279,100 research outputs found

    Using Gameplay Patterns to Gamify Learning Experiences

    Get PDF
    Gamification refers to the use of gaming elements to enhance user experience and engagement in non-gaming systems. In this paper we report the design and implementation of two higher education courses in which ludic elements were used to enhance the quality of the learning experience. A game can be regarded as a system of organised gameplay activities, and a course can be regarded as a system of organised learning activities. Leveraging this analogy, analysing games can provide valuable insights to organise learning activities within a learning experience. We examined a sample of successful commercial games to identify patterns of organisation of gameplay activities that could be applied to a course design. Five patterns were identified: quest structure, strategic open-endedness, non-linear progression, orientation, and challenge-based reward. These patterns were then used to define the instructional design of the courses. As a result, courses were organised as systems of quests that could be tackled through different strategies and in a non-linear way. Students received frequent feedback and were rewarded according to the challenges chosen, based on mechanics common in quest-based games. The courses involved two lecturers and 70 students. Learning journals were used throughout the term to collect data regarding student perceptions on the clarity and usefulness of the gamified approach, level of motivation and engagement in the courses, and relevance of the activities proposed. Results show that students felt challenged by the activities proposed and motivated to complete them, despite considering most activities as difficult. Students adopted different cognitive and behavioural strategies to cope with the courses’ demands. They had to define their own team project, defining the objectives, managing their times and coordinating task completion. The regular and frequent provision of feedback was highly appreciated. A sense of mastery was promoted and final achievement was positively impacted by the gamified strategy

    Company-university collaboration in applying gamification to learning about insurance

    Get PDF
    Incorporating gamification into training–learning at universities is hampered by a shortage of quality, adapted educational video games. Large companies are leading in the creation of educational video games for their internal training or to enhance their public image and universities can benefit from collaborating. The aim of this research is to evaluate, both objectively and subjectively, the potential of the simulation game BugaMAP (developed by the MAPFRE Foundation) for university teaching about insurance. To this end, we have assessed both the game itself and the experience of using the game as perceived by 142 economics students from various degree plans and courses at the University of Seville during the 2017–2018 academic year. As a methodology, a checklist of gamification components is used for the objective evaluation, and an opinion questionnaire on the game experience is used for the subjective evaluation. Among the results several findings stand out. One is the high satisfaction of the students with the knowledge acquired using fun and social interaction. Another is that the role of the university professors and the company monitors turns out to be very active and necessary during the game-learning sessions. Finally, in addition to the benefits to the university of occasionally available quality games to accelerate student skills training, the company–university collaboration serves as a trial and refinement of innovative tools for game-based learning

    The added value of implementing the Planet Game scenario with Collage and Gridcole

    Get PDF
    This paper discusses the suitability and the added value of Collage and Gridcole when contrasted with other solutions participating in the ICALT 2006 workshop titled “Comparing educational modelling languages on a case study.” In this workshop each proposed solution was challenged to implement a Computer-Supported Collaborative Learning situation (CSCL) posed by the workshop’s organizers. Collage is a pattern-based authoring tool for the creation of CSCL scripts compliant with IMS Learning Design (IMS LD). These IMS LD scripts can be enacted by the Gridcole tailorable CSCL system. The analysis presented in the paper is organized as a case study which considers the data recorded in the workshop discussion as well the information reported in the workshop contributions. The results of this analysis show how Collage and Gridcole succeed in implementing the scenario and also point out some significant advantages in terms of design reusability and generality, user-friendliness, and enactment flexibility

    Gaming techniques and the product development process : commonalities and cross-applications

    Get PDF
    The use of computer-based tools is now firmly embedded within the product development process, providing a wide range of uses from visualisation to analysis. However, the specialisation required to make effective use of these tools has led to the compartmentalisation of expertise in design teams, resulting in communication problems between individual members. This paper therefore considers how computer gaming techniques and strategies could be used to enhance communication and group design activities throughout the product design process

    Dealing with abstraction: Case study generalisation as a method for eliciting design patterns

    Get PDF
    Developing a pattern language is a non-trivial problem. A critical requirement is a method to support pattern writers with abstraction, so as they can produce generalised patterns. In this paper, we address this issue by developing a structured process of generalisation. It is important that this process is initiated through engaging participants in identifying initial patterns, i.e. directly dealing with the 'cold-start' problem. We have found that short case study descriptions provide a productive 'way into' the process for participants. We reflect on a 1-year interdisciplinary pan-European research project involving the development of almost 30 cases and over 150 patterns. We provide example cases, detailing the process by which their associated patterns emerged. This was based on a foundation for generalisation from cases with common attributes. We discuss the merits of this approach and its implications for pattern development

    Computational Thinking Integration into Middle Grades Science Classrooms: Strategies for Meeting the Challenges

    Get PDF
    This paper reports findings from the efforts of a university-based research team as they worked with middle school educators within formal school structures to infuse computer science principles and computational thinking practices. Despite the need to integrate these skills within regular classroom practices to allow all students the opportunity to learn these essential 21st Century skills, prior practice has been to offer these learning experiences outside of mainstream curricula where only a subset of students have access. We have sought to leverage elements of the research-practice partnership framework to achieve our project objectives of integrating computer science and computational thinking within middle science classrooms. Utilizing a qualitative approach to inquiry, we present narratives from three case schools, report on themes across work sites, and share recommendations to guide other practitioners and researchers who are looking to engage in technology-related initiatives to impact the lives of middle grades students

    Teacher competence development – a European perspective

    Get PDF
    This chapter provides an European perspectives on teacher competence development

    Developing Pupils' Performance in Team Invasion Games

    Get PDF

    Kaleidoscope JEIRP on Learning Patterns for the Design and Deployment of Mathematical Games: Final Report

    Get PDF
    Project deliverable (D40.05.01-F)Over the last few years have witnessed a growing recognition of the educational potential of computer games. However, it is generally agreed that the process of designing and deploying TEL resources generally and games for mathematical learning specifically is a difficult task. The Kaleidoscope project, "Learning patterns for the design and deployment of mathematical games", aims to investigate this problem. We work from the premise that designing and deploying games for mathematical learning requires the assimilation and integration of deep knowledge from diverse domains of expertise including mathematics, games development, software engineering, learning and teaching. We promote the use of a design patterns approach to address this problem. This deliverable reports on the project by presenting both a connected account of the prior deliverables and also a detailed description of the methodology involved in producing those deliverables. In terms of conducting the future work which this report envisages, the setting out of our methodology is seen by us as very significant. The central deliverable includes reference to a large set of learning patterns for use by educators, researchers, practitioners, designers and software developers when designing and deploying TEL-based mathematical games. Our pattern language is suggested as an enabling tool for good practice, by facilitating pattern-specific communication and knowledge sharing between participants. We provide a set of trails as a "way-in" to using the learning pattern language. We report in this methodology how the project has enabled the synergistic collaboration of what started out as two distinct strands: design and deployment, even to the extent that it is now difficult to identify those strands within the processes and deliverables of the project. The tools and outcomes from the project can be found at: http://lp.noe-kaleidoscope.org
    • 

    corecore