737 research outputs found

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    An Experiment on Bare-Metal BigData Provisioning

    Full text link
    Many BigData customers use on-demand platforms in the cloud, where they can get a dedicated virtual cluster in a couple of minutes and pay only for the time they use. Increasingly, there is a demand for bare-metal bigdata solutions for applications that cannot tolerate the unpredictability and performance degradation of virtualized systems. Existing bare-metal solutions can introduce delays of 10s of minutes to provision a cluster by installing operating systems and applications on the local disks of servers. This has motivated recent research developing sophisticated mechanisms to optimize this installation. These approaches assume that using network mounted boot disks incur unacceptable run-time overhead. Our analysis suggest that while this assumption is true for application data, it is incorrect for operating systems and applications, and network mounting the boot disk and applications result in negligible run-time impact while leading to faster provisioning time.This research was supported in part by the MassTech Collaborative Research Matching Grant Program, NSF awards 1347525 and 1414119 and several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    Experimental Performance Evaluation of Cloud-Based Analytics-as-a-Service

    Full text link
    An increasing number of Analytics-as-a-Service solutions has recently seen the light, in the landscape of cloud-based services. These services allow flexible composition of compute and storage components, that create powerful data ingestion and processing pipelines. This work is a first attempt at an experimental evaluation of analytic application performance executed using a wide range of storage service configurations. We present an intuitive notion of data locality, that we use as a proxy to rank different service compositions in terms of expected performance. Through an empirical analysis, we dissect the performance achieved by analytic workloads and unveil problems due to the impedance mismatch that arise in some configurations. Our work paves the way to a better understanding of modern cloud-based analytic services and their performance, both for its end-users and their providers.Comment: Longer version of the paper in Submission at IEEE CLOUD'1

    Big Data-Oriented PaaS Architecture with Disk-as-a-Resource Capability and Container-Based Virtualization

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Grid Computing. The final authenticated version is available online at: https://doi.org/10.1007/s10723-018-9460-4[Abstract] With the increasing adoption of Big Data technologies as basic tools for the ongoing Digital Transformation, there is a high demand for data-intensive applications. In order to efficiently execute such applications, it is vital that cloud providers change the way hardware infrastructure resources are managed to improve their performance. However, the increasing use of virtualization technologies to achieve an efficient usage of infrastructure resources continuously widens the gap between applications and the underlying hardware, thus decreasing resource efficiency for the end user. Moreover, this scenario is especially troublesome for Big Data applications, as storage resources are one of the most heavily virtualized, thus imposing a significant overhead for large-scale data processing. This paper proposes a novel PaaS architecture specifically oriented for Big Data where the scheduler offers disks as resources alongside the more common CPU and memory resources, looking forward to provide a better storage solution for the user. Furthermore, virtualization overheads are reduced to the bare minimum by replacing heavy hypervisor-based technologies with operating-system-level virtualization based on light software containers. This architecture has been deployed on a Big Data infrastructure at the CESGA supercomputing center, used as a testbed to compare its performance with OpenStack, a popular private cloud platform. Results have shown significant performance improvements, reducing the execution time of representative Big Data workloads by up to 4.5×.Ministerio de Economía, Industria y Competitividad; TIN2016-75845-P, AEI/FEDER, EUMinisterio de Educación; FPU15/0338
    corecore