View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Electronic Notes in Theoretical Computer Science 42 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume42.html 17 pages

Precise Goal-Independent Abstract
Interpretation of Constraint Logic Programs

Peter Schachte !

The University of Melbourne
Victoria 3010, Australia

Abstract

We present a goal-independent abstract interpretation framework for pure con-
straint logic programs, and prove the sufficiency of a set of conditions for abstract
domains to ensure that the analysis will never lose precision. Along the way, we
formally define pure constraint logic programming systems, give a formal seman-
tics that is independent of the actual constraint domain, and formally define the
maximally precise abstraction of a pure constraint logic program.

1 Introduction

Abstract interpretation [1] is the process of mimicking the formal semantics
of a program — interpreting the program — using an abstraction of the data
used by the real program. By basing our analysis on the formal semantics of
the program, we gain guarantees of the correctness of our results, and by using
an abstraction of the real data, we often gain a guarantee of termination.
The central idea of abstract interpretation is to approximate the actual
data of a program. An approximation of a program state, which we call an
abstract value, will usually approximate more than a single program state. For
example, we might approximate an integer by whether it is even or odd, or
whether it is smaller, greater or equal to zero. Often, however, we will not be
able to choose a single one of these abstractions. For example, we may know
an integer variable will be either 0 or 3; in this case it could be either 0 or
greater than zero. Therefore, it is not sufficient to have a set of approximate
values {<0,=0,>0}. A useful set of approximations might include {<0, <0, =
0,#0, >0,>0}. It must also include an abstraction to indicate no information,
or perfect uncertainty. This will usually be denoted T. It is also convenient
to include another abstraction to indicate that no value is possible, to handle

1 Email: schachte@cs.mu.o0z.au

(© 2001 Published by Elsevier Science B. V. Open accessunder CC BY-NC-ND license.
249

https://core.ac.uk/display/82656698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

SCHACHTE

-
<0 >0
L

Fig. 1. Hasse diagram for the signs abstract domain for a single variable

cases of unreachable, failing, (infinitely) looping, or error-causing code. This
value is usually denoted L.

Another way to think about this is that we are partitioning 7 into three
distinct sets, each corresponding to an element of {<0,=0,>0}. Then for any
set of integers we can find a subset of {<0,=0,>0} that covers all the integers
in the given set. Thus the set of abstract values we are interested in is the
powerset of the set of signs, P({<0,=0,>0}) = {@, {<0}, {=0}, {>0}, {<0,=
0}, {<0,>0},{=0,>0}, {<0,=0, >0}}. These abstract values will be easier to
work with if they are given more convenient names. In the same order, we
will use the names {1, <0,=0, >0, <0,#0,>0, T }.

Clearly we can approximate any set of values by T, but some approxima-
tions are better than others, and we would always like to choose the most
precise approximation. To continue with our example, if a program variable
could take on any of the values 1,3,5,7,..., we would prefer to approximate
it as >0, even though >0 or T would also be correct, because >0 and T de-
scribe a larger number of concrete values than >0. This gives us a means of
comparing approximations, and makes our set of abstract values a poset. Fur-
thermore, every subset of our set of approximations has a least upper bound
and a greatest lower bound, which means that we have a complete lattice, as
depicted in the Hasse diagram in Figure 1 . If we think of our set of abstract
values as a power set, then we can use subset ordering to guarantee us a com-
plete lattice. Such a set of possible approximations, together with its ordering
relation, is called an abstract domain.

Once we have found an abstract domain, we will want to be precise about
the meanings of its elements. For this, we want a concretization function

v : Abst — P(Conc).

We use the name Conc to refer to the concrete domain, in this example, the
set of integers; Abst refers to the abstract domain, in this case {L, <0,=0, >
0,<0,#0,>0, T}.

Note that v maps abstractions to sets of concrete values, because there will
always be more than a single concrete value corresponding to some abstract
values (otherwise the abstract domain is not very abstract). We will also need
a function to abstract the concrete values appearing in the program to be

250

SCHACHTE

a{c} i>Faa{c}:aFc

c — Fec
F

Fig. 2. Correctness condition for function approximation

analyzed. We define an abstraction function as
a : P(Conc) — Abst.

That is, given a set of concrete values, « yields the appropriate (most precise)
abstraction for that set. This should be the least upper bound of the abstrac-
tions we expect for each element of the set. Note that o must be monotonic
because adding to a set of concrete values to be abstracted should never result
in a more precise abstraction. If this were to happen, then the more precise
abstraction would certainly apply to the smaller set. Conversely, we require
that v must be monotonic because a less precise abstraction should never
describe a smaller set of concrete values. Further, we will require that

VC C Conc: C C v (o C), and
Va € Abst : o (y a) C a

The first of these inequalities guarantees that abstracting and then concretiz-
ing a set of values doesn’t “lose” any values, while the second assures us that
concretizing and then abstracting an abstract value won’t lose any precision.
This means that a and v form a Galois connection. Ideally, we would like to
have
Va € Abst : a (y a) = a

(meaning that « and 7 form a Galois insertion), but we shall not require it.

Next we need to determine how to abstract concrete operations on the data
we are interested in. That is, for each concrete operation F' : Conc — Conc, we
must find an abstract operation F,, : Abst — Abst that faithfully approximates
it. Fortunately, our a and v functions make clear how to do this: we must
require that

Ve € Conc: F ¢ € y(F, (afc})).

This condition is often expressed by the diagram in Figure 2 . This is only a
correctness constraint, however; for optimality we would also like there to be
no F! satisfying this constraint and also satisfying

Ja € Abst : F! a C F, a.

The balance of this paper is arranged as follows. Section 2 presents a
denotational semantics for constraint logic programs which is independent of
any particular constraint domain. It also specifies what properties we expect

251

SCHACHTE

a constraint logic programming system to exhibit. In Section 3 we define
an abstract interpretation framework, specify the properties we expect of an
abstract domain, and prove that our abstract interpretation framework will
always produce a maximally precise analysis of any program providing that the
abstract domain used exhibits the properties we require. Section 4 describes
related work, and Section 5 presents our conclusions.

2 The Semantics of Constraint Logic Programs

To be confident of the correctness of our analyses of the behavior of constraint
logic programs, we need to specify exactly how programs behave.

In this paper, we will concern ourselves with only the goal independent
analysis of pure constraint logic programs. This decision permits us to develop
a semantics, and an analysis, that is independent of implementation technol-
ogy. For a discussion of the issues of this paper related to goal-dependent
analysis, see Schachte [2]. Our semantics is also independent of the choice of
a constraint domain.

We assume we are given the following denumerable disjoint sets:

Var the set of all variables;
Fn the set of all constructor functions;
PCon the set of all primitive constraint constructors;

Pred the set of all atom constructors.

Since equality is an essential part of all logic programming, it must be part
of all constraint domains [3]. Therefore, PCon must include =, the special
equality constraint.

From these sets we define Term to be the union of Var and the set of all
terms that can be constructed with functors from Fn and arguments from
Term. Given t,t' € Term and v € Var, we denote by ¢ [t'/v] the unique result
of replacing all occurrences of v in ¢ by t’. We define vars : Term — Var to
yield the set of all variables appearing syntactically in a term.

Note that ¢ [t /v] has some important properties which we will need. Firstly,
this operation replaces all occurrences of v, so that if v ¢ vars(t'), then
v & vars(t[t'/v]). Also note that for any variable o/, if v/ ¢ vars(t) then
t = (t[v'/v][v/v']). Finally, if two substitutions are independent, they may
be applied in either order; that is, if v & t, v &€ t', and v # ¢/, then
t [t /o] [t'/v'] = " [t'/v'] [t/ v].

Prim is the set of all primitive constraints formed with constructors from
PCon and arguments from Term, and similarly Atom is the set of all atoms
formed with constructors from Pred and arguments from Term. Lit is the set
of literals AtomUPrim. Each element of Body = P¢(Lit), that is, the set of
finite sets of elements from Lit, representing finite conjunctions of literals. 2

2 Since we consider only goal-independent analysis of pure contstraint logic programs, and

252

SCHACHTE

Clause is the set of clauses H «— B where H € Atom and B € Body. Finally,
Program = P¢(Clause) is the set of all finite programs composed of clauses from
Clause. As a convenience, we extend = to Atom x Atom as an abbreviation for
the equivalence of the predicate constructors and the pairwise equivalence of
the arguments.

Next we define Con to be the set of all possibly existentially quantified
finite conjunctions of primitive constraints. We view an element of P(Con)
as describing a number of alternative constraints, that is, a disjunction of
constraints.

We extend our definition of vars to cover Prim, Atom, Lit, Con, and Clause
in the obvious syntactic way.

There are several properties which we require of any constraint logic pro-
gramming system we are to analyze.

Axiom 2.1 Fore,d,d” € Con, t,t' € Term, and v,v' € Var:
(i) Conjunction must be commutative, associative, and absorptive
(ie.,'cnd' =" Ne,"end=c, and'cn(d N =Tecnd)NT)3
(ii) true must be an identity, and false an annihilator for conjunction
(true A ¢ =c Atrue' = ¢, false A ¢ = 'c A false' = false)

) T : true' = true and Fv: (cA) ='cATv: " whenv & vars(c);
(iv) Fu:3 : =T Jv:c;

) Fv:c =3 I whenv' ¢ vars(c) Ad = c[v'/vl;

) The required equality constraint = must be an equivalence relation
(t=t=true, t=t"=%"=t, andt=t' N\t' =t" =t =1")
(vii) v :v=tAc = c|t/v] whenv & vars(t);
(viii) Fu: (v =tAcA) = Fv:v=tAc)A(Bv:v=1tAC) whenv & vars(t)
O

We extend the conjunction operation A on Con to A : P(Con) — P(Con) —
P(Con) as a cross-conjunction, that is, for Sp, Sy C Con,

Sl A SQ = {81 N So | S1 € Sl N\ S9 € SQ} \ {false}.

(Because false is not a meaningful constraint in that it can never be satisfied,
it is convenient for cross-conjunction to remove it.) We naturally extend this
to a unary function A : P¢(P(Con)) — P(Con) as repeated cross-conjunction.
We also extend existential quantification to P(Con) in a similar way: for S C

we shall require that conjunction be commutative, associative, and absorptive, sets of literals
are an adequate representation for clause bodies.

3 We distinguish elements of a program being analyzed from the elements of the analysis
framework being presented using Quine corners [4], written "7, Quine corners are not
quotes; the enclosed material may include variables, which are to be interpreted as such.

253

SCHACHTE

Con, v € Var, we define
Ju:S={(Fv:s)|seS}

we further extend 3 to handle quantification of possibly infinite sets of vari-
ables in the natural way.

It will be convenient to have a notation for performing many substitutions
at once, which we gain through the extension of our notation for substitution
to apply to sequences of variables and terms. We denote by t [t/v] the pairwise
substitution of terms from % for variables from v in ¢, where t is a sequence
of terms, v is a sequence of variables of the same length, no variable appears
more than once in v, and v and vars(t) are disjoint. We will abuse notation
by applying set operations to sequences, and understand these operations to
apply to the set of elements of the sequence. Our need for sequences is small
enough that it is not important that we be formal about them; we only note
that for any set s it is possible to arbitrarily choose a sequence s such that
s contains all and only the elements of s, without repetition. Note that our
observations about t [t'/v] apply to sequences as well, as long as the sequences
contain no repeated elements. In particular, ¢ [v'/v] [v/v'] = ¢ whenever v
and v’ are disjoint, and v’ and vars(t) are disjoint.

Giacobazzi et al. [5] identify a number of properties that a constraint sys-
tem must exhibit in order to be “sensible,” that is, in order to behave in a
manner we would expect of a constraint logic programming system. The fol-
lowing theorem proves that P(Con), together with the operations A, U, and
3, the elements {true} and &, and at least the primitive constraint =, meet
these requirements.

Theorem 2.2 For every V,V' C Var,v € Var,C,C" C Con, and t,t',t" €
Term, we have the following:

(i) A distributes over finite and infinite unions;

(ii) A is associative and has an identity {true};
(iii) U is associative and has an identity &;
(iv) U is commutative and absorptive;
(v) @ is an annihilator for A;
(vi) for any possibly infinite set S C P(Con), |J S exists and is unique;
(vii) (IV : @) =g,
(viii) AV (CATV . C) =TV (AV:C)ANC) =TV :C)AN 3TV : C);
(ix) AV : V' . C=3(VUV'): C;
(x) 3V distributes over finite and infinite unions;
(xi) {t =1} = {true};
(xii) {t=1"}y={" =1};
(xiii) Jv: (v =AY =t") = (¥ =t") [t/v] whenv & t;

254

SCHACHTE

(xiv) Jv: (v =tA(CAC)) =Fw:(v=tAC)A(Tv:(v=tAC")) whenv ¢
vars(t).
O

Giacobazzi et al. also require that
(xv) (Cudv.C)=3V:C,

but we do not wish to require this. To do so would prevent us from collecting
extralogical information about predicates that may become important in the
analysis of programs. For example, given the Prolog program

p(1).
p(X).

we would like our semantics to conclude that there are two solutions for
p/1, one indicating that 1 is a solution and the other that any term is a
solution. Including (xv) would only allow the more general solution, thwarting
analyses which would need to know that 1 is also a solution. To extend this
example, an analysis for definite freeness would need to know that even if
p/1 is invoked with its argument unbound, it can succeed with its argument
bound. A determinacy analysis would need to know that p/1 may have two
solutions, and so would not be determinate when its argument is unbound.
We do not discuss such analyses in this paper but we do want our framework
to allow them.

We require one further function:

rename : Clause — P(Var) — Clause

produces a variant of the input clause that has no variables in common with
the given set of variables. This enforces the rule that the scope of a variable
is limited to the clause it occurs in.

We specify our semantic domain Den as
Den = Atom — P(Con).

It is ordered pointwise. The least denotation (L) maps all atoms to the empty
set.

Definition 2.3 (Program semantics) The denotation of a program is given

by the function P3™ which we define in terms of the auxiliary functions C*™
and L5™:

P®*™: Program — Den
C*™ : Clause — Den — Den
L*™: Lit — Den — P(Con)

These functions are defined as follows:

255

SCHACHTE

P P =Ifp <|_| cen C)
Ccep

cem Cd A=3V ((LSem H=Adn \L"L d)
LeB
where "H « B' = rename C' vars(A)
and V = vars(H) Uvars(B)

%} when L € Prim A L = false
L*" L d= < {L} when L € PrimA L # false

d L when L € Atom
O

Intuitively, we define the semantics of a program as the least fixed point
of the combination of the semantics of the clauses of the program. Thus the
semantics is defined by specifying how, given the set of constraints that can
result from n derivation steps, we can compute the constraints resulting from
n + 1 derivation steps. The semantics of an individual clause H « B is the
function which maps an atom A to the conjunction of the equality constraint
H = A and the literals in the body of the clause, and projects away all the
variables in the clause (leaving only the variables in the invocation). The
semantics of a literal L depends upon whether it is an atom or a primitive
constraint. The semantics of an atom is determined by the given denotation
function (i.e., the result of the previous derivation step), while the semantics
of a primitive constraint is just that constraint as a singleton set (we filter out
false constraints because they cannot be satisfied).

3 Abstract Interpretation of Constraint Logic Programs

In abstract interpretation, we wish to find an abstract version of the semantics
of a program. In fact, we really wish to abstract the semantics twice: we
abstract the meaning of the program to be given in terms of some abstract
domain rather than the concrete domain, giving us an abstract interpreter.
Then we abstract the choice of abstract domain from this, yielding an abstract
interpretation framework. The focus of this paper is the presentation of an
abstract interpretation framework and the establishment of a set of sufficient
conditions for this framework to always produce maximally precise analyses,
according to the following definition of “maximally precise.”

Definition 3.1 (Precise approximation) Given an abstract domain ACon
and an abstraction function « : P(Con) — ACon, we say that a € ACon
precisely approximates C' C Con, and write a appr, C', as follows:

aappr, C — aC = a.

256

SCHACHTE

For any set S, we extend this relation to functions F : S — ACon and G :
S — P(Con) in the natural way:

F appr, G <~ Vs € S: (Fs)appr, (Gs).

We further extend this relation to functions F' : ACon — ACon and G :
P(Con) — P(Con) as follows:

F appr, G < VYa € ACon,C C Con : (a appr, C — (F a) appr, (GC)).

Now we specify what we require of an abstraction.
Definition 3.2 (Abstraction) An abstraction comprises the following:

e an abstract domain ACon, which is a complete lattice ordered by T, and
which has T, L, L, and T, as meet, join, bottom, and top, respectively. This
lattice 1s ordered by information content; we follow the usual convention
in the abstract interpretation literature and put more information (greater
certainty) lower in the lattice.*

e an abstract conjunction function /A: ACon — ACon — ACon.

* a projection function project : P(Var) — ACon — ACon. This function is
an abstraction of existential quantification

e for each primitive constraint ¢ € Prim, an abstract constraint, which we
denote c,. Recall that we always require = to be a primitive constraint, so
there must always be an =,,. O

We find it convenient to follow Nielson [6] in characterizing our abstract
domain in terms of a representation function. We will define the needed ab-
straction and concretization functions in terms of the representation function
below.

Definition 3.3 We define a representation function 3 : Con — ACon which
gives a maximally precise® abstraction for each concrete conjunction of con-
straints as follows:

Co, when ¢ € Prim
B c= 4 project v (B ¢) when ¢=3v:
(B) n(Bc") when c=dc N

a

4 The reason for this convention is that the concrete domain uses a standard subset ordering,
which puts larger sets above smaller ones, and larger sets of solutions are usually abstracted
to less certainty about the properties exhibited by all solutions.

5 Ideally, the abstract domain would have a unique most precise abstraction for each con-
crete conjunction of constraints, but we do not require this.

257

SCHACHTE

Now we may specify sufficient conditions for an abstract domain to guar-
antee that our analysis will always produce a precise analysis.

Definition 3.4 (Precise abstraction) A precise abstraction is an abstrac-
tion which satisfies the following constraints:

e The abstract conjunction function must precisely approximate conjunction.
That 1is,
Ve, € Con: B (end)=(Bc)n(B)
must hold. We further require that A distributes over finite and infinite
joins, that is, for all (possibly infinite) A, A" C ACon,

(L) a(U4a) =1U{and |ac ANnd € A'}.

These requirements of A also in fact create requirements on the abstract
primaitive constraints.

e The abstract projection function must precisely approximate existential quan-
tification (project appr, 3). That is,

VV C Var,c € Con : project V (B ¢) =4 (3V : ().

In particular, this means that all of the following must hold:

VC, € ACon,V C Var : vars(C,) NV = & — project V C, = Cy;
VYV C Var : project V1 = 1;
VC, € ACon,V C Var : vars(project V C,)NV =&
O

Now we may define our abstraction and concretization functions in terms
of our representation function.

Definition 3.5 From the representation function 3, we define the needed
concretization function v : ACon — P(Con) and abstraction function a :
P(Con) — ACon as follows:

vya={ceCon|pfcCa}

aC=|]p¢c

ceC

This characterization of o and ~ give us the following result:

Theorem 3.6 o and v form a Galois connection, with o the lower adjoint
and vy the upper. O

Now we define an abstract semantics to be a function

ADen = Atom — ACon.

258

SCHACHTE

Finally we may define the abstract semantics of a program. Naturally, the
definition is written subject to the choice of a precise abstraction, as specified
in Definition 3.4 . All of the constructs of the abstraction are notionally
parameters to the abstract semantic functions below, but we do not specify
them as such to keep the definition manageable.

Definition 3.7 (Abstract semantic function) We specify the abstract se-
mantics of a program as the result of the (goal independent) abstract semantic
function P$™, which we define in terms of the auxiliary functions C™ and
Lzem :

P:™ : Program — ADen

C:™ : Clause — ADen — ADen

L3 ™:Lit — ADen — ACon
These functions are defined as follows:

Ps™ P =Ifp (I_l Ceem C)

CceP

C*™ ' a A=project V ((H:aA) Ao ALY L a)
LeB
where 'H « B' = rename C vars(A)
and V = vars(H) Uvars(B)

, L, when L € Prim
a L when L € Atom
O

Given this, we wish to show that P5™ appr, P*™, but first we must prove
a theorem and a lemma.

Theorem 3.8 For any sets C,C" C Con,
a(CAC)=(aC)h(aC)

O

Lemma 3.9 The appr, relation on P(Con) x ACon, ordered componentwise,
1s admassible for fixed point induction. O

Now we are equipped to prove the main result of this section: that the
abstract semantics given in Definition 3.7 , when applied to any abstraction
satisfying Definition 3.4 , will always yield the most precise abstraction of any
given program.

Theorem 3.10 L™ appr, L*™, C*™ appr, C*™, and P5™ appr, P%™.

Proof. First we prove L3™ appr, L**™. Choose an arbitrary L € Lit and d €
Den, and let a = aod. If L € Prim, then we must show that o {L} appr, {L},

259

SCHACHTE

which obviously holds. If L € Atom, then we must show that a L appr, d L,
but since a = « o d, this is obvious, too.

Now we show that since L™ appr, L**™, we also have C5™ appr, C*™.
Choose an arbitrary C' € Clause, d € Den, and A € Atom, and let 'H «— B' =
rename C' vars(A) and V' = vars(H)Uvars(B). We must show that

projeCtV ((H_aA) A A\Lffm L a/) appr, Jv (H = AA /\ Lsem [, d)

LeB LeB

Since we require that project appr, 3 and =, appr, = and A appr, A, and
since we have shown that L™ appr, L*™, together with the fact that bodies
are finite, Theorem 3.8 tells us that this must hold.

Finally we show that P5™ appr, P**™. Choose an arbitrary program P and
atom A; we must show that

P>™ P A appr, P*" P A.

This will hold when

Ifp <|_| Csem C) A appr, Ifp (|_| Ceem C) A.

CeP CeP

Since by Lemma 3.9 appr, is admissible for fixed point induction, and since
C™ appr, C*™, this must hold. O

4 Related Work

The earliest formal semantics for logic programs was the M semantics of van
Emden and Kowalski [7]. This semantics expresses the denotation as the set
of ground atoms entailed by the program. The S semantics of Falaschi et
al. [8] is a non-ground variation on the M semantics and so, unlike M se-
mantics, is suitable where groundness of solutions is of interest. Marriott and
Sendergaard [9] propose using a set of existentially-quantified conjunctions of
equations, which is nicely generalized by Garcia de la Banda et al. [10] to
a set of existentially-quantified conjunctions of primitive constraints, without
further restricting what may serve as a primitive constraint, and without spec-
ifying how primitive constraints are to be interpreted. This is the approach
we have adopted.

Probably the earliest work on analysis of logic programs was done by War-
ren [11] in the context of the first Prolog compiler; however, the analyses intro-
duced there were strictly local to a single clause. The first global static analysis
system, introduced by Mellish [12], was designed to infer mode declarations
for Prolog predicates, as well as finding sharing among program variables. At
about the same time, Sgndergaard [13] applied abstract interpretation to find
unifications in a program which could safely be performed without an occur-

260

SCHACHTE

check. This analysis captured groundness, sharing, and linearity information
about program variables.

The first to suggest an abstract interpretation framework for logic pro-
gramming — the first to abstract the analysis domain from the analysis mech-
anism — were Jones and Sgndergaard [14], extended and refined by Marriott,
Sendergaard, and Jones [9].

Bruynooghe [15] proposes a rather different approach, based on an opera-
tional semantics. Bruynooghe conceives of a concrete computation as building
an AND-OR tree. To avoid constructing infinite AND-OR trees, finite cyclic
graphs, closely related to rational trees, are used to approximate infinite AND-
OR trees. Nilsson [16] replaces the use of AND-OR trees with context vectors,
which associate a set of possible substitutions with each point in the program.
This neatly avoids any difficulties with infinite AND-OR trees.

Le Charlier and Van Hentenryck [17] present another abstract interpreta-
tion framework for logic programs, which they call GAIA. This is a top-down
goal-dependent analyzer which uses tabling to avoid recomputation. Garcia
de la Banda and Hermenegildo [18] present a similar framework, called PLAI,
which is more general in that it is designed to handle constraints other than
just equality on Herbrand terms.

Gallagher et al. [19] present a goal-independent analysis framework based
on a declarative semantics. This technique is based upon a pre-interpretation
of the program, that is a mapping from the function symbols of the program
to a (possibly different) domain. The domain to which they map the function
symbols of the program fills the role of the abstract domain, and the pre-
interpretation mapping serves as a representation function.

5 Conclusions

We have formally defined the concept of a pure constraint logic programming
system and given a denotation semantics which is independent of the choice
of constraint domain. Based closely on this semantics, we have presented an
abstract interpretation framework. Most significantly, we have shown that
when the abstract domain’s abstract conjunction and projection functions
precisely approximate conjunction and existential quantification in the con-
crete domain, the result provided by this abstract interpretation framework
will be maximally precise. That is, no more precise abstraction will faithfully
approximate the actual behavior of the program.

For more detail on this work, and for a discussion of goal-dependent anal-
ysis using a similar framework, see Schachte [2].

References

[1] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for
static analysis of programs by construction of approximation of fixpoints, in:

261

SCHACHTE

Conference Record of the 4th ACM Symposium on Principles of Programming
Languages, Los Angeles, CA, 1977, pp. 238-252.

[2] P. Schachte, Precise and efficient static analysis of logic programs, Ph.D. thesis,
Dept. of Computer Science, The University of Melbourne, Australia (1999).

[3] J. Jaffar, J.-L. Lassez, Constraint logic programming, in: Conference Record
of the Fourteenth Annual ACM Symposium on Principles of Programming
Languages, ACM Press, 1987, pp. 111-119.

[4] W. v. O. Quine, Mathematical Logic, 2nd Edition, Harvard University Press,
Cambridge, 1974.

[5] R. Giacobazzi, S. Debray, G. Levi, Generalized semantics and abstract
interpretation for constraint logic programs, Journal of Logic Programming
25 (3) (1995) 191-247.

[6] F. Nielson, Two-level semantics and abstract interpretation, Theoretical
Computer Science 69 (2) (1989) 117-242.

[7] M. van Emden, R. Kowalski, The semantics of predicate logic as a programming
language, Journal of the ACM 23 (4) (1976) 733-742.

[8] M. Falaschi, G. Levi, M. Martelli, C. Palamidessi, A new declarative semantics
for logic langauges, in: R. A. Kowalski, K. A. Bowen (Eds.), Proceedings of the
Fifth International Conference and Symposium on Logic Programming, ALP,
IEEE, The MIT Press, Seattle, 1988, pp. 993-1005.

[9] K. Marriott, H. Sgndergaard, N. Jones, Denotational abstract interpretation of
logic programs, ACM Transactions on Programming Languages and Systems
16 (3) (1994) 607—648.

[10] M. Garcia de la Banda, K. Marriott, P. Stuckey, H. Sgndergaard, Differential
methods in logic program analysis, Journal of Logic Programming 35 (1) (1998)
1-37.

[11] D. H. D. Warren, Implementing Prolog — compiling predicate logic programs,
D.A.L Research Report 39, 40, University of Edinburgh (1977).

[12] C. Mellish, Some global optimizations for a Prolog compiler, Journal of Logic
Programming 2 (1) (1985) 43-66.

[13] H. Sgndergaard, An application of abstract interpretation of logic programs:
Occur check reduction, in: B. Robinet, R. Wilhelm (Eds.), Proceedings of ESOP
86, Vol. 213 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1986, pp. 327-338.

[14] N. Jones, H. Sgndergaard, A semantics-based framework for the abstract
interpretation of PROLOG, in: S. Abramsky, C. Hankin (Eds.), Abstract
Interpretation of Declarative Languages, Computers and Their Applications,
Ellis Horwood, 1987, Ch. 6, pp. 123-142.

262

SCHACHTE

[15] M. Bruynooghe, A practical framework for the abstract interpretation of logic
programs, Journal of Logic Programming 10 (1-4) (1991) 91-124.

[16] U. Nilsson, Towards a framework for the abstract interpretation of logic
programs, in: P. D. et al. (Ed.), Programming Language Implementation and
Logic Programming, no. 348 in Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 1988, pp. 68-82.

[17] B. Le Charlier, P. Van Hentenryck, Experimental evaluation of a generic
abstract interpretation algorithm for PROLOG, ACM Transactions on
Programming Languages and Systems 16 (1) (1994) 35-101. URL http://www.
acm.org/pubs/toc/Abstracts/0164-0925/174627 .html

[18] M. Garcia de la Banda, M. Hermenegildo, A practical approach to the global
analysis of CLP programs, in: D. Miller (Ed.), Logic Programming: Proceedings
of the 1993 International Symposium, MIT Press, Vancouver, Canada, 1993, pp.
437-455.

[19] J. Gallagher, D. Boulanger, H. Saglam, Practical model-based static analysis
for definite logic programs, in: Logic Programming: Proceedings of the 1995
International Symposium, The MIT Press, Portland, Oregon, USA, 1995, pp.
351-368.

A Proofs of Theorems
Proof of Theorem 2.2 :

Proof.
(i) This follows immediately from our definition of A : P(Con) — P(Con) —
P(Con).
Required by Axiom 2.1 (i) and (ii).
This is a basic property of set union.
This is a basic property of set union.

)
)
)
(v) This follows from our definition of A.
) This is basic property of set union.
)

This follows immediately from our definition of 3 : P(Var) — P(Con) —
P(Con).

(viii) Choose a sequence of variables V' containing all and only the variables of
V', without repetition, and choose a sequence of variables V' such that
V' is disjoint with V' and the variable of C' and C’, and V' contains no
repeats. By Axiom 2.1 (v), we know that 3V’ : C"[V'/V] =3V : (',

263

SCHACHTE

and further, we know that V Nvars(C’' [V /V]) = @. Therefore,

WV (CAFV:CH) =3V (CAIV' . C'[V'/V])
=@3V:O)AN@V' :C'[V'/V])

=@V:CO)AN@V:C'[V/V]V/V')

=@V:C)A 3@V)

=@V :C[V//V])AEV : ()

vV (FV':CIV'/V])AC")

=3V (3V:C[V'/V]IV/V'])AC

AV (FV:C)AC)

(ix) This follows from our definition of 3.

(x) This follows from our definition of 3.

i).

(v
(xiii) This follows from Axiom 2.1 (vii).
(viii). O

)
)
(xi) This follows from Axiom 2.1 (vi).
(xii) This follows from Axiom 2.1
)
)

(xiv) This follows from Axiom 2.1

Notice that we have not used Axiom 2.1 (i) in this proof. It is in fact not
necessary that A be commutative or absorptive; we require them because they
are properties we naturally expect of a logic programming system.

Proof of Theorem 3.6 :

Proof. We must show that

(i) YC C Con: C C v (a C); and
(i) VA e ACon: a (v A) C A.
We prove these points in turn.

(i) Expanding the definitions of o and 7, we must show:

VC CCon:CC{ceCon|pBcC | |B¢}.

ceC
Choose an arbitrary C' C Con. We must show that

VeeC:BcC || p¢.

ceC

But this is an inherent property of least upper bounds.

(ii) Expanding the definitions of o and v, we must show:

VA € ACon : (u{ﬁc]ceConAﬁch}) CA

Choose an arbitrary A € ACon and consider the set on the left side of

264

SCHACHTE
the inequality. This is a set all of whose elements are C A. Clearly the
least upper bound of this set must also be C A. O
Proof of Theorem 3.8 :
Proof.

a(CANC)Y=a{cANd |ceCnd e} (defn. of cross conjunction)
=B (ecnd)|ceCAnd e} (definition of «)

=L H{Be)AaB)|ceCAd e} (Ais precise)

= (|_| 5} c) A <|_| ded'p c/) (A distributes over joins)

ceC

=(aC0)A(aC) (definition of «)

Proof of Lemma 3.9 :

Proof. Take C' to be an arbitrary chain in P(Con) x ACon such that V (a, s) €
C : aappr,s, and take (ag, so) = || C. We must show that agappr,so. Naturally,
ao = | {a | (s,a) € C} and sy = |_|{s | (s,a) € C}, so we need only show
that a sy = ag. This follows from the fact that o is a lower adjoint, shown in
Theorem 3.6 , and is therefore continuous. O

265

