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ON VOLUME-PRESERVING VECTOR FIELDS AND
FINITE TYPE INVARIANTS OF KNOTS.

R. KOMENDARCZYK AND I. VOLIĆ

Abstract. We consider the general nonvanishing, divergence-free vector fields defined on a

domain in 3-space and tangent to its boundary. Based on the theory of finite type invariants,

we define a family of invariants for such fields, in the style of Arnold’s asymptotic linking

number. Our approach is based on the configuration space integrals due to Bott and Taubes.
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1. Introduction

Suppose we have a volume-preserving vector field X defined in some compact domain S

of R3 and tangent to its boundary. In the ideal hydrodynamics or magnetohydrodynamics

(MHD), c.f. [6] for a comprehensive reference, X plays a role of a vorticity field or a magnetic

field. Euler equations (in the ideal hydrodynamics or the ideal MHD) tell us that the flow φX
of X evolves in time under volume-preserving deformations. Therefore, quantities associated
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2 R. KOMENDARCZYK AND I. VOLIĆ

with φX that are invariant under such deformations are of particular interest to these areas

of research.

The best known such invariant is the helicity of X, which we will denote by H (X). It was

first discovered by Woltjer in [45]. Its topological nature, i.e. the connection to the linking

number of a pair of closed curves in space, was first observed in the work of Moffatt [34] and

then fully described by Arnold in [4]. This paper concerns the existence and properties of

other invariants of volume-preserving fields derived in the style of Arnold from the finite type

(or Vassiliev) invariants of knots and links [41, 10, 3, 44] (see also questions in [5, Problem

1990–16] and [6, p. 176]).

In more detail, and following the general idea of [4], recall that a long piece of an orbit

OT (x) of a vector field X through x ∈ S for time T (or a collection of orbits through different

points in S) can be made into a knot (link) by adding a “short arc” (or as many short arcs

as there are orbits) σ(x, y) connecting its endpoints, i.e.

ŌT (x) = OT (x) ∪ σ(x, y), where y = OT (x)(T ). (1.1)

Thus for any T > 0 we obtain a family of knots {ŌT (x)}x∈S. Now let K be the space of

knots (the set of embeddings of S1 in R3 endowed with the C∞ topology) and let

F : K −→ R

be a function, typically a knot invariant. This function can be restricted to the family

{ŌT (x)}x∈S, resulting in a function

λS,T : S −→ R

x 7−→ F (OT (x)).

This is a prototype for an invariant of φX under smooth isotopies via diffeomorphisms isotopic

to the identity. In order to produce an actual numerical invariant of φX , and consequently

of X, we need to remove the dependence on short arcs. For that reason, for some m > 0

(usually an integer), one considers the limit

Fm(X) = lim
T→∞

∫
S

1

Tm
λS,T (x) (1.2)

We will call Fm(X) the asymptotic value of F along the flow of X (of order m). Whenever

the order m is specified, we may denote Fm(X) simply by F (X). If F is a knot invariant,

this usually gives an invariant of X under volume-preserving deformations. In this case, we

will refer to F (X) as an asymptotic invariant of X (of order m).

Replacing a single orbit OT (x) by a collection of n orbits {OT (x1), · · · ,OT (xn)} at distinct

points x1,· · · , xn of S, the above philosophy can be applied to an invariant F : Ln → R,

where Ln is the space of n-component links (defined and topologized analogously to K).

Arnold showed in [4] that this technique gives, in the case when F is the the linking

number lk of pairs of orbits {O(x),O(y)}, a well defined invariant H (X) which equals the
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above mentioned Woltjer’s helicity. Namely, given a divergence-free field X on S, we have

H (X) =

∫
S×S

(
lim
T→∞

1

T 2
lk(ŌT (x), ŌT (y))

)
µ(x)× µ(y), (1.3)

where µ is a volume form on R3, and the function under the integral is a well-defined µ almost

everywhere integrable function on S. Arnold called H (X) the average asymptotic linking

number of X and showed that H (X) is invariant under the volume-preserving deformations

of X.

More precisely, let Vect(S, µ) be the Lie algebra of smooth volume-preserving vector fields

on S ⊂ R3 equipped with a volume form µ. Consider the action by the group of smooth

volume-preserving diffeomorphisms of R3 (isotopic to the identity), Diff0(R3, µ):

Diff0(R3, µ)× Vect(S, µ) −→ Vect(g(S), µ) (1.4)

(g,X) 7−→ g∗X,

where g∗ stands for the pushforward of the vector field X by the diffeomorphism g. Then

invariance under the volume-preserving deformations means the invariance under the above

action. In other words,

H (X) = H (g∗X). (1.5)

Remark. Observe that g∗X(x) = d
dt
g ◦ φX(t, g−1(x))

∣∣
t=0

. Thus on the level of flows, the

action in (1.4) maps the flow φX = φX(t, x) of X to the flow g ◦ φX ◦ g−1 = g ◦ φX(t, g−1(x))

of g∗X, i.e.

φX −→ g ◦ φX ◦ g−1. (1.6)

In order to state our main results we first need to provide some general information about

finite type invariants, leaving further details for Section 3 (or see, for example, [44] for a more

detailed reference). The basic object in the theory of these invariants is a graded algebra

(over any ring, but for us, this will be R) of trivalent diagrams (see Figure 1) which we

will denote by D. The subspace of diagrams of degree n consists of those diagrams with 2n

vertices and is denoted by Dn, where k = k(D) vertices are on the circle (circle vertices),

and s = s(D) vertices are off the circle (free vertices). Then D is the direct sum of Dn for all

n ≥ 1. For each diagram D ∈ D, we may construct a function on a knot space K by means

of configuration space integrals, denoted as

ID : K −→ R . (1.7)

Details about the map ID are given in Section 3.

Both D and its dual, W = D∗, called the space of weight systems, are Hopf algebras. More

formally, any W ∈W is a finite linear combination of diagrams in D. Finite type invariants

of knots1 are indexed by the subspace of primitive weight systems, and this is the content

of the fundamental theorem of finite type invariants, originally due to Kontsevich [29]. An

1The set up for links is analogous.
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Figure 1. Examples of trivalent diagrams (without labels or edge orienta-
tions). The middle diagram is of degree four, while the other two are of degree
three.

alternative proof of this is due to Altschuler and Freidel [3], where the finite type n invariant

VW : K −→ R associated with the primitive weight system

W =
∑

D∈TDn

aDD ∈W, aD ∈ R, (1.8)

is a finite linear combination of functions in (1.7):

VW =
∑

D∈TDn

aD ID + b ID1 , aD, b ∈ R. (1.9)

Here D1 = , and TDn denotes the set of trivalent diagrams generating D. For a more

precise statement, see Theorem 3.6. Let us denote the part of the sum W corresponding to

diagrams with k vertices on the circle by W k. Thus if W is a degree n weight system, we

have W =
∑2n

k=1W
k, with the top part of W being W 2n; this corresponds to diagrams all

of whose vertices are on the circle (such diagrams are called chord diagrams). We can then

also clearly write

VW =
2n∑
k=1

VWk + VD1 . (1.10)

We are now ready to state our main result.

Theorem A. Let X be a volume-preserving nonvanishing vector field on a compact domain

S ⊂ R3, tangent to the boundary. We then have:

(i) For any diagram D ∈ D of degree n, the asymptotic value IkD(X), k = k(D) of ID
along the flow of X exists.

(ii) For any invariant VW of type n, the asymptotic invariant VW (X) of order 2n exists

and equals the asymptotic value V 2n
W (X) of VW 2n along the flow X.

(iii) VW (X) is invariant under the action by volume preserving diffeomorphisms isotopic

to the identity.

Note that, in part (i), IkD(X) is not necessarily an invariant because ID is not one. Further,

we may consider a situation where VW (X) = V 2n
W (X) = 0 and see if the lower order averages

of VW exist. For instance, if the asymptotic value V 2n−1
W (X) exists, it may provide a lower

order asymptotic invariant of X. Inductively, if V j
W (X) = 0 for k < j ≤ 2n−1, we may ask if

V k
W (X) defines an invariant of a lower order (in the sense of definition following (1.2)). While
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we do not answer this question in full generality we obtain the following direct consequence

of (i) in Theorem A and (1.10).

Corollary A. Consider a primitive weight system W and suppose for a given k (k < n),

we have W k 6= 0. Suppose also that the asymptotic value V j
W (X) of W vanishes for every

k < j ≤ 2n − 1 as does the asymptotic value V k
Wk+1(X). Then the asymptotic invariant

VW (X) of order k exists and equals the asymptotic value V k
Wk(X) of VWk along the flow X.

The meaning of lower order invariants is unclear to us at this point. However, the work in

[27, 28] on asymptotic Brunnian links shows one possible setting where they might appear.

A closely related result to Theorem A is proven in [25] by Gambaudo and Ghys who

consider a signature invariant σ : K −→ Z of knots and its asymptotic counterpart for

ergodic volume-preserving fields X. In particular, they prove that, in the setting of ergodic

fields, the associated asymptotic signature σ(X) is of order 2 and satisfies

σ(X) =
1

2
H (X). (1.11)

An extension of this work on ergodic fields to other knot invariants appears more recently in

the work of Baader [7, 8]. In addition, Baader and Marché [9] consider asymptotic finite type

invariants. The main result of [9] gives an analog of the identity (1.11) for any asymptotic

finite type invariant VW (X) of order n whenever X is ergodic and W is degree n. Note that

Theorem A shows that VW (X) = V 2n
W (X) is well-defined for a general nonvanishing field

X (on a domain S in R3), and also indicates a possibility for lower order invariants. Our

techniques also lead us to the following counterpart of a result in [9].

Theorem B. Let µ be the standard volume form on R3 and let X be an ergodic µ-preserving

nonvanishing vector field on a domain S. Then there exists a singular differential form $W,2n

of degree 4n on S2n, such that

VW (X) = cW (H (X))n =

∫
S2n

$W,2n ∧ (ιXµ× · · · × ιXµ
n times

), (1.12)

where cW is a constant independent of X, ιXµ is the contraction of X into the form µ, and

H (X) is the helicity defined in (1.3). Moreover, the lower order invariants (if they exist)

are given as follows

V m
W (X) =

∫
S2m

$W,m ∧ (ιXµ× · · · × ιXµ
m times

).

Another avenue we explore here are applications to the energy–helicity problem as consid-

ered by Arnold in [4] (see also [6]). Define the (magnetic) energy of X by

E(X) =

∫
S

|X|2dµ, (1.13)

i.e. as the square of the L2–norm of X. Consider the problem of minimizing the energy

functional E on the orbit oX = {g∗X | g ∈ Diff0(R3, µ)} of the action (1.4) through a fixed
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vector field X. If oX is an orbit through a general volume-preserving field X there may not

be a minimizing (smooth) vector field (c.f. [21]). Can the energy be made arbitrary small ?

Arnold showed in [4] that

E(g∗X) ≥ C|H (X)|, (1.14)

for any g ∈ Diff0(R3, µ) and for some positive constant C which depends on the “geometry”

(i.e. on a choice of the Riemannian metric on R3). Since H (X) is invariant under the action

(1.4), the above inequality gives a lower bound for the magnetic energy of X along the orbit,

whenever H (X) 6= 0. Since the bound (1.14) is ineffective for vanishing H (X), Freedman

and He [22] showed a sharper bound for the L3/2–energy2 of X in terms of the asymptotic

crossing number3 c(X) of X:

E3/2(X) ≥
(16

π

)1/4

c(X)3/4 ≥
(16

π

)1/4

|H (X)|3/4. (1.15)

Asymptotic crossing number is not an invariant under the action (1.4), but it leads to a

topological lower bound for fluid knots, i.e. divergence-free vector fields constrained to a

tube around a knotted core curve K in 3–space. Namely, denoting by g(K) the genus of K,

the following estimate is shown in [22]:

E3/2(X) ≥
(16

π

)1/4(
2g(K)− 1

)3/4
Flux(X), (1.16)

where Flux(X) is the flux of X through the cross–sectional disk of the tube. In Section 5

of this paper we consider the quadratic helicity H 2(X) (recently proposed by Akhmetiev in

[1]). Note that H 2(X) is well defined, thanks to Theorem A applied to the square of the

linking number4. Based on the estimate (1.15) we show

Theorem C. We have

E3/2(X) ≥
(16

π

)1/4

H 2(X)3/8 ≥
(16

π

)1/4

|H (X)|3/4. (1.17)

We end this introduction by saying that our techniques are rather different from [24,

25], where the authors build a “combinatorial model” for an ergodic field, and base their

considerations on this model. The configuration space integrals have been used by Cantarella

and Parsley in [16] to derive an alternative formula for H (X) and its “higher dimensional”

versions. Considerations of the current paper are measure–theoretic and in the simplest case

can be compared to the work of Contreras and Iturriaga on the asymptotic linking number

in [18].

Lastly, we wish to indicate that in addition to the results mentioned above, there exists a

wealth of approaches to the problem of defining helicity-style invariants of volume-preserving

fields, or more generally measurable foliations; see for example papers [2, 42, 40, 19, 31, 35,

26, 30] and references given therein.

2recall that L2–energy majorizes the L3/2–energy via the Hölder inequality.
3denoted in [22] by c(X,X).
4lk2, which is the simplest finite type 2 invariant of 2–component links
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2. Some metric properties of blowups

Before we review configuration space integrals, in this short section we discuss certain

properties of blowups needed for later constructions. Throughout this section, M is a smooth

compact manifold with corners. We say that L is a submanifold of a smooth compact

manifold with corners whenever it is a p–submanifold in the sense of [33, Page I.12], which

means that local charts come from restriction of the ambient charts to coordinate subspaces.

The intersection of two submanifolds N and L is called clean if and only if it is transverse

and N ∩ L is a p–submanifold. Recall, following [13] and [39, p. 19],

Definition 2.1. The blowup of a smooth manifold with corners M along a closed embedded

submanifold with corners L is the manifold with boundary Bl(M,L) that is M with L replaced

by those points of the unit normal sphere bundle S(N(L)) that are actually the images of

paths in M . There is a natural smooth map

β : Bl(M,L) −→M, (2.1)

called the blowdown map, and a partial inverse

β : M − L −→ Bl(M,L)− (β)−1(L), (2.2)

called the blowup map.

Given a submanifold N of M such that N = cl(N − L) (“cl” denoting the closure), we

define, following [33, Page V.7], the lift of N to Bl(M,L) as

Ñ = cl(β(N − L)).

Lifting a vector field on M to Bl(M,L) amounts to lifting the orbits of the flow (c.f. [33]).

Then we have the following natural fact about lifts given as Proposition 5.7.2 in [33, Page

V.10], which we paraphrase as

Proposition 2.2. Suppose submanifolds N and L have a clean intersection in M . Then the

lift Ñ in Bl(M,L) is an embedded submanifold of Bl(M,L) diffeomeorphic to Bl(N,N ∩ L).

As a next step we equip M with a smooth Riemannian metric gM and construct a certain

smooth metric g̃M on Bl(M,L) which agrees with g outside of a δ–tubular neighborhood5

Uδ(L) of L and turns Uδ(L) − L into a “cylindrical end” of Bl(M,L) as in Figure 2. More

5I.e. the image of a δ-disk bundle of L under the normal exponential map.
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precisely, we define

ĝBl(M,L) =

{
dt2 + g∂Uδ(L); on (L× Sk−1)× (0, δ] ∼= Uδ(L)− L,
gM ; outside of Uδ(L).

(2.3)

Here k = codim(L), t parametrizes (0, δ] segments in (L× Sk−1)× (0, δ], and g∂(Uδ(L)) is the

restriction of gM to ∂(Uδ(L)). Since ĝM may not be smooth along ∂(Uδ(L)), we set g̃Bl(M,L)

to be obtained by smoothing ĝBl(M,L) in the intermediate region U 5
4
δ(L)−U 3

4
δ(L) (see Figure

2). The above construction will be used later in the case of C[k;R3] where R3 is considered

to have the standard metric.

Next, we indicate a natural estimate which will be very useful in the next section.

Figure 2. Illustration of the metric introduced on the blowup of a point in R2.

Lemma 2.3. Let M be a smooth manifold with corners, L a submanifold of M , and $ a

smooth m–form on Bl(M,L). Consider a submanifold N of M whose closure is compact and

its lift Ñ to Bl(M,L). Define

A$,g̃ = sup
p∈Ñ

max
v1,··· ,vm∈TpÑ ;
|vi|g̃=1

|$(v1, · · · , vm)|. (2.4)

Then ∣∣∫
N

β∗$
∣∣ =

∣∣∫
Ñ

$
∣∣ ≤ A$,g̃ vol(Ñ). (2.5)

The proof is clear from definitions since A$,g̃ measures a C0–norm of $ along Ñ .

3. Configuration space integrals

This section contains a brief overview of configuration space integrals (also known as Bott–

Taubes integrals). This summary is based on [44] and [39]. We also include some technical

results about configuration space integrals that will be needed later. The main result for us

is Theorem 3.6. Before we describe configuration space integrals, we briefly review the basic

notions from the theory of finite type knot invariants. These invariants have been studied

extensively in the last twenty years; for more details, see [41], [10] and [17]. In particular,

they are conjectured to separate knots.

Let K be the space of knots, i.e. smooth embeddings of S1 in R3, with the C∞ topology.

Any knot invariant V : K −→ R can be extended to singular knots, which are knots except
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for a finite number of transverse self-intersections, using the Vassiliev skein relation given

in Figure 3. The figure is supposed to indicate that all the singularities have been resolved

Figure 3. Vassiliev skein relation.

(so a knot with n singularities produces 2n ordinary knots) and V is evaluated on all the

resulting knots.

Definition 3.1. An invariant V is finite type n or Vassiliev of type n if it vanishes on

singular knots with n+ 1 singularities.

Let Vn be the real vector space generated by all type n invariants and let V = ⊕n≥0Vn.

It is immediate that Vn−1 ⊂ Vn, so that one can consider the quotient Vn/Vn−1 (which will

appear in Theorem 3.6).

Finite type invariants are intimately connected to the combinatorics of trivalent diagrams.

Definition 3.2. A trivalent diagram D of degree n is a connected graph consisting of an

oriented circle, k = k(D) vertices on the circle (circle vertices), s = s(D) vertices off the

circle (free vertices), and some number of edges connecting those vertices. The vertex set

V(D) has cardinality k + s = 2n, and all vertices are trivalent (the circle adds two to the

valence of a circle vertex), from which it follows that the edge set E(D) is of cardinality k+3s
2

.

The vertices are labeled by the set {1, · · · , 2n}, and this labeling induces an orientation on

the edges in E(D) (from the lower-labeled end vertex to the higher-labeled one). We will

denote by (i, j) the edge connecting vertices i and j where i < j. The diagram is regarded

up to orientation-preserving diffeomorphisms of the circle.

Examples of trivalent diagrams (without labels or edge orientations) are presented in

Figure 1. Let TDn denote the set of trivalent diagrams of degree n and let Dn be the real

vector space generated by TDn modulo subspaces generated by the STU relation illustrated

in Figure 4.6 Vector space D =
⊕

n≥0 Dn is in fact a commutative and co–commutative Hopf

S −T U

i

j

ij i j

Figure 4. The STU relation: S = T − U .

6See [44, p. 3] for more details on the STU relation.
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algebra [10, Theorem 7], where the product (and co–product) is derived from the operation

of connected sum of knots. The dual W = D∗ of D is known as the space of weight systems,

with Wn denoting its degree n subspace, i.e. the dual of Dn. Since W also has the structure

of a Hopf algebra it is sufficient to understand its primitive elements, called primitive weight

systems. These generate the entire algebra. A primitive weight system is one that vanishes

on reducible diagrams, namely those that are not obtained from two diagrams by connected

sum (this informally means that, in an irreducible diagram, one cannot draw a line separating

V(D) and E(D) into two nonempty disjoint subsets).

We now turn our attention to the configuration space integrals. For a manifold M , let

C(q;M) be the ordered configuration space of q points in M (i.e. the q–fold product M q,

with the thick diagonal removed). Also recall that, given a submanifold N of a manifold M ,

the blowup of M along N , Bl(M,N), is obtained by replacing N by the unit normal bundle

of N in M (see Definition 2.1). Finally, for S a subset of {1, ..., q}, let MS be the product

of |S| copies of M in M q, indexed by the elements of S, and let ∆S be the corresponding

(thin) diagonal in MS.

Now let

A[k;M ] = Mk ×
∏

S⊂{1,...,k}, |S|≥2

Bl(MS,∆S).

Definition 3.3. The Fulton-MacPherson compactification of C(k;M), denoted by C[k;M ],

is the closure of the image of the inclusion

αM : C(k;M) −→ A[k;M ], (3.1)

where the S–factors of this map are given by the blowup maps7. We denote αM by α if M is

understood, and we will also refer to it as the blowup map of C(k,M). The blowdown map

αM : C[k;M ] −→Mk is obtained by the obvious restriction of the projection of A[k,M ] onto

its Mk factor.

Equivalently, C[k;M ] can be obtained from Mk by successive blowups of ∆S diagonals

in Mk [13, 39]. These blowups have to be performed in the order dictated by the inclusion

relation ⊂ on the indexing sets S. More precisely, if S ′ ⊂ S, then ∆S should be blown

up before ∆S′ . Yet another equivalent definition is due to Sinha [37]. All these definitions

produce diffeomorphic smooth manifolds with corners, compact when M is compact, and

homeomorphic to a complement of a tubular neighborhood of the thick diagonal in Mk. The

interior of C[k;M ] equals the image of C(k;M) under α and will be denoted by C0(k;M).

For the remainder of this section we will mostly need the case M = R3. In this situation,

one needs to equip the compactification C[k;R3] with a face at infinity for it to be a compact

manifold with corners . We also point out that compactification is functorial and in particular

we have

7see Equation (2.2)
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Proposition 3.4 ([23, 37]). Suppose g : M → N is an embedding of a smooth manifold M

into a smooth manifold N . We then have an induced embedding

g̃ : C[k;M ] −→ C[k;N ]

of manifolds with corners, which respects the boundary stratifications and extends the obvious

product map gk : C(k;M) −→ C(k;N), gk = g × · · · × g, such that the following diagram

commutes
C[k;M ]

g̃ - C[k;N ]

C(k;M)

αM

6

gk - C(k;N).

αN

6

(3.2)

The reader may consult, for example, [37, Corollary 4.8] for a proof of this proposition.

Given the compactified configuration space C[q;R3] and any two positive integers k and

s, define C[k, s;K,R3] to be the pullback bundle in the following diagram

C[k, s;K,R3]
pk,s - C[k + s;R3]

C[k;S1]×K

π̄k

?
ẽv - C[k;R3],

πk

?

(3.3)

where πk is the usual projection onto the first k coordinates and

ẽv( · , K) : C[k;S1] −→ C[k;R3]

is the evaluation map induced from the knot embedding map K : S1 ↪→ R3; see Proposition

3.4. In other words it is a “lift” of the product map

ev : C(k;S1)×K −→ C(k;R3)

((t1, · · · , tk), K) 7−→ (K(t1), · · · , K(tk))
(3.4)

to the compactified spaces. All maps in Diagram (3.3) are smooth maps of manifolds with

corners [13, 37], which is equivalent to saying that they admit smooth extensions to some

open neighborhoods of the domains of their charts.

Returning now to the diagram algebra D, for a trivalent diagram D ∈ Dn, define the

associated Gauss map to be the product

hD =
∏

(i,j)∈E(D)

hi,j : C[k, s;K,R3] −→
∏

(i,j)∈E(D)

S2, (3.5)
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where hi,j : C[k, s;K,R3] −→ S2 is the lift to the compactification of the classical Gauss map

C(k + s;R3) −→ S2,

(x1, ..., xi, ..., xj, ..., xk+s) 7−→
xj − xi
|xj − xi|

.

Maps hi,j extend smoothly to the boundary of C[k, s;K,R3], [13, Appendix]. Thus hD is

also smooth, and as a result we obtain a smooth (k + 3s)–form ωD on C[k, s;K,R3] via the

pullback:

ωD = h∗D(ω × · · · × ω) =
∏

(i,j)∈E(D)

ωi,j, ωi,j = h∗i,jω. (3.6)

Here ω is the area form on S2, usually chosen in standard coordinates on R3 as

ω(x, y, z) =
x dy ∧ dz − y dx ∧ dz + z dx ∧ dy

(x2 + y2 + z2)
3
2

.

One now has a smooth bundle of manifolds with corners,

pK : C[k, s;K,R3] −→ K,

which is the composition of π̄k with the trivial projection of C[k;S1] × K onto the second

factor. The fiber of pK over a knot K is the configuration space of k + s points in R3, first

k of which are constrained to lie on K. Integration along the (k + 3s) dimensional fiber of

pK produces a 0-form (a function) on K. We will denote its value at K ∈ K by ID(K). In

other words,

ID(K) :=
(
(pK)∗ωD

)
(K). (3.7)

Remark 3.5. Note that ωD vanishes to the order 1/rn at “infinity” of C[k+ s;R3], where r

is the distance from the origin. It is therefore integrable along fibers of pK and thus (pK)∗ωD
is well-defined.

We now have the following fundamental result originally due to Altschuler and Freidel [3],

but reproved by Thurston [39] in the form we use here.

Theorem 3.6 ([3, 39]). Given a primitive weight system W ∈Wn, n ≥ 0, the map defined

by

VW : K −→ R (3.8)

K 7−→ 1

(2n)!

∑
D∈TDn

W (D)
(
ID(K)−mD I (K)

)
,

where mD is a real number which depends only on D, is a finite type n knot invariant.

Moreover, any finite type invariant of type n can be expressed as VW for some primitive

weight system W ∈ Wn. More precisely, VW gives an isomorphism Vn/Vn−1
∼= Wn for all

n ≥ 0 (where by V−1 we mean the one-dimensional space of constant invariants).
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Notice that the statement above is a more elaborate version of (1.9), with a = 1
2n!
W (D)

and b = 1
2n!
mD. The term mD I (K) is known as the anomalous correction. The integral

I (K) computes the writhing number8 of K (see [14]).

We next wish to clarify some technical aspects of the integration in (3.7) that will be

needed for later constructions. Let K ∈ K and D ∈ Dn. The Gauss map hD from (3.5)

factors as hD = h̄D ◦ pk,s (see Diagram (3.3)), where

h̄D : C[k + s,R3] −→
∏

(i,j)∈E(D)

S2

has an identical definition as hD in (3.5). We also have the analog of the form ωD on

C[k + s,R3], given as h̄∗D(ω × · · · × ω). We will also denote this form by ωD. Integrating

along the 3s-dimensional fiber of πk in Diagram (3.3), we obtain a smooth k-form (see [13,

p. 5281])

$D = (πk)∗ωD (3.9)

on C[k;R3] (see Remark 3.5). On the other hand, the evaluation map (3.4), produces at

each point

ev((t1, · · · , tk), K) = (K(t1), · · · , K(tk)) ∈ C(k;R3), (t1, · · · , tk) ∈ C(k;S1),

a frame

K̇k = {K̇(t1), · · · , K̇(tk)}, K̇(ti) =
d

dti
K(ti).

Lifting this frame to C[k;R3], via the map pushforward α∗ induced by α = αR3 from (3.1),

we obtain the frame ˜̇Kk = α∗K̇k. Contracting into $D, given by (3.9), we obtain a (distri-

butional) function over C[k;R3], determined by

fD,K(t) := $D( ˜̇Kk)(t) = α∗$D(K̇k)(t) = (ev∗Kα
∗$D)(t)[∂t], (3.10)

for t = (t1, · · · , tk). Here α∗ denotes the pullback induced by α.

Proposition 3.7. With fD,K as defined in (3.10), we have the following identity for ID(K):

ID(K) =

∫ T

0

· · ·
∫ T

0

k times

fD,K(t) dt, (3.11)

where the interval [0, T ] parametrizes the knot K.

Proof. Restricting π̄k in Diagram (3.3) to the fiber over the point K ∈ K and the rest of the

maps to the subset of the interior of the compactifications C0( · ;R3) ⊂ C[ · ;R3], we have a

8Note that the writhing number is an average writhe over all possible projections of the knot.
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diagram

C0(k, s;K,R3) ⊂
j - C0(k;S1)× C0(k + s;R3)

v - C0(k + s;R3)

C0(k;S1)
?

evK -

π̄
k

-

C0(k;R3),

πk

?

where p = v ◦ j. Since C(k + s;R3) ⊂ (R3)k × (R3)s, we may work with the standard

coordinates (x,y) = (x1, · · · , xk, y1, · · · , ys) on (R3)k × (R3)s imposed by the blowup map

α : C(k+s;R3) −→ C0(k+s;R3) ⊂ C[k+s;R3] of (3.1). Let components of vectors xj and yj
in (x,y) be further indexed as xj = (xij)i=1,2,3, yj = (yij)i=1,2,3 and denote by t = (t1, · · · , tk)
the coordinates on C(k;S1) ⊂ (S1)k. Then the (k + 3s)–form α∗ωD can be written as

α∗ωD = dy ∧ α̂D + ˆ̂αD,

where dy is the top degree form on (R3)s and ˆ̂αD some (k + 3s)–form not containing the

term dy. Using the multi-index notation, let us write

α̂D =
∑
I,J

âI,J(x,y)dxJI .

Here dxJI = dxi1j1 ∧ · · · ∧ dx
ik
jk

and I, J are appropriate multiindices. After integrating along

the fiber, we get

(πk)∗α
∗ωD = α∗$D(x) =

∑
I,J

(∫
π−1
k (x)

âI,J(x,y) dy
)
dxJI ,

where π−1
k (x) = C(s,R3 − {x1, · · · , xk}).9 From (3.10), we have

fD,K(t) =
∑
I,J

(∫
π−1
k (K(t))

âI,J(K(t1), · · · , K(tk),y) dy
)
bJI (t1, · · · , tk),

where bJI (t1, · · · , tk) = dxJI [K̇∧k ] and

(ev∗Kα∗$D)(t) = fD,K(t) dt, dt = dt1 ∧ · · · ∧ dtk.

On the other hand, v∗α∗ωD has the identical expression as α∗ωD, so we may write j∗α∗ωD
for j∗v∗α∗ωD. In the (t,x,y) coordinates, we obtain

j∗α∗ωD =
∑
I,J

âI,J(K(t1), · · · , K(tk),y) bJI (t1, · · · , tk) dy ∧ dt1 ∧ · · · ∧ dtk.

9I.e. π−1
k (x) is a configuration space of s points in R3 with k points deleted, see [20].
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Since the boundary of the configuration space C[k;S1] is measure zero, it does not contribute

to the integral in (3.7) and we easily see that the following identities, proving (3.11), hold:

ID(K) =
(
(pK)∗α

∗ωD
)
(K) =

∫
C(k;S1)

(π̄k)∗(α
∗ωD)

=

∫
C(k;S1)

(π̄k)∗(j
∗α∗ωD) =

∫
C(k;S1)

fD,K(t) dt. �

4. Proofs of Theorems A and B

In the setting of a volume-preserving vector field X on a domain S from Theorem A,

we wish to apply constructions of Section 3 to the family of knots {ŌT (x)} obtained from

the “closed up” orbits of X. Note that any such orbit ŌT (x) (as in (1.1)) is generically a

piecewise smooth knot in R3. In order to define ŌT (x), one needs a system {σ(x, y)} of short

paths on S, which can in general be defined from geodesics after an appropriate choice of

the metric on S [43]. Short paths will in particular be dealt with in Lemma 4.5. The main

property of short paths we will use is that their length is uniformly bounded. Note that we

can assume ŌT (x) is smooth, because its corners can be rounded and ŌT (x) is the C0 limit

of these “rounded” parametrizations.

Recall that the basic ingredient of the formula (3.8) for any finite type n invariant VW is

the integration function ID associated with a diagram D ∈ Dn. Following the ideas outlined

in the Introduction we focus on the family of functions

S −→ R,
x 7−→ ID(ŌT (x))

that is dependent on T . For any x ∈ S, we wish to study the time average

λ̄D(x) = lim
T→∞

1

T k
ID(ŌT (x)), k = k(D). (4.1)

Naturally, we need to investigate if λ̄D is a well-defined function on S and whether it is

integrable.

Recall that X(x) = ȮT (x). Given a smooth k–form $D on C[k;R3] as defined in (3.9),

we have a global analog of the function fD,K in (3.10):

fD,X : C(k; S) −→ R, fD,X := α∗$D(X, · · · , X), (4.2)

where the frame of fields {X, . . . , X} spans the tangent space to the product of orbits O(x1)×
· · · ×O(xk) through any point (x1, · · · , xk) in Sk. It is convenient to think about the above

constructions in terms of the underlying foliation F k
X of Sk defined by the orbits of the action

of the k–fold product flow φkX on Sk. Note that F k
X has complete leaves because X is tangent

to ∂S, and orbits O(x) thus exist for all time. The function fD,X is well-defined on C(k; S),

but, except for along the orbits, it generally blows up close to the diagonals of Sk. We can
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also consider the function

f̃D,X : C0(k; S) −→ R, fD,X := $D(X̃, · · · , X̃), (4.3)

where {X̃, . . . , X̃} is a lift of the frame {X, . . . , X} of vector fields to C[k;S]. Note that even

though $D is smooth on C[k; S], the vector field X̃ = α∗X undergoes “infinite stretching”

close to the boundary of C[k; S] (see Remark 4.3). Clearly, fD,X factors as

fD,X = f̃D,X ◦ α.

Since ŌT (x) is parametrized by the interval [0, T + 1] (where [T, T + 1] parametrizes a

short segment σ(x, φX(x, T ))), Proposition 3.7 applied to (4.1) pointwise yields

ID(ŌT (x)) =

∫ T+1

0

· · ·
∫ T+1

0

k times

fD,X((φ ∪ σ)(x, t1), · · · , (φ ∪ σ)(x, tk)) dt1 · · · dtk,

λ̄D(x) = lim
T→∞

1

T k
ID(ŌT (x)).

(4.4)

Here (φ ∪ σ) is a shorthand notation for the flow φ of X followed by the short path

parametrization.

This is thus the setup in which we will prove our main theorems in this section. But before

we can do that, we will establish a useful lemma.

4.1. Key Lemma. Here is the lemma that will be used in the proofs of Lemma 4.5 and

Theorems A and B.

Key Lemma. Let µ be the underlying measure on the domain S ⊂ R3, invariant under the

flow of X. Consider the time average of fD,X over F k
X , defined as

λD(x) = lim
T→∞

1

T k

∫ T

0

· · ·
∫ T

0

fD,X(φ(x, t1), · · · , φ(x, tk)) dt1 · · · dtk, x ∈ S, (4.5)

where in comparison to (4.1), we skipped the integrals over short paths. Then this limit exists

almost everywhere on S and λD is in L1(S, µ).

Before we prove this, we need to make several observations. Note that µ induces a measure

on Sk by the pushforward via the thin diagonal inclusion S ↪→ Sk, x −→ (x, · · · , x). Let

us denote the resulting measure by µ∆. Clearly µ∆ is a finite Borel measure supported on

the thin diagonal of Sk. Averaging over the Rk–action of φk = φkX we obtain a φk–invariant

measure

µ̄∆ = lim
T→∞

1

T k

∫ T

0

· · ·
∫ T

0

(
(φk)∗µ∆

)
dt1 · · · dtk. (4.6)

For the k–fold product Sk, the above is a well defined limit in the space of Borel measures

M(Sk), c.f. [12]. Note that µ̄∆ is supported on the set of leaves of the foliation F k
X intersecting
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the thin diagonal in Sk. From the definitions, we may write
∫
S
λDdµ as∫

S

λDµ =

∫
Sk

(
lim
T→∞

1

T k

∫ T

0

· · ·
∫ T

0

fD,X(φ(x1, t1), · · · , φ(xk, tk)) dt1 · · · dtk
)
dµ∆

=

∫
Sk
fD,X dµ̄∆,

(4.7)

where in the third identity we used (4.6). Therefore the question of whether λD is in L1(S, µ)

is equivalent to the question of whether fD,X of (4.2) is in L1(Sk, µ̄∆).

Remark 4.1. In place of µ̄∆ one can consider any other invariant measure, in particular

we may restrict just to any measure supported on the k–product O(x) × · · · × O(x) of a

single long orbit, or equivalently obtained by averaging, as in (4.6), a Dirac delta measure

of a point (x, · · · , x) ∈ Sk. It is well known (c.f. [12, 15]) that µ̄∆ can be arbitrarily well

approximated by finite sums of such Dirac delta averages. (We will use this fact in Section

5.)

In order to investigate integrability of fD,X , we employ the following natural generalization

of [15, Proposition 10.3.2] to a product of flows.

Proposition 4.2 ([15]). Any φk–invariant measure µ on Sk corresponds to a holonomy

invariant measure of the foliation F k
X .

Let us choose a finite regular foliated atlas for F k
X where a domain V ααα, ααα = (α1, · · · , αk),

of each each chart is a product of regular flow boxes {Vα} of the vector field X covering S.

In other words,

V ααα = Vα1 × · · · × Vαk , Vαi = Tαi × Iαi , Iαi = (−εαi , εαi), 0 < εαi < ε, (4.8)

where each Tαi is a transverse disk to the flow of X. V ααα can be expressed as the product

V ααα = Tααα × Iααα =
(∏

i

Tαi
)
×
(∏

i

Iαi
)
.

Recall from [15] that a holonomy invariant measure νF of F = F k
X is a measure defined on⊔

ααα T
ααα that is invariant under the action of the holonomy pseudogroup of F . The Ruelle–

Sullivan Theorem [36] (see also [15, p. 245]) and Proposition 4.2 imply the existence of a

holonomy invariant (finite) measure νF corresponding to µ̄∆, given in (4.6), such that∫
Sk
fD,X µ̄∆ =

∑
α

∫
Tααα

(∫
Iααα
ξα(x, t)fD,X(x, t)dt

)
dνF (x), (4.9)

where (x, t) = (x1, · · ·xk, t1, · · · , tk) are coordinates on V ααα, {ξααα} a partition of unity sub-

ordinate to the cover of Sk by {V ααα}, and dt is induced from the usual Riemannian length

measure along the orbits of X.

Remark 4.3 (Illustration for proof of Key Lemma). Let us illustrate our strategy in the

case of the simplest diagram D = . For a fixed φX–invariant measure µ on S, the question
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is whether the following time average is µ–integrable:

λD(x) = lim
T→∞

1

T 2
ID(OT (x)), x ∈ S

For simplicity, here we disregard short paths.

Considering a finite cover of S2 by flowboxes V ααα (defined for k = 2 in (4.8)), formula (4.9)

tells us that it suffices to prove that fD,X is locally integrable with respect to dt×νF in each

V ααα. Away from the diagonal ∆{1,2} of S2, fD,X is smooth, and so the hardest case is that of

flowboxes intersecting ∆{1,2}. Without loss of generality consider a flowbox V ααα, ααα = (α1, α2)

with α1 = α2. To simplify the notation we denote it by V = (T× I)× (T× I), (where T× I
is a flowbox of X in S, with I = (−ε, ε)). Let F : T × T → R be defined by

F (x, y) =

∫
I(x,y)

fD,X(x, y, t)dt, (4.10)

where

I(x, y) = {x} × {y} × I × I ⊂ V, I = (−ε, ε).
Since C[2; S] ⊂ C[2;R3] and C[2;R3] is obtained by blowing up the diagonal ∆{1,2} of (R3)2,

we can construct the metric g̃ on C[2;R3] from the standard Euclidean metric of R3 and

pull it back to C[2;T × I] via the map φ̃2 induced from the product flow φ2 = φ × φ. The

resulting metric on C[2;T× I] will also be denoted by g̃. Recall that $D = $ is a smooth

2–form on C[2; S] ⊂ C[2;R3], defined via the Gauss map in (3.5). Thanks to Proposition

3.4, it pulls back to a smooth form on C[2;T × I]. The resulting pullback form will also be

denoted by $D. In the case of configurations of two points, C[2;T × I], the blowup map

(3.1) can be set equal to the map defined in (2.2), namely

β : C(2;T × I) −→ C[2;T × I] = Bl(T × I,∆{1,2})

Equations (4.2) and (4.3) imply

F (x, y) =

∫
I(x,y)

α∗$D =

∫
Ĩ(x,y)

$D, (4.11)

where Ĩ(x, y) is the lift of I(x, y) ⊂ V to C[2;T × I]. Using the metric g̃, Lemma 2.3 yields

|F (x, y)| ≤ A$D,g̃ vol(Ĩ(x, y)). (4.12)

Claim: Volumes of lifts Ĩ(x, y) in the metric g̃ are uniformly bounded over T × T.

Given the claim, estimate (4.12) implies that F is pointwise bounded and thus νF –

integrable (because νF is a finite measure). Applying this argument to each flow box chart

{V ααα}, we can conclude that fD,X is µ̄∆–integrable as required.

Remark 4.4. One can regard the above reasoning as an alternative to the proof of Lemma

2.4 in [18, p. 1429].
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Justification of Claim: The claim is intuitively clear, because the blowup map β “stretches”

I(x, y) locally by adding a “bump” (which is illustrated on the right side of Figure 5). To

give a more precise argument, recall that C[2;T × I] is a subspace of C[2;R2 × R] and

C[2;R2×R] is diffeomorphic to (R2×R)×S2× [0,∞), (i.e. it is the complement of a tubular

neighborhood of the thin diagonal). The blowup map

β :
(

(R2 × R)2 −∆{1,2}

)
−→

(
C[2;R2 × R]− (β)−1(∆{1,2})

)
∼= C(2;R2 × R),

can be written explicitly as

β : ((x, s), (y, t)) 7−→
(x+ y

2
,
s+ t

2
,

(s− t, x− y)√
(s− t)2 + |x− y|2

,
1

2

√
(s− t)2 + |x− y|2

)
.

Let (x, y) ∈ T×T, x 6= y, and set p = 1
2
(x+y), q = 1

2
(x−y), conveniently changing variables

to u = 1
2
(s+ t), v = 1

2
(s− t), s, t ∈ (−ε, ε). We obtain for (u, v) ∈ (−ε, ε)× (−ε, ε)

((x, u), (y, v)) 7−→
(
p, u;

(v, q)√
v2 + |q|2

,
√
v2 + |q|2

)
=: (ψp(u);ψq(v)), (4.13)

which, for a fixed x an y, gives a (u, v)–parametrization of the lift Ĩ(x, y). Here ψp, ψq
denotes the curves given by respectively first and last two coordinates of the map (4.13).

The volume vol(Ĩ(x, y)) can now be estimated as

vol(Ĩ(x, y)) ≤ cg̃ `(ψp)(`(ψq) + 2πε),

where `(ψp), `(ψq) are lengths of the curves ψp and ψq in the metric g̃ and cg̃ is a constant

which depends only on g̃. Lengths `(ψp) and `(ψq) are proportional to ε and thus (x, y) 7−→
vol(Ĩ(x, y)) is uniformly bounded on T × T by a constant dependent only on the metric and

the size of the flow box neighborhood. �

x
x

Figure 5. Lift of orbits of a vector field on R2 (left) to Bl(R2, {x}) ∼= S1 × [1,+∞) (right).
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Proof of Key Lemma. Fix a flowbox chart V ααα = Tααα × Iααα as defined in (4.8). It suffices to

prove that the function

FD,ααα : Tααα −→ R (4.14)

x 7−→
∫
Iααα
fD,X(x, t)dt

is bounded for any ααα. Then, because the atlas {V ααα} is finite, (4.9) implies |
∫
Sk
fD,X µ̄∆| ≤ ∞

as required. Note that fD,X is smooth away from the diagonals ∆Q of Sk, where Q ⊂
{1, · · · , k}, #Q ≥ 2, and

∆Q = {(x1, · · · , xk) ∈ Sk | xi = xj for i, j ∈ Q}.

Let ∆ =
⋃
Q ∆Q. We can cover the ε–neighborhood of ∆ by open sets

V ααα
Q =

k∏
i=1

Vαi , where αi = αj, for i, j ∈ Q,

and V αi ∩ V αj = Ø, for i ∈ Q, j 6∈ Q.

(4.15)

Then the sup–norm of fD,X is bounded on the complement of the ε–neighborhood of ∆

by some constant which only depends on X and $D; see (4.2). Generally, we want to

pick ε much smaller than ε, which is the size of the flow box charts. Thus, it suffices

to prove that the functions F = FD,ααα are bounded on V ααα
Q for any ααα and Q. Up to a

permutation of factors, suppose that Q = {1, ..., r} ⊂ {1, · · · , k}, 2 ≤ r ≤ k, r = #Q and

ααα = (α1, · · · , αr, β1, · · · , βk−r) (for α = α1 = · · · = αr). Then V ααα
Q = Tr× Ir×Tβ× Iβ, where

T = Tα, I = Iα, Tβ = Tβ1 × · · · × Tβk−r , and Iβ = Iβ1 × · · · × Iβk−r .

Proposition 3.4 implies that the flow φ = φX of X restricted to the flow box T × I lifts to

an embedding φ̃ : C[r;T× I] −→ C[r;R3], which, by the second condition in (4.15), extends

trivially to the embedding

φ̃Q : Wααα
Q −→ C[k;R3], Wααα

Q := C[r;T × I]× Tβ × Iβ.

Let αQ : Wααα
Q −→ V ααα

Q be the obvious projection induced by the restriction of the blowdown

map (of Definition 3.3). Recall that for any x ∈ Tr×Tβ, the lift ĨQ(x) of IQ(x) = {x}×Ir×Iβ
to Wααα

Q equals to the closure of α−1
Q (IQ(x)) in Wααα

Q. The k–form $D (3.9) pulls back to a

smooth form on Wααα
Q, and we may also pull back the metric g̃ from C[k;R3] to Wααα

Q. By (4.2)

and (4.14), a point value of F , for any x ∈ Tr × Tβ, is given as

F (x) =

∫
ĨQ(x)

$D. (4.16)

Using Lemma 2.3, for some universal constant AD we obtain a bound

|F (x)| ≤ AD vol(ĨQ(x)). (4.17)
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Therefore, analogously to what is outlined in Remark 4.3, it suffices to show that vol(ĨQ(x))

is uniformly bounded over Tr × Tβ. This is intuitively clear because vol(IQ(x)) is uniformly

bounded by a constant proportional to εk (c.f. (4.8)) and C[k;R3] is obtained from (R3)k by a

sequence of blowups. Hence the philosophy presented in Remark 4.3 implies that vol(ĨQ(x))

is uniformly bounded as well. The remaining part of this proof provides details of this

intuitive claim.

Summarizing, given a bounded “flow box”: Wααα
Q = C[r;T× I]×Tβ × Iβ embedded via the

flow in C[k;R3], we intend to estimate the volume of the lift of IQ(x) = {x} × Ir × Iβ ⊂
(Tr × Tβ)× Ir × Iβ = V ααα

Q to Wααα
Q for every x ∈ Tr × Tβ. Specifically, we consider V ααα

Q sitting

in R2×R where the I factors of V ααα
Q are mapped into the R factors under the inclusion, and

the corresponding blowup map

α : C(k;R2 × R) −→ A[k;R2 × R],

A[k;R2 × R] = (R2 × R)k ×
∏

S⊂{1,...,k}, |S|≥2

Bl((R2 × R)S,∆S). (4.18)

Recall from Section 3 that C[k;R2 × R] is obtained as a closure of the graph of the above

map. The projection of the map α to the first factor of A[k;R2 × R] is just the inclusion

and the projections restricted to the Bl( · ) factors are determined by the blowup maps as in

(2.2). The metric on each BlS = Bl((R2×R)k,∆S), further denoted by g̃S(ε), is obtained via

the construction of Section 2. The parameter ε is set to be sufficiently small, in particular

smaller than the diameter of any flowbox chart. Recall that BlS is diffeomorphic to the

complement of a tubular neighborhood of the thin diagonal ∆S in (R2 × R)S, namely

BlS ∼= (R2 × R)× S3|S|−4 × [0,∞). (4.19)

and the map α restricted to factors of A[k;R2 × R], indexed by S = {s1, · · · , s|S|}, can be

specifically chosen as

y = (y1, · · · , y|S|) 7−→
(
y1;

y1 − y2

|y′|
, · · · ,

y1 − y|S|
|y′|

; |y′|
)
, y′ = (y1−y2, · · · , y1−y|S|). (4.20)

This gives an embedding into the interior of BlS, i.e. into (R2 × R)× S3|S|−4 × (0,∞).

For simplicity, suppose x ∈ Tk ∼= Tr × Tβ and x ∈ C(k;T), i.e. x is away from the thick

diagonal of Tk. The restriction of the map α to I(x) = {x} × Ik,10 gives a parametrization

of the lift Ĩ(x) in C[k;R2 × R]. Let us denote this parametrization by γ(t1, · · · , tk), where

t = (t1, · · · , tk) are the variables of Ik and Ĩ(x) = γ(I(x)). Further let

Xi(t) =
∂

∂ti
γ(t), i = 1, · · · , k,

10Where we abbreviate Ir × Iβ to Ik with k = r + |β|.
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be images in A[k;R2 × R] of coordinate vector fields under the derivative Dγ. Then, for

ĨQ(x) = φ̃ ◦ α(I(x)) we have

vol(ĨQ(x)) ≤ cφ vol(Ĩ(x)) = cφ

∫
Ik

(|X1 ∧ · · · ∧Xk|g̃)
1
2 dt, (4.21)

where cφ accounts for the C1–norm of the map φ̃. Each vector Xi has coordinates (Xj
i , X

S
i ),

where j = 1, · · · , k indexes factors: (R2 × R)k in A[k;R2 × R] and S ⊂ {1, ..., k}, |S| ≥ 2,

indexes the BlS factors, we call j the front index and S the set index in the above decom-

position of Xi. Substituting Xi =
∑

mmmX
mmm
i , where mmm ranges over both j and S type indices,

we estimate

|X1 ∧ · · · ∧Xk|g̃ ≤
∑

mmm=(mmm1,mmm2,··· ,mmmk)

|Xmmm1
1 ∧ · · · ∧Xmmmk

k |g̃

≤
∑
mmm

k∏
l=1

|Xmmml
l |g̃ ≤

∑
mmm

1

k

k∑
l=1

(
|Xmmml

l |g̃
)k
,

(4.22)

where the last step is a consequence of the arithmetic mean and Jensen’s inequality (c.f. [32]).

Consequently, estimating the integral in (4.21), boils down to estimating integrals in the form

I(mmml) =

∫
Ik

(
|Xmmml

l |g̃
)k
dt, l = 1, · · · , k.

Without loss of generality (as we may always change the order of integration) suppose l = 1,

and let

I =

∫
I

· · ·
(∫

I

(
|Xmmm1

1 (t1, · · · , tk)|g̃
)k
dt1

)
· · · dtk.

For a fixed t0 = (t2, · · · , tk), the inner integral:

Ek(γmmm1) =

∫
I

(
|Xmmm1

1 (t1, t0)|g̃
)k
dt1,

represents the Lk–energy11 of the curve parametrized by γmmm1 : t1 −→ πmmm1(γ(t1, t0)), where

πmmm1 is a projection onto the mmm1–coordinate of A[k;R2 × R]. If mmm1 is a front index then

|Xmmm1
1 (t1, t0)|g̃ = 1 and Ek(γmmm1) ≤ `(γmmm1). Since `(γmmm1) ≤ cεε, for some constant cε > 0, we

obtain

I(mmm1) ≤ (cεε)
k.

In the case mmm1 = S is a set index, the map γmmm1 parametrizes a curve in BlS, which projected

via (4.20) onto the S3|S|−4 factor is a ”piece” of a great circle. Then a simple computation

in the metric g̃S(ε) leads to the following estimate

Ek(γmmm1) ≤ ck,ε(2π + 1)kεk,

where we used ε � ε, again I(mmm1) is uniformly bounded. Applying
∫
Ik

(·) to both sides of

(4.22) we obtain from (4.21) that vol(ĨQ(x)) is estimated by a sum of I–type terms. Therefore

11i.e. the Lk–norm to the kth power.
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using estimates for I(mmm1) we obtain the required uniform bound

vol(ĨQ(x)) ≤ ck,ε,φ(1 + 2πε)k(ε)2k.

In the case x belongs to the thick diagonal of Tk, we obtain the above bound by considering

x as a limit of points from C(k;T). �

4.2. Short paths. We are now ready to show that the short paths do not contribute to the

limits in (4.1) and (4.4).

Lemma 4.5. We have

λ̄D(x) = λD(x), a.e. (4.23)

Proof. We will adapt the classical argument of Arnold from [4].12 Recall that the short curves

are denoted by {σ(x, y)}x,y∈S. The difference of integrals in the limits defining λD (4.5) and

λ̄D (4.1) respectively is a sum of the following terms (up to permutation of
∫ T

0
and

∫ 1

0
) for

i ≥ 1, and i+ j = k:

Ji,j =

∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
i

∫ T

0

· · ·
∫ T

0︸ ︷︷ ︸
j

fD,X(σx,T (s1), · · · , σx,T (si), φ(x, t1) · · · , φ(x, tj)) dt ds,

where σx,T : [0, 1] → S is a parametrization of σ(x, φ(x, T )). Here
∫ T

0
is an integral over

the orbit of X and
∫ 1

0
is an integral over the short path segment, from (4.4). Fixing small

enough ε > 0, we may subdivide each [0, T ] so that the integral
∫ T

0
is roughly the sum∫ ε

0
+
∫ 2ε

ε
+ · · · +

∫ εd 1
ε
T e

ε(d 1
ε
T e−1)

, and each ε–interval [ε (k − 1), ε k], 1 ≤ k ≤ dT
ε
e, parametrizes

a piece of an orbit within a flowbox chart of X. Analogously, we may subdivide the unit

intervals parametrizing the short paths and therefore split the
∫ 1

0
integral into the ε–pieces,

also fitting into flowbox neighborhoods of X. Let the index kl, 1 ≤ l ≤ j, enumerate the

sums for the
∫ T

0
’s and the index mz, 1 ≤ z ≤ i, enumerate the sums for

∫ 1

0
’s. Then, the

above formula for Ji,j yields

|Ji,j| ≤
∑

m1,··· ,mi
k1,··· ,kj

∣∣∣∫ εm1

ε(m1−1)

· · ·
∫ εmi

ε(mi−1)

∫ εk1

ε(k1−1)

· · ·
∫ εkj

ε(kj−1)

fD,X dt ds
∣∣∣.

Each integral term in the above sum can be expressed, similarly as in (4.16), as an integral

over a lift of the product of the short ε–pieces of σ’s and the orbits of X, over a smooth

differential form $D on C[k;R3]. Therefore, by the estimate (4.17) each integral in the above

sum can be bounded above by a constant AX,D which only depends on the vector field, $D,

and the metric. Since the number of terms in the sum Ji,j is given by (d1/εe)i(dT/εe)j we

obtain

|Ji,j| ≤ AX,D(d1/εe)i(dT/εe)j.
12One needs to be cautious about this argument in the case the domain of the vector field cannot be covered
by finitely many flowbox type neighborhoods; see Example 4 in [43].
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Since there are
(
k
i

)
terms of type Ji,j in the difference λ̄D − λD and j = k− i, we obtain, for

any x ∈ S,

|λ̄D(x)− λD(x)| ≤ AX,D lim
T→∞

1

T k

k∑
i=1

(
k

i

)
(d1/εe)i(dT/εe)k−i = 0. �

4.3. Proofs of Theorems A, Corollary A, and Theorem B. Recall the statements of

these three results from the Introduction.

Proof of Theorem A and Corollary A. Part (i) has already been proven in Key Lemma. For

part (ii), following Theorem 3.6, any finite type n invariant VW is a linear combination of

integrals ID of (3.7). Specifically, for appropriate coefficients aD ∈ R and D1 = , we can

express VW as

VW (K) =
2n∑
k=1

Jk(K) + b ID1(K), for Jk(K) =
∑

D∈TDn; k(D)=k

aD ID(K), K ∈ K. (4.24)

In order to observe the almost everywhere convergence in

λW (x) = lim
T→∞

1

T 2n
VW (ŌT (x)),

we take the corresponding linear combination of T 2n–time averages of terms in (4.24).

Namely, we have

λW (x) =
2n∑
k=1

lim
T→∞

1

T 2n
Jk(ŌT (x)) + b lim

T→∞

1

T 2n
ID1(ŌT (x)). (4.25)

By Key Lemma, for n > 1, the terms in the sum (4.25) with k < n vanish in the limit as

does the ID1 term. As a result, we have

λW (x) = λWn(x) =
∑

D∈TDn;k(D)=2n

aD λD(x).

Further, if J2n(ŌT (x)) is o(T 2n−1), then we may consider T 2n−1–time averages of VW and

obtain

λW (x) = λW 2n−1(x) =
∑

D∈TDn; k(D)=2n−1

aD λD(x).

This reasoning further applies, if the terms Jk are of lower order, and this therefore gives

the proof of Corollary A.

It remains to prove invariance under volume-preserving deformations as claimed in (iii).

Note that, given h ∈ Diff0(R3, µ), the short path system hΣ = {h◦σ} on S′ = h(S) obtained

from Σ = {σ} has the same properties as the original system Σ on S with respect to the

pulled-back metric on S′. In particular, Lemma 4.5 holds for hΣ. Now, for any T > 0 and

x ∈ S, consider knots Kh∗X = Ōh∗X
T (x) and KX = ŌX

T (h−1(x)) (where we used hΣ to close
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up Kh∗X and Σ to close up KX). By (1.6), we have

Kh∗X = h(KX).

Since h ∈ Diff0(R3, µ), we conclude that Kh∗X and KX are isotopic, implying

VW (Kh∗X) = VW (KX).

Taking limT→∞
1
T 2n

(
·
)

of both sides in the above equation yields

λ
h∗X

W (x) = λ
X

W (h−1(x)), a.e.

After a change of variables (using the fact that h is µ-preserving), we obtain

VW (h∗X) = VW (X). �

From the above argument, observe that λWk(x) is a time average of the L1–functions

fW,X,k : C(2n;R3) −→ R, fW,X,k :=
∑

D∈TDn;k(D)=k

aD fD,X,k,

for fD,X,k = fD,X as defined in (4.2). Applying the Multiparameter Ergodic Theorem [11, 38]

to fW,X,k, we obtain the following formula for the vector field invariant VW,k : Vect(S, µ) −→
R:

VW,k(X) =

∫
Sk
fW,X,k µ̄∆ (4.26)

(recall µ̄∆ is a diagonal invariant measure on Sk given in (4.6)).

1

2
3

4

4

3

1

2
1 4

3 2

Figure 6. A top degree diagram perturbation leads to pairwise linking number diagrams.

Proof of Theorem B. By assumption, the domain S is equipped with the standard volume

form µ and X is an ergodic µ–preserving nonvanishing vector field. For simplicity, we assume

that µ induces a probability measure on S. Ergodicity of X on S implies, among other things,

that almost every orbit of X densely fills the interior of S. Clearly, µ induces a φkX–invariant

ergodic probability measure on Sk via the 3k–form µk = µ× · · · × µ
k times

. By Key Lemma, fW,X

is in L1(µ2n), and thus the ergodicity of the φ2n
X –action implies that the integral∫

S2n
fW,Xµ

2n
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equals

lim
T→∞

1

T 2n

∫ T

0

· · ·
∫ T

0

2n times

fW 2n,X(φ(x1, t1), · · · , φ(x2n, t2n)) dt1 · · · dt2n, (4.27)

for almost every point x = (x1, · · · , x2n) ∈ S2n. Choosing x to be away from the thick

diagonal, we have 2n distinct orbits ŌT (x) = ŌT (x1) × · · · × ŌT (x2n) through each coor-

dinate point. For each top degree diagram (i.e. a chord diagram) D ∈ Dn, k(D) = 2n,

the integral of the associated differential form $D over ŌT (x) splits as a product of linking

numbers of pairs of points associated with the chords of D. This can be thought of as a

perturbation of the diagram, as the vertices are no longer on the same orbit; see Figure 6

for an illustration. Explicitly, for ŌT (x) and $D =
∏

(i,j)∈E(D) ωi,j, from (4.2) and the fact

that
∫

ŌT (xi)×ŌT (xj)
ωi,j = lk(ŌT (xi), ŌT (xj)), we have (up to short paths)∫ T

0

· · ·
∫ T

0

2n times

fD,X(φ(x1, t1), · · · , φ(x2n, t2n)) dt1 · · · dt2n =
∏

(i,j)∈E(D)

lk(ŌT (xi), ŌT (xj)). (4.28)

By definition of H (X) (see (1.3)) and the ergodicity assumption, summing up over all top

order diagrams D ∈ Dn, we obtain from (4.27) the independence of the limit of short paths

and from (4.28) we obtain ∫
S2n

fW,Xµ
2n = cW (H (X))n, (4.29)

where cW is a constant independent of X.

Next, we turn to the proof of the identity in (1.12). Observe that in the space of probability

measures M(S2n), the diagonal measure µ∆ can be approximated by a sequence of probability

measures supported on the δ–tubular neighborhood Uδ = Uδ(∆) of the thin diagonal ∆ of

S2n. These measures can be precisely defined as

ν2n
δ =

χδ
vol(Uδ)

ν2n, χδ(x) =

{
1, x ∈ Uδ,
0, x 6∈ Uδ.

Since µ2n
δ → µ∆, δ → 0 in M(S2n). Thanks to the weak compactness of M(S2n), the sequence

of the associated invariant measures µ2n
δ , built via the formula (4.6), converges to the diagonal

invariant measure µ∆ in M(S2n). From Key Lemma, for each δ, fW,X is in L1(µ2n
δ ). Since

the right hand side in (4.27) is independent of the choice of x (as long as it is generic), for

a given δ we may suppose x ∈ Uδ and obtain from (4.29) and the assumption of ergodicity

the identity ∫
S2n

fW,Xµ
2n
δ = lim

T→∞

1

T 2n

∫ T

0

· · ·
∫ T

0

2n times

fW,X(x, t) dt = cW (H (X))n.

Since µ2n
δ → µ∆ in M(S2n), we deduce (1.12). The second part of Theorem B can be justified

analogously. �
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5. Quadratic helicity, energy, and proof of Theorem C.

The methods presented in the previous sections can be applied almost without any changes

to the setting of asymptotic links. One difference between the case of knots and links

is a choice of the diagonal invariant measure µ∆ in (4.6). Rather than presenting this

obvious generalization, the rest of this section is devoted to an illustration of the relevant

constructions for the simplest finite type 2 invariant associated with a 2–component link,

the square of the linking number lk2. We observe that in the setting of asymptotic links, lk2

leads to quadratic helicity that was recently proposed by Akhmetiev in [1]. Further, it is the

simplest invariant that can provide a sharper lower bound for the fluid energy than H (X),

as claimed in Theorem C.

The weight system associated to lk2 is given by just one trivalent diagram which we

denote by Dlk2 , pictured in Figure 7. The configuration of points and chords on Dlk2 implies

1 2

3 4

Figure 7. A trivalent diagram Dlk2 for lk2.

a choice of the invariant measure on S4 associated with the flow of X. Namely, we start

with the product φ2
X = φX × φX–invariant measure µ × µ on S × S and push it forward to

the 4–fold product S4 by the inclusion j : (x, y) 7−→ (x, x, y, y). Let us denote the diagonal,

parametrized by j, by ∆(2) = ∆{{1,3},{2,4}}. Also denote the pushforward measure by µ∆(2)

and the associated φ4
X–invariant measure by µ∆(2)

(i.e. µ∆(2)
=
∫
µ∆(2)

). By virtue of Theorem

A, the asymptotic invariant of X associated with lk2 equals the quadratic helicity of [1] and

is by (4.26) given as

H 2(X) =

∫
S4
$Dlk2

(X,X,X,X)µ∆(2)
, (5.1)

where

$Dlk2
= α∗ω1,2 ∧ α∗ω3,4.

(because Dlk2 has no free vertices). Observe that H 2(X) ≥ 0, whereas H (X) can be

negative. We can easily show examples when H (X) = 0 but H 2(X) > 0 (see [4, p. 344]).

Therefore it is of general interest to derive an analog of inequality (1.15) for H 2(X).
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Proof of Theorem C. Recall [15] that the diagonal invariant measure µ∆(2)
can be arbitrarily

well approximated in M(S4) by positive finite linear combinations

µn =
n∑
i=1

ai µxi
, ai > 0, (5.2)

where µxi
is a φ4

X–invariant measure obtained from averaging a Dirac delta δxi supported

at a point xi = (xi, xi, yi, yi) on the diagonal ∆(2). More precisely, if µn =
∑n

i=1 ai δxi as

an approximation of µ∆(2)
, µn =

∫
µn is an approximation of µ∆(2)

. In fact, approximating

µ× µ by
∑n

i=1 bi δ(xi,yi), bi > 0, and applying the pushforward under j we conclude that the

coefficients in (5.2) are given as

ai = b2
i .

Note that each µxi
is a product measure, i.e.

µxi
= µ

{1,2}
(xi,yi)

× µ{3,4}(xi,yi)
, (5.3)

where µ
{k,l}
(xi,yi)

is a pushforward of µ(xi,yi)
=
∫
δ(xi,yi) under the inclusion of S × S into the

(k, l)-coordinates factor of (S × S)2 = S4. By the proof of Theorem A, the function fW =

α∗ω1,2 ∧ α∗ω3,4(X∧
4
) is µn–integrable for each n. Moreover, if we set

f1,2 = α∗ω1,2(X,X), f3,4 = α∗ω3,4(X,X),

then

fW = α∗ω1,2 ∧ α∗ω3,4(X∧
4

) = α∗ω1,2(X,X)α∗ω3,4(X,X) = f1,2 f3,4.

Note that the functions f1,2 and f3,4 are constant on appropriate S2 factors of S4. Using (5.2)

and (5.3), we obtain∣∣∣∫
S4
fW µn

∣∣∣ =
∣∣∣ n∑
i=1

b2
i

(∫
S2
f1,2 µ

{1,2}
(xi,yi)

)(∫
S2
f3,4 µ

{3,4}
(xi,yi)

)∣∣∣
≤
( n∑
i=1

bi

∫
S2
|f1,2|µ{1,2}(xi,yi)

)( n∑
i=1

bi

∫
S2
|f3,4|µ{3,4}(xi,yi)

)
.

Passing to the limit in M(S4) as n → ∞, we have µn → µ∆(2)
and

∑
i biµ

{k,l}
(xi,yi)

→ µ × µ.

Therefore

H 2(X) ≤
(∫

S2
|α∗ω1,2(X,X)|µ× µ

)(∫
S2
|α∗ω3,4(X,X)|µ× µ

)
= c(X)2, (5.4)

where c(X) stands for the asymptotic crossing number as defined in [22, p. 191], and the

last identity is a consequence of c(X) =
∫
S2
|α∗ω(X,X)|µ × µ given in [22]. The estimate

[22, Equation (1.9)]

E3/2(X) ≥
(16

π

)1/4

c(X)3/4

immediately yields the required bound in (1.17). �
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