92 research outputs found

    Performance Analysis for Bandwidth Allocation in IEEE 802.16 Broadband Wireless Networks using BMAP Queueing

    Full text link
    This paper presents a performance analysis for the bandwidth allocation in IEEE 802.16 broadband wireless access (BWA) networks considering the packet-level quality-of-service (QoS) constraints. Adaptive Modulation and Coding (AMC) rate based on IEEE 802.16 standard is used to adjust the transmission rate adaptively in each frame time according to channel quality in order to obtain multiuser diversity gain. To model the arrival process and the traffic source we use the Batch Markov Arrival Process (BMAP), which enables more realistic and more accurate traffic modelling. We determine analytically different performance parameters, such as average queue length, packet dropping probability, queue throughput and average packet delay. Finally, the analytical results are validated numerically.Comment: 16 page

    Modeling the Effect of Bandwidth Allocation on Network Performance

    Get PDF
    In this paper, a new channel capacity model for interferencelimited systems was obtained by transforming the Shannon-Hartley theorem for channel capacity. To emulate an operational system, a dashboard Motorola monitoring device was used to collect data from a group of Base Stations (BSs) serving (a section of) the Nigerian air space and belonging to one of the existing network carriers. Our findings revealed that the uplink and downlink throughputs of the existing system were not impressive even when there was uniform sharing of bottlenecks across the BSs. Using MATLAB, simulations were then performed by extending these data, subject to ideal environmental constraints. Results obtained revealed the following: (i) The Shannon-Hartley model performed as expected for no-interference systems (TDMA and FDMA), but as the bandwidth improved, only limited number of users could access the network in the presence of increased SNR; (ii) The proposed model showed improved performance for CDMA networks, but further increase in the bandwidth did not benefit the network; (iii) A reliability measure such as the spectral efficiency is therefore useful to redeem the limitation in (ii).Keywords: Coverage Capacity, CDMA, Mobile Network, Network Throughpu

    Client-based SBM layer for predictive management of traffic flows in heterogeneous networks

    Get PDF
    In a heterogeneous networking environment, the knowledge of the time before a vertical handover (TBVH) for any network is vital in correctly assigning connections to available channels. In this paper, we introduce a predictive mathematical model for calculating the estimated TBVH component from available network parameters and discuss the different scenarios that arise based on a mobile host’s trajectory. We then introduce the concept of an intelligent Stream Bundle Management Layer (SBM) which consists of a set of policies for scheduling and mapping prioritised traffic streams on to available channels based on their priority, device mobility pattern and prevailing channel conditions. The layer is also responsible for the maintenance of connections during vertical handovers to avoid their forced termination

    A Framework to Quantify Network Resilience and Survivability

    Get PDF
    The significance of resilient communication networks in the modern society is well established. Resilience and survivability mechanisms in current networks are limited and domain specific. Subsequently, the evaluation methods are either qualitative assessments or context-specific metrics. There is a need for rigorous quantitative evaluation of network resilience. We propose a service oriented framework to characterize resilience of networks to a number of faults and challenges at any abstraction level. This dissertation presents methods to quantify the operational state and the expected service of the network using functional metrics. We formalize resilience as transitions of the network state in a two-dimensional state space quantifying network characteristics, from which network service performance parameters can be derived. One dimension represents the network as normally operating, partially degraded, or severely degraded. The other dimension represents network service as acceptable, impaired, or unacceptable. Our goal is to initially understand how to characterize network resilience, and ultimately how to guide network design and engineering toward increased resilience. We apply the proposed framework to evaluate the resilience of the various topologies and routing protocols. Furthermore, we present several mechanisms to improve the resilience of the networks to various challenges

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Exposing a waveform interface to the wireless channel for scalable video broadcast

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-167).Video broadcast and mobile video challenge the conventional wireless design. In broadcast and mobile scenarios the bit-rate supported by the channel differs across receivers and varies quickly over time. The conventional design however forces the source to pick a single bit-rate and degrades sharply when the channel cannot support it. This thesis presents SoftCast, a clean-slate design for wireless video where the source transmits one video stream that each receiver decodes to a video quality commensurate with its specific instantaneous channel quality. To do so, SoftCast ensures the samples of the digital video signal transmitted on the channel are linearly related to the pixels' luminance. Thus, when channel noise perturbs the transmitted signal samples, the perturbation naturally translates into approximation in the original video pixels. Hence, a receiver with a good channel (low noise) obtains a high fidelity video, and a receiver with a bad channel (high noise) obtains a low fidelity video. SoftCast's linear design in essence resembles the traditional analog approach to communication, which was abandoned in most major communication systems, as it does not enjoy the theoretical opimality of the digital separate design in point-topoint channels nor its effectiveness at compressing the source data. In this thesis, I show that in combination with decorrelating transforms common to modern digital video compression, the analog approach can achieve performance competitive with the prevalent digital design for a wide variety of practical point-to-point scenarios, and outperforms it in the broadcast and mobile scenarios. Since the conventional bit-pipe interface of the wireless physical layer (PHY) forces the separation of source and channel coding, to realize SoftCast, architectural changes to the wireless PHY are necessary. This thesis discusses the design of RawPHY, a reorganization of the PHY which exposes a waveform interface to the channel while shielding the designers of the higher layers from much of the perplexity of the wireless channel. I implement SoftCast and RawPHY using the GNURadio software and the USRP platform. Results from a 20-node testbed show that SoftCast improves the average video quality (i.e., PSNR) across diverse broadcast receivers in our testbed by up to 5.5 dB in comparison to conventional single- or multi-layer video. Even for a single receiver, it eliminates video glitches caused by mobility and increases robustness to packet loss by an order of magnitude.by Szymon Kazimierz Jakubczak.Ph.D
    corecore