
facultad de informatica

universidad politecnica de madrid

Specialization and Optimization of
Constraint Programs with Dynamic

Scheduling

German Puebla
Manuel Hermenegildo

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148663409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Specialization and Optimization of Constraint
Programs with Dynamic Scheduling

Authors

German Puebla
Universidad Politecnica de Madrid (UPM), Facultad de Informatica, 28660-Boadilla del Monte,
Madrid - Spain, germanQfi.upm.es

M. Hermenegildo
Universidad Politecnica de Madrid (UPM), Facultad de Informatica, 28660-Boadilla del Monte,
Madrid - Spain, hermeQfi.upm.es

Keywords

Abstract Interpretation, Logic Programming, Constraint Logic Programming, Compile-time
Analysis, Multiple Program Specialization, Optimization, Program Specialization.

http://germanQfi.upm.es
http://hermeQfi.upm.es

Abstract

In this report we discuss some of the issues involved in the specialization and optimization of
constraint logic programs with dynamic scheduling. Dynamic scheduling, as any other form of
concurrency, increases the expressive power of constraint logic programs, but also introduces
run-time overhead. The objective of the specialization and optimization is to reduce as much as
possible such overhead automatically, while preserving the semantics of the original programs.
This is done by program transformation based on global analysis. We present implementation
techniques for this purpose and report on experimental results obtained from an implementation
of the techniques in the context of the CIAO compiler.

1 Introduction

Most recent logic programming languages provide more flexible scheduling than Prolog tra
ditional left-to-right computation rule. Some calls are dynamically "delayed" until their argu
ments are sufficiently instantiated to allow the call to run (efficiently). Such languages include
constraint logic programming languages in which constraints which are "too hard" are delayed.
Also, most implementations of concurrent constraint logic programming languages essentially
follow a left to right fixed scheduling rule where certain goals suspend as determined by their
ask guards. This scheduling, often referred to as dynamic scheduling increases the expressive
power of constraint logic programs, but also introduces significant run-time overhead. The main
purpose of this report is to reduce as much as possible this additional overhead introduced by
dynamic scheduling by means of global analysis and program transformation while preserv
ing the semantics of the original programs. The run-time overhead introduced by dynamic
scheduling can be divided in two types:

Delaying cost: Execution of goals affected by delay declarations involves checking certain
conditions to decide whether the goal should be delayed or not. Then, if the goal must be
delayed some additional run-time overhead will be introduced to delay the goal, i.e. put
the goal in the list of delayed goals, etc.

Waking cost: Goals that are delayed must be checked upon variable binding to see if they
can be woken. In that case they must be executed before the following goal.

As well as computation time overhead, dynamic scheduling also introduces some memory
consumption overhead, as delayed goals must be stored until they are woken and because
dynamic scheduling precludes some low-level optimizations such as register allocation.

The potential benefits of the optimization of delay declarations were already illustrated in
[9]. In that paper, a new global analysis framework for programs with dynamic scheduling was
introduced and the information obtained was then used to optimize programs by hand. The
optimized programs were used to obtain some preliminary empirical evaluations that showed
very promising results. In this report we perform a detailed description of several optimization
methods for reducing the run-time overhead introduced by dynamic scheduling while preserving
the semantics of the original program. This study should be useful as a basis for automatic opti
mization of many kind of programs for execution models which implement dynamic scheduling.

1.1 Syntax and Semantics of the Delay Declarations

The delay declarations we will consider in this report are the following:

when(Condition, Goal)

Goal is blocked until Condition is true . Condition is a Prolog goal given by the following
restricted syntax:

Condition ::=
nonvar(X) | ground(X) | ? = (X,Y) | Condition, Condition | Condition; Condition

where ?=(X,Y) is essentially a restricted type of ask unification. It succeeds if the terms X and
Y are identical or they cannot unify.

freeze(?X,Goal).

Goal is blocked until nonvar(X) holds.

: - block Spec, ..., Spec.

where each Spec is a mode specification of the goals for the predicate, and specifies a condition
for blocking goals of the predicate referred to by it. When a goal for the predicate is to be
executed, the mode specifications are interpreted as conditions for blocking the goal, and if at
least one condition evaluates to true, the goal is blocked. A block condition evaluates to true
iff all arguments specified as "-" are uninstantiated, in which case the goal is blocked until at
least one of those variables is instantiated.

We assume that other delay primitives such as ask agents are transformed into these primi
tives as shown in [4].

1.2 Equivalences Among Delay Declarations

When/2 is the most expressive delay declaration of the three of them. In fact, both f reeze/2
and block/1 can be expressed in terms of when/2. Freeze/2 meta-calls can be defined as:

freeze(X,Goal):-
when(nonvar(X),Goal) .

As a result, in the remainder of the report we will not consider optimization of f reeze/2 at
all, as they are a special case of when/2.

Block declarations can also be expressed in terms of when/2 meta-calls. An important
difference between them is that block declarations express conditions under which the literal
is delayed and when meta-call express conditions under which the literal is not delayed. In
general, block declarations could be replaced by as many when/2 meta-calls as literals appear
in the program for that predicate.

: - block p (- , ? , -) , p (- , - , ?) .

. . . , p (X , Y , Z) , . . .

can be transformed into

. . . , when(((nonvar(X);nonvar(Z)),(nonvar(X);nonvar(Y))),p(X,Y,Z)), . . .

In principle, and as we have seen in this section, all kinds of delay declarations can be
transformed into when meta-calls. As a result, optimization of delay declarations can be reduced
to optimization of when meta-calls. This is what we study in the following section.

2 Optimization of Delay Declarations

2.1 Optimization of when meta-calls

We will consider several cases in the optimization of when meta-calls. They correspond to
different situations in which the information available allows reducing part of the condition in
the when meta-call (referred to as Condition) or Condition as a whole to either the value true
or the value false .

2.1.1 A check is true

By a check we mean one of the following simple tests: ground(X), nonvar (X), and ?=(X, Y).
These three tests are downwards closed. This means that if they hold in a certain program point,
they will continue to hold in forwards execution. Literals in when meta-calls are executed
where they appear in the program code or later in forwards execution. When meta-calls are
backtrackable in the sense that if they were delayed they are eliminated from the list of delayed
literals when backtracking reaches the when meta-call. If they were not delayed backtracking
proceeds for them as for any other literal. As backtracking cannot bind any variable, it is not
possible that any when is woken during backwards execution. As checks are downwards closed
and when meta-calls are only woken in forwards execution we can simplify Condition following
the usual rules we now enumerate:

(true, Cond) = Cond

(Cond, true) = Cond

(true; Cond) = true

(Cond; true) = true

2.1.2 A check is false

Unlike the tests ground(X), nonvar(X), and ?=(X,Y) their negations are not downwards
closed. This means that we cannot directly replace checks by false and simplify the resulting
expression. For example, the fact that ground (X) fails at a certain program point does not
guarantee that it will continue to hold in forwards execution. For example,

p:- when(ground(X),write(X)), q(X).

q(D.
q(2).

Thus, checks that are false must be maintained in when meta-calls as they may become true
afterwards and wake the literal.

2.1.3 Condition is true

If we are able to simplify a whole Condition to the value true , we can be sure that the literal
will not delay and the when meta-call can be replaced by the plain literal. For example,

p : - q(X), when(ground(X),write(X)).

q (l) .
q (2) .

Can be transformed into

p : - q(X), wr i te (X) .
q (D .
q (2) .

2.1.4 Condition is false

The optimization of a when meta-call in which Condition is false is not as simple as when it is
true . That Condition is false implies that this literal cannot be executed at the point it appears
in the program. Instead it will be delayed. As said before, Condition cannot be simplified.
One possible optimization is to reorder literals in the clause moving the when meta-call towards
the right as long as we are sure that the literal cannot be executed. The potential benefits are
two-fold. On the one hand we reduce delaying cost by not having to check Condition (we are
sure it will fail), on the other hand we reduce waking cost, if the literal is delayed later we will
save checking if it can be woken (these checks will also fail if the reordering is correct). The
main problem in reordering goals is that to be able to safely move a when meta-call one or more
positions to the right, it is not enough to prove that the meta-call will delay. We also have to
prove the following two conditions, where Lits represents a sequence of one or more literals just
to the right of the when meta-call being moved:

1. Condition is false after the execution of Lits.

2. The execution of Lits cannot leave additional delayed literals on the same variables (mod
ulo variable aliasing) as Condition .

The second condition is needed to guarantee that the reordering will not modify the order
in which goals delayed upon the same variable are woken. Unfortunately, this second condition
is not easy to prove. We can instead use stronger sufficient conditions which are simpler to
prove. Another possibility would be to ignore this second condition if we believe that the order
in which goals delayed on the same variable are woken is not important in our application.

We now propose an algorithm to reorder when meta-calls in a clause that ensures that the
two previous conditions hold. First we group as many contiguous literals as possible that will
surely delay, i.e., they are when meta-calls (or other delay declarations) whose condition is false.
Then we also group contiguous literals that will surely not wake any of the delayed literals and
will not leave additional delayed goals. Finally, we reverse their order in the clause.

1. Let Delayed be a when meta-call which is guaranteed to suspend. Let delayed-group be
{Delayed} and advanced-group be {} . Let Lit be the next literal in the clause.

2. If there are more literals in the clause let Lit be the following one. If Lit surely delays,
we add this literal to the delayed group. Repeat step 2.

3. If there are more literals in the clause let Lit be the following one. If Lit does not delay
and cannot leave additional delayed literals then add Lit to advanced-group. If all the
conditions for the meta-calls in delayed-group are sure to fail after executing Lit then
Repeat step 3. Else goto step 4.

4. The new clause is obtained by reversing delayed-group and advanced-group.

2.2 Optimization of Block declarations by Specialization

As we have seen in Section 1.2, one possibility to optimize block declarations is to transform
them into when meta-calls and then apply the optimizations described in Section 2.1. However,
it is usually the case that block declarations are implemented in a much more efficient way
than when meta-calls. Even if we are able to optimize the when meta-calls, the final program
after translating blocks into whens and optimizing it may be slower than the original one.
One possibility would be to transform block declarations into whens only if Condition can be
simplified to true in all the literals that call the predicate affected by the block declaration.
This means that the when meta-calls are not needed and is equivalent to eliminating the block
declaration. In many practical situations block conditions could be simplified for some of
the literals that call that predicate but not all. Note that block declarations affect all the
literals that call the corresponding predicate. Thus, in principle, block declarations can only
be simplified if the simplification is allowed in all the literals that call such predicate. This
optimization scheme is too restrictive in that it precludes any kind of optimization for particular
literals unless it is possible for all calls to the predicate. One way to overcome this problem
is by means of multiple specialization of programs [13]. Multiple specialization involves the
generation of several versions of a procedure for different uses. This technique has successfully
been implemented to optimize logic programs [12], but, to our knowledge, has never been
applied to optimize constraint logic programs with dynamic scheduling.

The main idea here is that whenever it is possible to simplify the block declaration for a
predicate at a given literal (not necessarily all of them), we will create a special version for
the predicate with a new name. In order not to increase the size of the multiply specialized
program unnecessarily, all the literals for which the simplifications in the block declaration are
the same should share the same version. Then, we will generate a simplified block declaration
for the specialized version along with the code for the specialized version. Finally, we must
replace calls to the general version by calls to the specialized versions whenever possible. For
example, the following program:

: - block p (- , ? , -) , p (- , - , ?) .
p(X,Y,Z):-

code_for_p/3.

. . . , p(A,B,C), p(Argl,Arg2, [1 , 2 , 3]) , . . .

can be transformed into

:- block p(-,?,-),p(-,-,?).

p(X,Y,Z):-

code_for_p/3.

:- block p_sp_vers(-,-,?).

p_sp_vers(X,Y,Z):-

code_for_p_sp_vers/3.

..., p(A,B,C),p_sp_vers(Argl,Arg2,[l,2,3]), ...

In this kind of multiple specialization the different optimizations from one version to another
take place in the b l o c k declaration, but the code for all versions of a predicate is the same.
Thus, one further program transformation we could use in order to avoid the increase in program
size is to make the different versions for a predicate share as much code as possible. This
can be achieved by creating a new predicate with the code of the original one but without
any b l o c k declaration (p_no_block) . The different specialized versions will have their b l o c k
declaration and they will immediately call p_no_block. For example, the previous program
can be transformed into

: - b l o c k p (- , ? , -) , p (- , - , ?) .
p (X , Y , Z) : -

p_no_b lock (X ,Y ,Z) .

: - b l o c k p _ s p _ v e r s (- , - , ?) .
p _ s p _ v e r s (X , Y , Z) : -

p_no_b lock (X ,Y ,Z) .

. . . , p (A , B , C) , p _ s p _ v e r s (A r g l , A r g 2 , [l , 2 , 3]) , . . .

p _ n o _ b l o c k (X , Y , Z) : -
c o d e _ f o r _ p / 3 .

2.2.1 A check is t rue

As said in Section 1.2, b l o c k declarations state conditions under which the literal must delay.
For example, the declaration

: - b l o c k p (- , ? , -) , p (- , - , ?) .
. . . , p (A r g l , A r g 2 , A r g 3) , . . .

can be interpreted as

. . . , i f ((v a r (A r g l) , v a r (A r g 3)) ; (v a r (A r g l) , v a r (A r g 2)))
t h e n d e l a y p (A r g l , A r g 2 , A r g 3)
e l s e p (A r g l , A r g 2 , A r g 3) , . . .

Following a reasoning similar to tha t of Section 2.1.1, the test v a r / 1 is not downwards closed,
so no simplification can be done if it is sure to succeed.

However, if the whole condition can be simplified to true in a particular literal, tha t literal
can be moved to the right in the clause, as we explained in Section 2.1.4, provided the two
following conditions hold, where Lits represents a sequence of one or more literals just to the
right of the literal being moved.

1. C o n d i t i o n is t rue after the execution of Lits.

2. The execution of Lits cannot leave additional delayed literals on the same variables (mod
ulo variable aliasing) as C o n d i t i o n .

We can easily adapt algorithm in Section 2.1.4 to the case of literals affected by block decla
rations.

2.2.2 A check is false

Block declarations can only contain tests of the kind v a r / 1 . The negation of this check,
nonvar/1 is downwards closed and thus they can be simplified. It must be noted that due
to the restrictive syntax of block declarations the suspension condition cannot be arbitrarily
simplified. We want the simplified condition to be in turn expressible as a new block declaration,
i.e., in disjunctive normal form. This can be achieved by only allowing simplifications that
eliminate conjunctions of var tests. The result is obviously again in disjunctive normal form.
The kinds of optimizations we can use are:

(fail, Cond) = fail

(Cond, fail) = fail

(fail; Cond) = Cond

(Cond; fail) = Cond

2.2.3 Generation of Simplified Block Declarations

Once the suspension condition has been simplified, we generate a new block declaration for
it. If the simplified condition is the value fail, no block declaration is needed. This means that
the literal will never delay. If condition = (C\,..., Cn) then we generate a block declaration of
the form : —block Speci, ...,Specn. such that Speci = p-new-name(Argli, Arg2{, Argii) where
Argki = '—' iff Cj => var(Argk) and Argki = '? ' otherwise.

3 Analysis Information Required

In this section we will discuss the analysis information needed to perform the optimizations
introduced in Section 2. The different optimizations introduced require different kinds of anal
ysis information.

In order to simplify when conditions, we need analysis information to determine whether the
tests nonvar/1, ground/1, and ?=(X,Y) can be reduced to either true or false. As seen in
Section 2.1.1, it is easy to use analysis information for simplifying checks to true. Information
to reduce a check to false is only useful if it is possible to determine condition 2 in Section 2.1.4.

To simplify block declarations we are only interested in information that allows determining
whether va r /1 is true or false. Here we are specially interested in information to reduce var
tests to fail, that is equivalent to reducing nonvar/1 tests to true. Again, information to reduce
var tests to true is only useful if it is possible to determine condition 2 in Section 2.1.4.

Global analysis, in terms of abstract interpretation [5], seems to be a good candidate for
inferring the information required for optimization of both when and block conditions. Unfor
tunately, global data-flow analyses used in the compilation of traditional programs [2, 11, 7],
are not correct in the context of dynamic scheduling. In addition, it is not simple to extend
analyses for traditional Prolog and constraint logic programming languages to languages with
dynamic scheduling, as in existing analyses the fixed scheduling is crucial to ensure correctness

and termination. As a result, special analysis frameworks for dynamic scheduling, such as [9]
have to be used. The framework presented in [6] presents little overhead for programs without
delay and the performance on programs with delay is reasonable and considerably better than
the only other comparable approach [9].

In addition to an analysis framework capable of dealing with dynamically scheduled programs,
the choice of a suitable abstract domain is crucial. It should provide the kind of information we
are interested in with enough accuracy to allow important optimizations and in a reasonable
amount of time.

4 Implementation of Dynamic Scheduling Specialization and Optimization

4.1 Program Analysis

The current implementation of the specializer and optimizer for constraint programs with
dynamic scheduling uses the analysis framework described in [6]. This framework is generic in
the sense that it has a parametric domain and various parametric functions. The parametric
domain is the descriptions chosen to approximate constraints. Different choices of descriptions
and associated parametric functions provide different information and give different accuracy.
The experimental results have been obtained using two different parametric (or abstract) do
mains. One of them, namely def (definite Boolean functions [1]) can be used with both logic
programs and constraint logic programs. The other domain used, sharing+freeness [10] can
only be used with logic programs.

4.2 Program Transformations

We present the current implementation of the optimization techniques introduced in Sections
2.1 and 2.2. We discuss the capabilities and limitations of the implementation.

D o m
def
shfr

nonvar
X
X

ground
X
X

? = v a r

X

not_g

X

not ?=

Table 1: Information provided by abstract domains

4.2.1 Optimization of Whens

Table 1 shows for each type of test that can appear in a when meta-call whether it can be
inferred with the information provided by each abstract domain implemented. A cross means
that it is possible to infer that the test will succeed. The last three columns correspond to the
negation of the simple tests (equivalent to showing the failure of the positive tests).

The current implementation is able to simplify conditions in when meta-calls when checks
are shown to be true. Also, the optimizations allowed when Condition is simplified to true
(Section 2.1.3) are implemented. Regarding the optimizations described in Sections 2.1.2 and
2.1.4, it is important to note that these optimizations are only possible if the analysis is able

to infer some kind of negative information regarding the checks allowed in when conditions.
The Table 1 shows that it is not possible to infer any negative information with the abstract
domain def and thus it is not possible to perform any of these optimizations. With the second
abstract domain currently implemented in the CIAO compiler [3], sharing+freeness, we can
derive information about v a r / 1 , not_ground/l but not about the third type of check. It would
require a depth(K) analysis. However, the optimizations introduced in Sections 2.1.2 and 2.1.4
are not currently implemented in the system.

4.2.2 Optimization of Blocks

Regarding the optimization of block declarations, the program transformations described in
Sections 2.2.2 and 2.2.3 are implemented. As previously stated, the restricted syntax allowed
in block declarations forces new block conditions to be in disjunctive normal form. This
is trivially achieved by eliminating from a block declaration of the form : - block Speci,
..., Specn. as many Spec terms as we can prove to be false. The main drawback of the
optimization of block declaration is that it involves generating new versions of predicates, thus
increasing program size. In order to minimize the size of the new program, before generating
a new version of a predicate associated to a simplified block declaration we check if a version
associated to the same simplified block declaration already exist. We have also implemented the
program transformation introduced in Section 2.2 in which all versions for the same procedure
share code. This makes the increase in program size minimal. In order to make each literal use
the corresponding specialized version we rename calls to the generic predicate with calls to the
specialized versions of the predicate.

The program obtained by specializing block declarations is finite, as the number of specialized
versions we can generate for each predicate with a block declaration is finite and is bounded by
Sr= i (?) ' w n e r e n is the number of Spec terms in its block declaration.

5 Experimental Results

In order to assess the practicality of the optimizations proposed in this report, we have per
formed a series of experiments in the CIAO Compiler. The benchmarks used for the evaluation
were: permute, which succeeds if the first argument is a permutation of the second, qsor t , the
classical quick sort program using append; app3 which concatenates three lists by performing
two consecutive calls to append; nrev which naively reverses a list; and the final two are the
well-known CLP programs f ib and mortgage, modified so that arithmetic delays until it can be
computed by local propagation. All these benchmarks have been implemented in a reversible
way, so that they can be used in two obvious modes of operation, forwards and backwards,
through the use of suspension declarations. Note that though the declarative meaning of these
programs explains both modes of operation, the fixed left-to-right scheduling rule does not allow
running them in all modes in all cases.

5.1 Optimization of When meta-calls

The first experiment we performed was to measure the time required for the optimizations
in our implementation. The results are shown in Table 2. Times are in milliseconds on a
Sparc 10. For each benchmark program we give: FAn analysis time for forwards use of the
program, FOpt optimization time using the information obtained in the previous analysis,

Benchmark
append3
nrev
permute
qsort
mortgage
fib

FAn
33
56
37
93
56
82

FOpt
16
23
30
56
60
60

BAn
116
112
403

1472
320
257

FOpt
30
33
73

210
143
83

Table 2: Optimization times

BAn analysis time for backwards use of the program, and FOpt optimization time using the
information obtained for analysis backwards execution. The optimization times are comparable
to those of analysis. Except for mortgage, they are always below analysis times for forwards
execution. In the case of backwards execution, optimization times are always below analysis
times.

It is important to note that, in principle, the optimization time can be considered to be the
sum of the analysis and "optimization" times, as we need the analysis information to perform
the optimizations. However, analysis information can be used for many other code optimizations
apart from the optimization of dynamic scheduling, such as dead-code elimination, recognizing
determinate code and thus allowing unnecessary choice-points to be deleted, improving the code
generated for unification, recognizing calls that are independent and thus allowing the program
to be run in parallel, etc. In other words, different types of program transformations and
optimizations may share the analysis information. This is possible because the optimizations
presented are semantics-preserving, and thus the analysis is still correct [8].

Benchmark
append3
nrev
permute
qsort
fib
mortgage

F
32100
20715

2030
5320
2150
3380

OF
30

165
125
135
110
150

B
1750

26200
750

5310
5845
4630

OB
1750

26200
750

4550
3340
2750

FS
1070

125.55
16.24
39.41
19.55
22.53

BS
1
1
1

1.17
1.75
1.68

Table 3: Simplification of when meta-calls

Table 3 shows the execution times of some constraint logic programs with dynamic scheduling
expressed in terms of when meta-calls. This dynamic scheduling provides a more flexible use
of such programs than the traditional left-to-right scheduling. The execution times are in
milliseconds and have been obtained on a Sparc station IPC.

F is forwards execution time of the original program (which includes when meta-calls), B
the original program but in backwards execution, OF is the program optimized for forwards
execution, OB is the program optimized for backwards execution, FS is the forwards speed-up,
i.e., F/OF, and BS is B /OB.

In all the benchmark programs our implementation of the optimization techniques has been

able to eliminate all delay declarations, obtaining a program which is equivalent to the original
constraint program designed to work forwards. Thus, the automatic optimization of such
programs allows having programs that are reversible and that have no run-time overhead when
executed forwards. The benefits in forward execution are clearly stated by FS which shows
significant speed-ups.

When these benchmarks are executed backwards, most of the when meta-calls are needed and
thus are not eliminated by the optimizer. However, even in this case some speed-up is obtained
due to the optimizer.

5.2 Specialization of Block declarations

We have used the same benchmark programs as in Section 5.1 but coded using block declara
tion instead of when meta-calls. The analysis information obtained has been useful to generate
special versions of predicates with simplified block declarations. However, due to the very
efficient implementation of block declaration in the CIAO system (based on SICStus Prolog),
the run-time performance improvements are not as significant as in the simplification of when
meta-calls. We believe, however, that optimization of block declarations may also be inter
esting, specially in systems where these declarations are not so efficiently implemented. The
improvements obtained through specialization of block declarations are shown in Table 4. We
have taken as a measure of optimality the total number of Spec terms needed in the block
declarations. B is the number of terms in the original program, OF the number of them in the
program optimized for forwards execution, and OB in the program optimized for backwards
execution.

Benchmark
append3
nrev
permute
qsort
fib
mortgage

B
2
3
2

10
5
8

OF
0
0
0
0
0
0

OB
1
3
1
6
2
2

Table 4: Specialization of block declarations

We can clearly see that the optimizer has been able to eliminate all block declarations when
the program was optimized for forwards execution. When the program was optimized to run
backwards some improvements were still possible.

6 Conclusions and Future Work

We have presented a study of several optimization techniques for constraint programs with
dynamic scheduling. We have also presented the conditions required to perform these optimiza
tions and the information static analysis should provide to allow such optimizations. Part of
these techniques have been implemented in the CIAO compiler and we have presented some
experimental results that clearly show the potential benefits of the proposed optimizations.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. S0ndergaard. Boolean functions for de
pendency analysis: Algebraic properties and efficient representation. In Springer-Verlag,
editor, Static Analysis Symposium, SAS'94, number 864 in LNCS, pages 266-280, Namur,
Belgium, September 1994.

2. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.
Journal of Logic Programming, 10:91-124, 1991.

3. F. Bueno. The CIAO Multiparadigm Compiler: A User's Manual. Technical Report
CLIP8/95.0, ACCLAIM Deliverable D3.2/3-A4, Facultad de Informatica, UPM, June 1995.

4. F. Bueno and M. Hermenegildo. Compiling Concurrency into a Sequential Logic Language.
Technical Report CLIP15/95.0, Facultad de Informatica, UPM, June 1995.

5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM
Symposium on Principles of Programming Languages, pages 238-252, 1977.

6. Maria Garcia de la Banda, Kim Marriott, and Peter Stuckey. Efficient Analysis of Con
straint Logic Programs with Dynamic Scheduling. Technical Report CLIP9/95.0, AC
CLAIM Deliverable D3.2/3-A1, Facultad de Informatica, UPM, March 1995.

7. S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs. A CM
Transactions on Programming Languages and Systems, ll(3):418-450, 1989.

8. M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. Incremental Analysis of Logic
Programs. In International Conference on Logic Programming. MIT Press, June 1995.

9. K. Marriott, M. Garcia de la Banda, and M. Hermenegildo. Analyzing Logic Programs
with Dynamic Scheduling. In 20th. Annual ACM Conf. on Principles of Programming
Languages, pages 240-254. ACM, January 1994.

10. K. Muthukuniar and M. Hermenegildo. Combined Determination of Sharing and Freeness
of Program Variables Through Abstract Interpretation. In 1991 International Conference
on Logic Programming, pages 49-63. MIT Press, June 1991.

11. K. Muthukuniar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming, 13(2 and 3):315-347, July
1992.

12. G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in Logic Pro
grams. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based
Program Manipulation. ACM, June 1995.

13. W. Winsborough. Multiple Specialization using Minimal-Function Graph Semantics. Jour
nal of Logic Programming, 13(2 and 3):259-290, July 1992.

