2,299 research outputs found

    Analysis of Energy and QUadratic Invariant Preserving (EQUIP) methods

    Full text link
    In this paper we are concerned with the analysis of a class of geometric integrators, at first devised in [14, 18], which can be regarded as an energy-conserving variant of Gauss collocation methods. With these latter they share the property of conserving quadratic first integrals but, in addition, they also conserve the Hamiltonian function itself. We here reformulate the methods in a more convenient way, and propose a more refined analysis than that given in [18] also providing, as a by-product, a practical procedure for their implementation. A thorough comparison with the original Gauss methods is carried out by means of a few numerical tests solving Hamiltonian and Poisson problems.Comment: 28 pages, 2 figures, 4 table

    On volume-preserving vector fields and finite type invariants of knots

    Get PDF
    We consider the general nonvanishing, divergence-free vector fields defined on a domain in three space and tangent to its boundary. Based on the theory of finite type invariants, we define a family of invariants for such fields, in the style of Arnold's asymptotic linking number. Our approach is based on the configuration space integrals due to Bott and Taubes.Comment: 30 pages, 6 figures, exposition improve

    Dynamics of symplectic fluids and point vortices

    Get PDF
    We present the Hamiltonian formalism for the Euler equation of symplectic fluids, introduce symplectic vorticity, and study related invariants. In particular, this allows one to extend D.Ebin's long-time existence result for geodesics on the symplectomorphism group to metrics not necessarily compatible with the symplectic structure. We also study the dynamics of symplectic point vortices, describe their symmetry groups and integrability.Comment: 12 page

    Spatial discretization of partial differential equations with integrals

    Full text link
    We consider the problem of constructing spatial finite difference approximations on a fixed, arbitrary grid, which have analogues of any number of integrals of the partial differential equation and of some of its symmetries. A basis for the space of of such difference operators is constructed; most cases of interest involve a single such basis element. (The ``Arakawa'' Jacobian is such an element.) We show how the topology of the grid affects the complexity of the operators.Comment: 24 pages, LaTeX sourc

    A Framework for Robust Assessment of Power Grid Stability and Resiliency

    Full text link
    Security assessment of large-scale, strongly nonlinear power grids containing thousands to millions of interacting components is a computationally expensive task. Targeting at reducing the computational cost, this paper introduces a framework for constructing a robust assessment toolbox that can provide mathematically rigorous certificates for the grids' stability in the presence of variations in power injections, and for the grids' ability to withstand a bunch sources of faults. By this toolbox we can "off-line" screen a wide range of contingencies or power injection profiles, without reassessing the system stability on a regular basis. In particular, we formulate and solve two novel robust stability and resiliency assessment problems of power grids subject to the uncertainty in equilibrium points and uncertainty in fault-on dynamics. Furthermore, we bring in the quadratic Lyapunov functions approach to transient stability assessment, offering real-time construction of stability/resiliency certificates and real-time stability assessment. The effectiveness of the proposed techniques is numerically illustrated on a number of IEEE test cases

    Line Integral Solution of Differential Problems

    Get PDF
    In recent years, the numerical solution of differential problems, possessing constants of motion, has been attacked by imposing the vanishing of a corresponding line integral. The resulting methods have been, therefore, collectively named (discrete) line integral methods, where it is taken into account that a suitable numerical quadrature is used. The methods, at first devised for the numerical solution of Hamiltonian problems, have been later generalized along several directions and, actually, the research is still very active. In this paper we collect the main facts about line integral methods, also sketching various research trends, and provide a comprehensive set of references
    • …
    corecore