optimizes the minimum error by nonlinear programming
equations and preserves the fuzzy information using fuzzy triangular numbers.

5. Based on the above conclusions, the resilience of the Wuhan metro network was
assessed. The rate of decline in the toughness strength of the metro network is higher
than 0.079 and is maximum within the first 40 min. Organization recovery capacity
during this period could reach 94.64%, achieving the rescue of most flooded nodes. In
response to the evaluated resilience results, this paper proposes a resilience enhance-
ment proposal based on improving the node toughness strength and determining the
priority of rescue and evacuation nodes.
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There are still some inadequacies in this paper. Some indicators were calculated
with approximate estimation methods, not relying on accurate and realistic data. For
instance, the calculation of road accessibility, considering the limitation of this paper, has
not considered road connectivity and inundation of flooding as well as potential congestion
caused by traffic, which needs to be enhanced in future studies.
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