6,347 research outputs found

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Computational intelligence-enabled cybersecurity for the Internet of Things

    Get PDF
    The computational intelligence (CI) based technologies play key roles in campaigning cybersecurity challenges in complex systems such as the Internet of Things (IoT), cyber-physical-systems (CPS), etc. The current IoT is facing increasingly security issues, such as vulnerabilities of IoT systems, malware detection, data security concerns, personal and public physical safety risk, privacy issues, data storage management following the exponential growth of IoT devices. This work aims at investigating the applicability of computational intelligence techniques in cybersecurity for IoT, including CI-enabled cybersecurity and privacy solutions, cyber defense technologies, intrusion detection techniques, and data security in IoT. This paper also attempts to provide new research directions and trends for the increasingly IoT security issues using computational intelligence technologies

    Performance of Machine Learning and Big Data Analytics paradigms in Cybersecurity and Cloud Computing Platforms

    Get PDF
    The purpose of the research is to evaluate Machine Learning and Big Data Analytics paradigms for use in Cybersecurity. Cybersecurity refers to a combination of technologies, processes and operations that are framed to protect information systems, computers, devices, programs, data and networks from internal or external threats, harm, damage, attacks or unauthorized access. The main characteristic of Machine Learning (ML) is the automatic data analysis of large data sets and production of models for the general relationships found among data. ML algorithms, as part of Artificial Intelligence, can be clustered into supervised, unsupervised, semi-supervised, and reinforcement learning algorithms

    Next-Gen Security: Leveraging Advanced Technologies for Social Medical Public Healthcare Resilience

    Get PDF
    The healthcare industry is undergoing a significant change as it incorporates advanced technologies to strengthen its security infrastructure and improve its ability to withstand current challenges and  explores the important overlap between security, technology, and public health. The introductory section presents a thorough overview, highlighting the current status of public healthcare and emphasizing the crucial importance of security in protecting confidential medical data. This statement highlights the current difficulties encountered by social medical public healthcare systems and emphasizes the urgent need to utilize advanced technologies to strengthen their ability to adapt and recover. The systematic literature review explores a wide range of studies, providing insight into the various aspects of healthcare security. This text examines conventional security methods, exposes their constraints, and advances the discussion by examining cutting-edge technologies such as Artificial Intelligence (AI), Machine Learning, Blockchain, Internet of Things (IoT), and Biometric Security Solutions. Every technology is carefully examined to determine its ability to strengthen healthcare systems against cyber threats and breaches, guaranteeing the confidentiality and accuracy of patient data. The methodology section provides a clear explanation of the research design, the process of selecting participants, and the strategies used for analyzing the data. The research seeks to evaluate the present security situation and determine the best methods for incorporating advanced technologies into healthcare systems, using either qualitative or quantitative methods. The following sections elucidate the security challenges inherent in social medical public healthcare, encompassing cyber threats and privacy concerns. Drawing on case studies, the paper illustrates successful implementations of advanced technologies in healthcare security, distilling valuable lessons and best practices. The recommendations section goes beyond the technical domain, exploring the policy implications and strategies for technological implementation. The exploration of regulatory frameworks, legal considerations, and ethical dimensions is conducted to provide guidance for the smooth integration of advanced technologies into healthcare systems. Healthcare professionals are encouraged to participate in training and awareness programs to ensure a comprehensive and efficient implementation. To summarize, the paper combines the results, highlighting the importance of utilizing advanced technologies to strengthen the security framework of social medical public healthcare. The significance of healthcare resilience is emphasized, and potential areas for future research are delineated. This research is an important resource that offers valuable insights and guidance for stakeholders, policymakers, and technologists who are dealing with the intricate field of healthcare security in the age of advanced technologies. DOI: https://doi.org/10.52710/seejph.48

    Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity

    Full text link
    As cyber attacks continue to increase in frequency and sophistication, detecting malware has become a critical task for maintaining the security of computer systems. Traditional signature-based methods of malware detection have limitations in detecting complex and evolving threats. In recent years, machine learning (ML) has emerged as a promising solution to detect malware effectively. ML algorithms are capable of analyzing large datasets and identifying patterns that are difficult for humans to identify. This paper presents a comprehensive review of the state-of-the-art ML techniques used in malware detection, including supervised and unsupervised learning, deep learning, and reinforcement learning. We also examine the challenges and limitations of ML-based malware detection, such as the potential for adversarial attacks and the need for large amounts of labeled data. Furthermore, we discuss future directions in ML-based malware detection, including the integration of multiple ML algorithms and the use of explainable AI techniques to enhance the interpret ability of ML-based detection systems. Our research highlights the potential of ML-based techniques to improve the speed and accuracy of malware detection, and contribute to enhancing cybersecurit

    Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence

    Full text link
    The evolution of cybersecurity has spurred the emergence of autonomous threat hunting as a pivotal paradigm in the realm of AI-driven threat intelligence. This review navigates through the intricate landscape of autonomous threat hunting, exploring its significance and pivotal role in fortifying cyber defense mechanisms. Delving into the amalgamation of artificial intelligence (AI) and traditional threat intelligence methodologies, this paper delineates the necessity and evolution of autonomous approaches in combating contemporary cyber threats. Through a comprehensive exploration of foundational AI-driven threat intelligence, the review accentuates the transformative influence of AI and machine learning on conventional threat intelligence practices. It elucidates the conceptual framework underpinning autonomous threat hunting, spotlighting its components, and the seamless integration of AI algorithms within threat hunting processes.. Insightful discussions on challenges encompassing scalability, interpretability, and ethical considerations in AI-driven models enrich the discourse. Moreover, through illuminating case studies and evaluations, this paper showcases real-world implementations, underscoring success stories and lessons learned by organizations adopting AI-driven threat intelligence. In conclusion, this review consolidates key insights, emphasizing the substantial implications of autonomous threat hunting for the future of cybersecurity. It underscores the significance of continual research and collaborative efforts in harnessing the potential of AI-driven approaches to fortify cyber defenses against evolving threats
    corecore