9,069 research outputs found

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    On the problem of energy efficiency of multi-hop vs one-hop routing in wireless sensor networks

    Get PDF
    The hop distance strategy in wireless sensor networks (WSNs) has a major impact on energy consumption of each sensor mote. Long-hop routing minimizes reception cost. However, a substantial power demand is incurred for long distance transmission. Since the transceiver is the major source of power consumption in the node, optimizing the routing for hop length can extend significantly the lifetime of the network. This paper explores when multi-hop routing is more energy efficient than direct transmission to the sink and the conditions for which the two-hop strategy is optimal. Experimental evidence is provided in to support of these conclusions. The tests showed that the superiority of the multi-hop scheme depends on the source-sink distance and reception cost. They also demonstrated that the two- hop strategy is most energy efficient when the relay is at the midpoint of the total transmission radius. Our results may be used in existing routing protocols to select optimal relays or to determine whether it is better to send packets directly to the base station or through intermediate nodes

    THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    Full text link
    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \underline{TH}reshold based \underline{E}nergy-efficient \underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using WBASN. In THE-FAME protocol, a composite parameter has been used that consists of a threshold parameter for lactic acid accumulation and a parameter for measuring distance covered by a particular player. When any parameters's value in this composite parameter shows an increase beyond threshold, the players is declared to be in a fatigue state. The size of battery and sensor should be very small for the sake of players' best performance. These sensor nodes, implanted inside player's body, are made energy efficient by using multiple sinks instead of a single sink. Matlab simulation results show the effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Wireless sensor networks using network coding for structural health monitoring

    Get PDF
    Wireless Sensor Networks (WSNs) have been deployed for the purpose of structural health monitoring (SHM) of civil engineering structures, e.g. bridges. SHM applications can potentially produce a high volume of sensing data, which consumes much transmission power and thus decreases the lifetime of the battery-run networks. We employ the network coding technique to improve the network efficiency and prolong its lifetime. By increasing the transmission power, we change the node connectivity and control the number of nodes that can overhear transmitted messages so as to hopefully realize the capacity gain by use of network coding. In Chapter 1, we present the background, to enable the reader to understand the need for SHM, advantages and drawbacks of WSNs and potential the application of network coding techniques has. In Chapter 2 we provide a review of related research explaining how it relates to our work, and why it is not fully applicable in our case. In Chapter 3, we propose to control transmission power as a means to adjust the number of nodes that can overhear a message transmission by a neighbouring node. However, too much of the overhearing by high power transmission consumes aggressively limited battery energy. We investigate the interplay between transmission power and network coding operations in Chapter 4. We show that our solution reduces the overall volume of data transfer, thus leading to significant energy savings and prolonged network lifetime. We present the mathematical analysis of our proposed algorithm. By simulation, we also study the trade-offs between overhearing and power consumption for the network coding scheme. In Chapter 5, we propose a methodology for the optimal placement of sensor nodes in linear network topologies (e.g., along the length of a bridge), that aims to minimise the link connectivity problems and maximise the lifetime of the network. Both simple packet relay and network coding are considered for the routing of the collected data packets towards two sink nodes positioned at both ends of the bridge. Our mathematical analysis, verified by simulation results, shows that the proposed methodology can lead to significant energy saving and prolong the lifetime of the underlying wireless sensor network. Chapter 6 is dedicated to the delay analysis. We analytically calculate the gains in terms of packet delay obtained by the use of network coding in linear multi-hop wireless sensor network topologies. Moreover, we calculate the exact packet delay (from the packet generation time to the time it is delivered to the sink nodes) as a function of the location of the source sensor node within the linear network. The derived packet delay distribution formulas have been verified by simulations and can provide a benchmark for the delay performance of linear sensor networks. In the Chapter 7, we propose an adaptive version of network coding based algorithm. In the case of packet loss, nodes do not necessary retransmit messages as they are able to internally decide how to cope with the situation. The goal of this algorithm is to reduce the power consumption, and decrease delays whenever it can. This algorithm achieves the delay similar to that of three-hop direct-connectivity version of the deterministic algorithm, and consumes power almost like one-hop direct-connectivity version of deterministic algorithm. In very poor channel conditions, this protocol outperforms the deterministic algorithm both in terms of delay and power consumption. In Chapter 8, we explain the direction of our future work. Particularly, we are interested in the application of combined TDMA/FDMA technique to our algorithm.Open Acces

    Energy efficiency of some non-cooperative, cooperative and hybrid communication schemes in multi-relay WSNs

    Get PDF
    In this paper we analyze the energy efficiency of single-hop, multi-hop, cooperative selective decode-and-forward, cooperative incremental decode-and-forward, and even the combination of cooperative and non-cooperative schemes, in wireless sensor networks composed of several nodes. We assume that, as the sensor nodes can experience either non line-of-sight or some line-of-sight conditions, the Nakagami-m fading distribution is used to model the wireless environment. The energy efficiency analysis is constrained by a target outage probability and an end-to-end throughput. Our results show that in most scenarios cooperative incremental schemes are more energy efficient than the other methods

    MODLEACH: A Variant of LEACH for WSNs

    Full text link
    Wireless sensor networks are appearing as an emerging need for mankind. Though, Such networks are still in research phase however, they have high potential to be applied in almost every field of life. Lots of research is done and a lot more is awaiting to be standardized. In this work, cluster based routing in wireless sensor networks is studied precisely. Further, we modify one of the most prominent wireless sensor network's routing protocol "LEACH" as modified LEACH (MODLEACH) by introducing \emph{efficient cluster head replacement scheme} and \emph{dual transmitting power levels}. Our modified LEACH, in comparison with LEACH out performs it using metrics of cluster head formation, through put and network life. Afterwards, hard and soft thresholds are implemented on modified LEACH (MODLEACH) that boast the performance even more. Finally a brief performance analysis of LEACH, Modified LEACH (MODLEACH), MODLEACH with hard threshold (MODLEACHHT) and MODLEACH with soft threshold (MODLEACHST) is undertaken considering metrics of throughput, network life and cluster head replacements.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Energy-delay bounds analysis in wireless multi-hop networks with unreliable radio links

    Get PDF
    Energy efficiency and transmission delay are very important parameters for wireless multi-hop networks. Previous works that study energy efficiency and delay are based on the assumption of reliable links. However, the unreliability of the channel is inevitable in wireless multi-hop networks. This paper investigates the trade-off between the energy consumption and the end-to-end delay of multi-hop communications in a wireless network using an unreliable link model. It provides a closed form expression of the lower bound on the energy-delay trade-off for different channel models (AWGN, Raleigh flat fading and Nakagami block-fading) in a linear network. These analytical results are also verified in 2-dimensional Poisson networks using simulations. The main contribution of this work is the use of a probabilistic link model to define the energy efficiency of the system and capture the energy-delay trade-offs. Hence, it provides a more realistic lower bound on both the energy efficiency and the energy-delay trade-off since it does not restrict the study to the set of perfect links as proposed in earlier works

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    corecore