37 research outputs found

    Analysis of AeroMACS Data Link for Unmanned Aircraft Vehicles

    Full text link
    Aeronautical Mobile Airport Communications System (AeroMACS) is based on the IEEE 802.16e mobile wireless standard commonly known as WiMAX. It is expected to be the main part of the next-generation aviation communication system to support fixed and mobile services for manned and unmanned applications. AeroMACS will be an essential technology helping pave the way toward full integration of Unmanned Aircraft Vehicle (UAV) into the national airspace. A number of practical tests and analyses have been done so far for AeroMACS. The main contribution of this paper is to consider the theoretical concepts behind its features and discuss their suitability for UAV applications. Mathematical analyses of the AeroMACS physical layer framework are provided to show the theoretical trade-offs. We mainly focus on the analysis of the AeroMACS OFDMA structure, which affects the speed limits, coverage cell, channel estimation requirements, and inter-carrier interference

    Advancing the Standards for Unmanned Air System Communications, Navigation and Surveillance

    Get PDF
    Under NASA program NNA16BD84C, new architectures were identified and developed for supporting reliable and secure Communications, Navigation and Surveillance (CNS) needs for Unmanned Air Systems (UAS) operating in both controlled and uncontrolled airspace. An analysis of architectures for the two categories of airspace and an implementation technology readiness analysis were performed. These studies produced NASA reports that have been made available in the public domain and have been briefed in previous conferences. We now consider how the products of the study are influencing emerging directions in the aviation standards communities. The International Civil Aviation Organization (ICAO) Communications Panel (CP), Working Group I (WG-I) is currently developing a communications network architecture known as the Aeronautical Telecommunications Network with Internet Protocol Services (ATN/IPS). The target use case for this service is secure and reliable Air Traffic Management (ATM) for manned aircraft operating in controlled airspace. However, the work is more and more also considering the emerging class of airspace users known as Remotely Piloted Aircraft Systems (RPAS), which refers to certain UAS classes. In addition, two Special Committees (SCs) in the Radio Technical Commission for Aeronautics (RTCA) are developing Minimum Aviation System Performance Standards (MASPS) and Minimum Operational Performance Standards (MOPS) for UAS. RTCA SC-223 is investigating an Internet Protocol Suite (IPS) and AeroMACS aviation data link for interoperable (INTEROP) UAS communications. Meanwhile, RTCA SC-228 is working to develop Detect And Avoid (DAA) equipment and a Command and Control (C2) Data Link MOPS establishing LBand and C-Band solutions. These RTCA Special Committees along with ICAO CP WG/I are therefore overlapping in terms of the Communication, Navigation and Surveillance (CNS) alternatives they are seeking to provide for an integrated manned- and unmanned air traffic management service as well as remote pilot command and control. This paper presents UAS CNS architecture concepts developed under the NASA program that apply to all three of the aforementioned committees. It discusses the similarities and differences in the problem spaces under consideration in each committee, and considers the application of a common set of CNS alternatives that can be widely applied. As the works of these committees progress, it is clear that the overlap will need to be addressed to ensure a consistent and safe framework for worldwide aviation. In this study, we discuss similarities and differences in the various operational models and show how the CNS architectures developed under the NASA program apply

    Reliable and Secure Surveillance, Communications and Navigation (RSCAN) for Unmanned Air Systems (UAS) in Controlled Airspace

    Get PDF
    The aviation industry faces a rapidly-emerging need for integrating Unmanned Air Systems (UAS) into the national airspace (NAS). This trend will present challenging questions for the safe operation of UAS in controlled and uncontrolled airspaces based on new Communications, Navigation and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating ever increasing numbers of UAS worldwide? Does the communications network provide ample Internet Protocol (IP) address space to allow Air Traffic Control (ATC) to securely address each UAS? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Under NASA contract NNA16BD84C, Boeing is developing an integrated CNS architecture to enable UAS operations in the NAS. Revolutionary and advanced CNS alternatives are needed to support UAS operations at all altitudes and in all airspaces, including both controlled and uncontrolled. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. Our approach considers CNS requirements that address the range of UAS missions where they will be most beneficial and cost-effective.A cybersecure future UAS CNS architecture is needed to support the NASA vision for an Unmanned Air Traffic Management (UTM) system in uncontrolled airspace and a cooperative operation of manned and unmanned aircraft in the controlled global Air Traffic Management (ATM) system. The architecture must, therefore, support always-available and cyber secure operations. This paper presents UAS CNS architecture concepts for large UAS operating in the ATM system in controlled airspace. Future companion works will consider small UAS operating in the UTM system in uncontrolled airspace

    C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Get PDF
    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers

    Interference Analysis for an Aeronautical Mobile Airport Communications System

    Get PDF
    The next generation of aeronautical communications for airport surface applications has been identified through a NASA research program and an international collaborative future communications study. The result, endorsed by both the United States and European regulatory agencies is called AeroMACS (Aeronautical Mobile Airport Communications System) and is based upon the IEEE 802.16e mobile wireless standard. Coordinated efforts to develop appropriate aviation standards for the AeroMACS system are now underway within RTCA (United States) and Eurocae (Europe). AeroMACS will be implemented in a recently allocated frequency band, 5091- 5150 MHz. As this band is also occupied by fixed satellite service uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference to the fixed satellite service are under analysis in order to enable the definition of standards that assure that such interference will be avoided. The NASA Glenn Research Center has been involved in this analysis, and the first results of modeling and simulation efforts directed at this analysis are the subject of this paper.1

    Evaluation Of Multicarrier Air Interfaces In The Presence Of Interference For L-Band And C-Band Air-Ground Communications

    Get PDF
    The use of aeronautical vehicles and systems is continuously growing, and this means current aeronautical communication systems, particularly those operating in the very high frequency (VHF) aviation band, will suffer from severe congestion in some regions of the world. For example, it is estimated that air-to-ground (AG) communication traffic density will at least double by 2035 over that in 2012, based on the most-likely growth scenario for Europe. This traffic growth (worldwide) has led civil aviation authorities such as the FAA in the USA, and EuroControl in Europe, to jointly explore development of future communication infrastructures (FCI). According to international aviation systems policies, both current and future AG communication systems will be deployed in L-band (960-1164 MHz), and possibly in C-band (5030-5091 GHz) because of the favorable AG radio propagation characteristics in these bands. During the same time period as the FCI studies, the use of multicarrier communication technologies has become very mature for terrestrial communication systems, but for AG systems it is still being studied and tested. Aiming toward future demands, EuroControl and FAA sponsored work to define several new candidate AG radio systems with high data rate and high reliability. Dominant among these is now an L-Band Digital Aeronautical Communication Systems (L-DACS): L-DACS1. L-DACS1 is a multicarrier communication system based on the popular orthogonal frequency division multiplexing (OFDM) modulation technique. For airport surface area communication systems used in C-band, EuroControl and FAA also proposed another OFDM communication system based on the IEEE 802.16e standard, termed aeronautical mobile airport communication system (AeroMACS). This system has been proposed to provide the growing need of communication traffic in airport environments. In this dissertation, first we review existing and proposed aviation communication systems in VHF-band, L-band and C-band. We then focus our study on the use of multicarrier techniques in these aviation bands. We compare the popular and dominant multicarrier technique OFDM (which is used in cellular networks such long-term evolution (LTE) and wireless local area networks such as Wi-Fi) with the filterbank multicarrier (FBMC) technique. As far as we are aware, we are the first to propose and evaluate FBMC for aviation communication systems. We show, using analysis and computer simulations, along with measurement based (NASA) air-ground and airport surface channel models, that FBMC offers advantages in performance over the OFDM schemes. Via use of sharp filters in the frequency domain, FBMC reduces out of band interference. Specifically, it is more robust to high-power distance measurement equipment (DME) interference, and via replacement of guard bands with data-bearing subcarriers, FBMC can offer higher throughput than the contending L-DACS1 scheme, by up to 23%. Similar advantages over AeroMACS pertain in the airport surface channel. Our FBMC bit error ratio performance is comparable to that of the OFDM schemes, and is even better for our “spectrally-shaped” version of FBMC. For these improvements, FBMC requires a modest complexity increase. Our final contribution in this dissertation is the presentation of spectrally shaped FBMC (SS-FBMC). This idea allocates unequal power to subcarriers to contend with non-white noise or non-white interference. Our adaptive algorithm selects a minimum number of guard subcarriers and then allocates power accordingly to remaining subcarriers based on a “water-filling-like” approach. We are the first to propose such a cognitive radio technique with FBMC for aviation applications. Results show that SSFBMC improves over FBMC in both performance and throughput

    Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange

    Get PDF
    Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange is a two-year research effort to visualize the U. S. aviation industry at a point 50 years in the future, and to define potential communication solutions to meet those future data exchange needs. The research team, led by XCELAR, was tasked with identifying future National Airspace System (NAS) scenarios, determining requirements and functions (including gaps), investigating technical and business issues for air, ground, & air-to-ground interactions, and reporting on the results. The project was conducted under technical direction from NASA and in collaboration with XCELAR's partner, National Institute of Aerospace, and NASA technical representatives. Parallel efforts were initiated to define the information exchange functional needs of the future NAS, and specific communication link technologies to potentially serve those needs. Those efforts converged with the mapping of each identified future NAS function to potential enabling communication solutions; those solutions were then compared with, and ranked relative to, each other on a technical basis in a structured analysis process. The technical solutions emerging from that process were then assessed from a business case perspective to determine their viability from a real-world adoption and deployment standpoint. The results of that analysis produced a proposed set of future solutions and most promising candidate technologies. Gap analyses were conducted at two points in the process, the first examining technical factors, and the second as part of the business case analysis. In each case, no gaps or unmet needs were identified in applying the solutions evaluated to the requirements identified. The future communication solutions identified in the research comprise both specific link technologies and two enabling technologies that apply to most or all specific links. As a result, the research resulted in a new analysis approach, viewing the underlying architecture of ground-air and air-air communications as a whole, rather than as simple "link to function" paired solutions. For the business case analysis, a number of "reference architectures" were developed for both the future technologies and the current systems, based on three typical configurations of current aircraft. Current and future costs were assigned, and various comparisons made between the current and future architectures. In general, it was assumed that if a future architecture offers lower cost than the current typical architecture, while delivering equivalent or better performance, it is likely that the future solution will gain industry acceptance. Conversely, future architectures presenting higher costs than their current counterparts must present a compelling benefit case in other areas or risk a lack of industry acceptance. The business case analysis consistently indicated lower costs for the proposed future architectures, and in most cases, significantly so. The proposed future solutions were found to offer significantly greater functionality, flexibility, and growth potential over time, at lower cost, than current systems. This was true for overall, fleet-wide equipage for domestic and oceanic air carriers, as well as for single, General Aviation (GA) aircraft. The overall research results indicate that all identified requirements can be met by the proposed solutions with significant capacity for future growth. Results also illustrate that the majority of the future communication needs can be met using currently allocated aviation RF spectrum, if used in more effective ways than it is today. A combination of such optimized aviation-specific links and commercial communication systems meets all identified needs for the 50-year future and beyond, with the caveat that a new, overall function will be needed to manage all information exchange, individual links, security, cost, and other factors. This function was labeled "Delivery Manager" (DM) within this research. DM employs a distributed client/server architecture, for both airborne and ground communications architectures. Final research results included identifying the most promising candidate technologies for the future system, conclusions and recommendations, and identifying areas where further research should be considered

    Considerations for Improving the Capacity and Performance of AeroMACS

    Get PDF
    The Aeronautical Mobile Airport Communications System (AeroMACS) has progressed from concept through prototype development, testing, and standards development and is now poised for the first operational deployments at nine US airports by the Federal Aviation Administration. These initial deployments will support fixed applications. Mobile applications providing connectivity to and from aircraft and ground-based vehicles on the airport surface will occur at some point in the future. Given that many fixed applications are possible for AeroMACS, it is necessary to now consider whether the existing capacity of AeroMACS will be reached even before the mobile applications are ready to be added, since AeroMACS is constrained by both available bandwidth and transmit power limitations. This paper describes some concepts that may be applied to improve the future capacity of AeroMACS, with a particular emphasis on gains that can be derived from the addition of IEEE 802.16j multihop relays to the AeroMACS standard, where a significant analysis effort has been undertaken

    A Study of Future Communications Concepts and Technologies for the National Airspace System - Part IV

    Get PDF
    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present the final results describing the communications challenges and opportunities that have been identified as part of the study
    corecore