400 research outputs found

    Development of Tubular Linear Permanent Magnet Synchronous Motor Used in Oil-well Field

    Get PDF
    The tubular linear permanent magnet synchronous motor (TLPMSM) is developed to constitute a new oil-well pump system named as linear motor-driven one replacing the normal beam balanced pump system mainly in order to eliminate the damageable steel pole. Its structure is determined based on the real drive demand and the corresponding analysis results are given. At last a small prototyped TLPMSM with stator outer diameter of 140mm, effective stator length of 864mm is designed and manufactured to verify the theoretical analysis and investigate the performance, and make preparation for the large practicable prototype in the future

    Development of Tubular Linear Permanent Magnet Synchronous Motor Used in Oil-well Field

    Full text link

    Analytical model to calculate magnetic flux density in permanent magnet synchronous machines with static eccentricity

    Get PDF
    In this article a general analytical model for the analysis of permanent magnet synchronous machines with static eccentricity is presented. The model is a continuation of [1] and it is based on Fourier time-space series formulated in 2-D coordinates. The results of the model are corroborated by simulations of finite element method over two different machines. The results of the model show a good agreement with the results obtained from simulations

    A Review of Transverse Flux Machines Topologies and Design

    Get PDF
    High torque and power density are unique merits of transverse flux machines (TFMs). TFMs are particularly suitable for use in direct-drive systems, that is, those power systems with no gearbox between the electric machine and the prime mover or load. Variable speed wind turbines and in-wheel traction seem to be great-potential applications for TFMs. Nevertheless, the cogging torque, efficiency, power factor and manufacturing of TFMs should still be improved. In this paper, a comprehensive review of TFMs topologies and design is made, dealing with TFM applications, topologies, operation, design and modeling

    Design and Manufacture of a Linear Actuator Based on Magnetic Screw Transmission

    Get PDF

    Optimization design of a new hybrid magnetic circuit motor

    Get PDF
    The combination of permanent magnets and electrically excited windings creates an air gap magnetic field. The development of a hybrid magnetic circuit motor with an adjustable magnetic field is of great significance. This article introduces a hybrid magnetic circuit motor design that combines salient pole electromagnetic and permanent magnets. A tubular magnetic barrier has been designed to reduce inter-pole leakage and enhance the usage rate of permanent magnets in the hybrid magnetic circuit motor. The optimum eccentricity of the rotor has been accurately designed, resulting in an improved sinusoidal distribution of the air gap magnetic density waveform. An analysis of the static composite magnetic field under various excitation currents has been conducted, showcasing the capability of the hybrid magnetic circuit motor to stably adjust the air gap flux density level and output torque. A prototype has undergone comprehensive trial production and testing, conclusively confirming the machine’s superior output performance

    Magnetic Field and Force Calculation in Linear Permanent-Magnet Synchronous Machines Accounting for Longitudinal End Effect

    Full text link
    © 1982-2012 IEEE. This paper presents an improved analytical method for predicting the magnetic field and forces in linear permanent-magnet synchronous machines (LPMSMs) accounting for both the primary end effect and secondary end effect. So far, the magnetic field calculation of LPMSM in most studies is conducted in Cartesian coordinate, whereas the end effect is neglected by applying periodic boundary. In this paper, to implement the analytical model, a polar presentation of the machine geometry is proposed and the subdomain method is applied to calculate the magnetic field. Then, according to the developed model, the tangential thrust and normal forces are calculated based on the Maxwell stress theory. Numerical results are subsequently obtained by finite-element method and employed to validate the analytical model. Finally, an LPMSM prototype is manufactured and experiments are conducted. The results show that the developed analytical model has high accuracy for predicting the magnetic field and forces

    An Interface Design for Axial Induction Motor

    Get PDF
    Asynchronous motors have been used extensively in the industry since the first discovery. Although the general working principles do not change, they can be made geometrically in the form of cylinders, spheres, cones and even discs. One of these geometries is known as axial flux machine topology which has a disc structure. Axial flux machines are remarkable in terms of their high efficiency, high power density and advantage in terms of compact structures. In this study, extended literature search of axial flux induction motor is given. In addition to the literature, axial induction motor design interface has been created by using MATLAB GUI software. This interface can communicate with ANSYS Maxwell. Thus, the dimensioning values of the machine calculated via the interface can be drawn automatically in Ansys Maxwell and it can perform numerical analysis. The obtained torque, current and efficiency data were evaluated

    Design and performance investigation of flux-concentrated tubular linear generator for an external combustion free piston engine

    Get PDF
    PhD ThesisThe increasing global desire for highly fuel efficient power systems and the need for environmentally friendly energy sources is driving much present research in electrical power. A linear power system, where a linear machine is driven directly by a free piston engine, offers scalability and a wide range applicability. Standalone power units, hybridised power systems and range extenders in electrified vehicles are all potential applications for this technology. This thesis explores the application of a Linear Joule Engine driving a Permanent Magnet Linear Machine for electrical power generation. Whereas most Joule cycle engines have a rotary compressor and expander, at smaller scale this configuration suffers from leakage around the blades. The linear engine uses a double acting free piston configuration running on the external combustion Joule-cycle, overcoming the low efficiency inherent in small scale gas turbines. The key element for electrical power generation, and the main focus of this thesis, is the development of a linear machine operating as a generator, the design of which is heavily constrained by the geometrical and the operational characteristics of the engine. Using specific constraints for an 5kW engine and by using two dimensional finite element analysis, a novel design methodology of tubular PM linear machine with modular armature winding and feasible arrangements of magnets on the translator member is outlined. The effect of core material, pole number and power conversion system on the machine design are investigated, highlighting the effect of the interconnected design variables on the resulting performance and material use, all satisfying design objectives. A Flux – Concentrated PM configuration is selected for further development. vi In order to accomplish an overall system performance investigation tool, at first the development of a general novel linear machine model is introduced and tested in a feedforward manner with accounts for all machine interacting electromagnetic forces. Then, a novel dynamic model incorporating both the linear machine model driven by the linear Joule engine model, coupled together in a closed loop form, is realized. The coupled model bridges mechanical and electrical parts of the engine-generator, and provides a solid dynamic performance prediction of the system focusing on identifying the effect of cogging force on system performance and the resultant electrical power loss and electrical efficiency. Compared with the reported cogging force reduction techniques, a novel structural technique and a selection criteria are presented with two dimensional axisymmetric finite element analysis verification showing the effectiveness of the proposed technique. Finally, a machine prototype of the selected design model is manufactured and tested on a bespoke test rig to validate the design model findings. Manufacturing recommendations and future achievable steps are reported for future development of the existing work.The Iraqi Ministry of Higher Education and Scientific Research – University of Baghda

    Rotating Electrical Machines: Types, Applications and Recent Advances

    Get PDF
    The Rotating Electrical Machines (REMs) are classified into Motors and Generators. They powered the industrial, domestic and commercial loads. Because of their importance. This paper discussed different types of REMs, their applications and recent advances. REMs are applied in Teaching, Domestic, Mechatronics, Motorcycle, Three-wheelers, Electric Vehicle, Healthcare, Flywheel Energy Storage and Wind Energy Conversion Systems. It periscopes the advances of REMs in design, Fault diagnostic, control and condition monitoring. Its significance is to shed light on some advances made in REM
    • …
    corecore