5 research outputs found

    Study of GaN Dual-Drain Magnetic Sensor Performance at Elevated Temperatures

    Get PDF

    Development of GaN transducer and on-chip concentrator for galvanic current sensing

    Get PDF
    Gallium nitride (GaN) magnetic high electron mobility transistors (MagHEMTs) with different gate lengths intended for integration with magnetic flux concentrator for galvanic isolation are presented. Detailed discussions on the physical mechanisms behind the sensitivity change at room temperature with respect to gate geometry are given. The relative sensitivity of dual-drain GaN MagHEMTs with a device length of L = 65 μm and a width of W = 20 μm is measured at the highest of S = 17.21%/T and the lowest of S = 7.69%/T at VGS= -2 V and VGS= 0 V, respectively. In addition, a novel spiral magnetic flux concentrator with the conversion factor of up to FC= 96 mT/A is designed for improving the performance of the optimized MagHEMTs in ICs. It is predicted that a spiral configuration is a necessity to enhance the conversion factor for a long MagHEMT

    GaN Transistors’ Radiated Switching Noise Source Evidenced by Hall Sensor Experiments Toward Integration

    Get PDF
    Wide bandgap Gallium Nitride (GaN) technology promises to deliver the next generation of power transistors capable of high energy density and compact design integration however, without active monitoring high failing rates are recorded due to its instability to design parameter variations. Moreover, the electromagnetic (EM) radiofrequency (RF) emissions due to GaN power switching require extra design resources. Considering the extensive research area dedicated to galvanic isolated magnetic sensors for GaN wafer monolithic integration with usage in power monitoring, this study investigates the conditions that a Hall sensor is required to meet when operating in close proximity of a GaN transistor. Through considerable experimental testing, it was determined that the sensor requires a magnetic field starting from ±1 mT when interfaced with a microcontroller. Additionally, since the GaN transistor's EM RF switching noise was one of the most monitored parameters during the experiments, it was discovered that it is proportional to the transistor's current transfer area whereas its magnitude is due to electrical current required by the load. As a result of these findings, the EM radiated switching noise may apply to all electrical switches and provide a significant advantage when designing for EM compatibility (EMC)

    Buried RF Sensors for Smart Road Infrastructure: Empirical Communication Range Testing, Propagation by Line of Sight, Diffraction and Reflection Model and Technology Comparison for 868 MHz–2.4 GHz

    Get PDF
    Updating the road infrastructure requires the potential mass adoption of the road studs currently used in car detection, speed monitoring, and path marking. Road studs commonly include RF transceivers connecting the buried sensors to an offsite base station for centralized data management. Since traffic monitoring experiments through buried sensors are resource expensive and difficult, the literature detailing it is insufficient and inaccessible due to various strategic reasons. Moreover, as the main RF frequencies adopted for stud communication are either 868/915 MHz or 2.4 GHz, the radio coverage differs, and it is not readily predictable due to the low-power communication in the near proximity of the ground. This work delivers a reference study on low-power RF communication ranging for the two above frequencies up to 60 m. The experimental setup employs successive measurements and repositioning of a base station at three different heights of 0.5, 1 and 1.5 m, and is accompanied by an extensive theoretical analysis of propagation, including line of sight, diffraction, and wall reflection. Enhancing the tutorial value of this work, a correlation analysis using Pearson’s coefficient and root mean square error is performed between the field test and simulation results

    Contributing to Second Harmonic Manipulated Continuum Mode Power Amplifiers and On-Chip Flux Concentrators

    Get PDF
    The current cellular network consumes a staggering 100 TWh of energy every year. In the coming years, millions of devices will be added to the existing network to realize the Internet of Things (IoT), further increasing its power consumption. An RF power amplifier typically consumes a large proportion of the DC power in a wireless transceiver, improving its efficiency has the largest impact on the overall system. Additionally, amplifiers need to demonstrate high linearity and bandwidth to adhere to constraints imposed by wireless standards and to reduce the number of amplifiers required as an amplifier with a broader bandwidth can potentially replace several narrowband amplifiers. A typical approach to improve efficiency is to present an appropriate load at the harmonics generated by the transistor. Recently proposed continuous modes based on harmonic manipulation, such as class B/J continuum, continuous class F (CCF) and continuous class F-1 (CCF-1), have shown the capability of achieving counteracting requirements viz., high efficiency, high linearity, and broad bandwidth (with a fractional bandwidth greater than 30%). In these classes of amplifiers, the second harmonic is manipulated by placing a reactive second harmonic load and the reactive component of the fundamental load is adjusted while keeping a fixed resistive component of the fundamental load. The first contribution of this work is to investigate the reason for amplifiers designed in classes B/J continuum and CCF to achieve high efficiency at back-off and 1dB compression. In this thesis, we demonstrate that the variation of the phase of the current through the non-linear intrinsic capacitances due to the variation of the phase in the continuum of drain voltage waveforms in Class B/J/J* continuum leads to either a reduction or enhancement of intrinsic drain current. Consequently, a subset of voltage waveforms of the class B/J/J* continuum can be used to design amplifiers with higher P1dB, and efficiency at P1dB than in Class B. A simple choice of this subset is demonstrated with a 2.6GHz Class B/J/J* amplifier, achieving a P1dB of 38.1dBm and PAE at P1dB of 54.7%, the highest output power and efficiency at P1dB amongst narrowband linear amplifiers using the CGH40010 reported to date, at a comparable peak PAE of 72%. Secondly, we propose a new formulation for high-efficiency modes of power amplifiers in which both the in-phase and out-of-phase components of the second harmonic of the current are varied, in addition to the second harmonic component of the voltage. A reduction of the in-phase component of the second harmonic of current allows reduction of the phase difference between the voltage and current waveforms, thereby increasing the power factor and efficiency. Our proposed waveforms offer a continuous design space between class B/J continuum and continuous F-1 achieving an efficiency of up to 91% in theory, but over a wider set of load impedances than continuous class F-1. These waveforms require a short at third and higher harmonic impedances, which are easier to achieve at a higher frequency. The load impedances at the second harmonic are reactive and can be of any value between -j∞ and j∞, easing the amplifier design. A trade-off between linearity and efficiency exists in the newly proposed broadband design space, but we demonstrate inherent broadband capability. The fabricated narrowband amplifier using a GaN HEMT CGH40010F demonstrates 75.9% PAE and 42.2 dBm output power at 2.6 GHz, demonstrating a comparable frequency weighted efficiency for this device to that reported in the literature. IoT devices may be deployed in critical applications such as radar or 5G transceivers of an autonomous vehicle and hence need to operate free of failure. Monitoring the drain current of the RF GaN MMIC would allow to optimize the device performance and protect it from surges in its supply current. Galvanic current sensors rely on the magnetic field generated by the current as a non-invasive method of current sensing. In this thesis, our third major contribution is a planar on-chip magnetic flux concentrator, is enhance the magnetic field at the current sensor, thereby improving the current detection capability of a current sensor. Our layout utilizes a discontinuity in a magnetic via, resulting in penetration of the magnetic field into the substrate. The proposed concentrator has a magnetic gain x1.8 in comparison to air. The permeability of the magnetic core required is 500, much lower than that reported in off-chip concentrators, resulting in a significant easing of the specifications of the material properties of the core. Additionally, we explore a novel three-dimensional spiral-shaped magnetic flux concentrator. It is predicted via simulations that this geometry becomes a necessity to enhance the magnetic field for increased form factor as the magnetic field from a single planar concentrator deteriorates as its size increases
    corecore