126,102 research outputs found

    Non-termination Analysis of Logic Programs with Integer arithmetics

    Full text link
    In the past years, analyzers have been introduced to detect classes of non-terminating queries for definite logic programs. Although these non-termination analyzers have shown to be rather precise, their applicability on real-life Prolog programs is limited because most Prolog programs use non-logical features. As a first step towards the analysis of Prolog programs, this paper presents a non-termination condition for Logic Programs containing integer arithmetics. The analyzer is based on our non-termination analyzer presented at ICLP 2009. The analysis starts from a class of queries and infers a subclass of non-terminating ones. In a first phase, we ignore the outcome (success or failure) of the arithmetic operations, assuming success of all arithmetic calls. In a second phase, we characterize successful arithmetic calls as a constraint problem, the solution of which determines the non-terminating queries.Comment: 15 pages, 2 figures, journal TPLP (special issue on the international conference of logic programming

    Towards Parameterized Regular Type Inference Using Set Constraints

    Full text link
    We propose a method for inferring \emph{parameterized regular types} for logic programs as solutions for systems of constraints over sets of finite ground Herbrand terms (set constraint systems). Such parameterized regular types generalize \emph{parametric} regular types by extending the scope of the parameters in the type definitions so that such parameters can relate the types of different predicates. We propose a number of enhancements to the procedure for solving the constraint systems that improve the precision of the type descriptions inferred. The resulting algorithm, together with a procedure to establish a set constraint system from a logic program, yields a program analysis that infers tighter safe approximations of the success types of the program than previous comparable work, offering a new and useful efficiency vs. precision trade-off. This is supported by experimental results, which show the feasibility of our analysis

    Precise Goal-Independent Abstract Interpretation of Constraint Logic Programs

    Get PDF
    AbstractWe present a goal-independent abstract interpretation framework for pure constraint logic programs, and prove the sufficiency of a set of conditions for abstract domains to ensure that the analysis will never lose precision. Along the way, we formally define pure constraint logic programming systems, give a formal semantics that is independent of the actual constraint domain, and formally define the maximally precise abstraction of a pure constraint logic program

    Propositional Encoding of Constraints over Tree-Shaped Data

    Full text link
    We present a functional programming language for specifying constraints over tree-shaped data. The language allows for Haskell-like algebraic data types and pattern matching. Our constraint compiler CO4 translates these programs into satisfiability problems in propositional logic. We present an application from the area of automated analysis of (non-)termination of rewrite systems

    Acceptability with general orderings

    Full text link
    We present a new approach to termination analysis of logic programs. The essence of the approach is that we make use of general orderings (instead of level mappings), like it is done in transformational approaches to logic program termination analysis, but we apply these orderings directly to the logic program and not to the term-rewrite system obtained through some transformation. We define some variants of acceptability, based on general orderings, and show how they are equivalent to LD-termination. We develop a demand driven, constraint-based approach to verify these acceptability-variants. The advantage of the approach over standard acceptability is that in some cases, where complex level mappings are needed, fairly simple orderings may be easily generated. The advantage over transformational approaches is that it avoids the transformation step all together. {\bf Keywords:} termination analysis, acceptability, orderings.Comment: To appear in "Computational Logic: From Logic Programming into the Future

    Experiments with a Convex Polyhedral Analysis Tool for Logic Programs

    Full text link
    Convex polyhedral abstractions of logic programs have been found very useful in deriving numeric relationships between program arguments in order to prove program properties and in other areas such as termination and complexity analysis. We present a tool for constructing polyhedral analyses of (constraint) logic programs. The aim of the tool is to make available, with a convenient interface, state-of-the-art techniques for polyhedral analysis such as delayed widening, narrowing, "widening up-to", and enhanced automatic selection of widening points. The tool is accessible on the web, permits user programs to be uploaded and analysed, and is integrated with related program transformations such as size abstractions and query-answer transformation. We then report some experiments using the tool, showing how it can be conveniently used to analyse transition systems arising from models of embedded systems, and an emulator for a PIC microcontroller which is used for example in wearable computing systems. We discuss issues including scalability, tradeoffs of precision and computation time, and other program transformations that can enhance the results of analysis.Comment: Paper presented at the 17th Workshop on Logic-based Methods in Programming Environments (WLPE2007

    A practical approach to the global analysis of CLP programs

    Get PDF
    This paper presents and illustrates with an example a practical approach to the dataflow analysis of programs written in constraint logic programming (CLP) languages using abstract interpretation. It is first argued that, from the framework point of view, it sufnces to propose relatively simple extensions of traditional analysis methods which have already been proved useful and practical and for which efncient fixpoint algorithms have been developed. This is shown by proposing a simple but quite general extensión of Bruynooghe's traditional framework to the analysis of CLP programs. In this extensión constraints are viewed not as "suspended goals" but rather as new information in the store, following the traditional view of CLP. Using this approach, and as an example of its use, a complete, constraint system independent, abstract analysis is presented for approximating definiteness information. The analysis is in fact of quite general applicability. It has been implemented and used in the analysis of CLP(R) and Prolog-III applications. Results from the implementation of this analysis are also presented

    Specialization and optimization of constraint programs with dynamic scheduling

    Get PDF
    In this report we discuss some of the issues involved in the specialization and optimization of constraint logic programs with dynamic scheduling. Dynamic scheduling, as any other form of concurrency, increases the expressive power of constraint logic programs, but also introduces run-time overhead. The objective of the specialization and optimization is to reduce as much as possible such overhead automatically, while preserving the semantics of the original programs. This is done by program transformation based on global analysis. We present implementation techniques for this purpose and report on experimental results obtained from an implementation of the techniques in the context of the CIAO compiler
    corecore