6 research outputs found

    Artificial intelligence techniques support nuclear medicine modalities to improve the diagnosis of Parkinson's disease and Parkinsonian syndromes

    Get PDF
    Abstract Purpose The aim of this review is to discuss the most significant contributions about the role of Artificial Intelligence (AI) techniques to support the diagnosis of movement disorders through nuclear medicine modalities. Methods The work is based on a selection of papers available on PubMed, Scopus and Web of Sciences. Articles not written in English were not considered in this study. Results Many papers are available concerning the increasing contribution of machine learning techniques to classify Parkinson's disease (PD), Parkinsonian syndromes and Essential Tremor (ET) using data derived from brain SPECT with dopamine transporter radiopharmaceuticals. Other papers investigate by AI techniques data obtained by 123I-MIBG myocardial scintigraphy to differentially diagnose PD and other Parkinsonian syndromes. Conclusion The recent literature provides strong evidence that AI techniques can play a fundamental role in the diagnosis of movement disorders by means of nuclear medicine modalities, therefore paving the way towards personalized medicine

    Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson\u27s disease

    Get PDF
    Parkinson\u27s disease (PD) is a common, progressive, and currently incurable neurodegenerative movement disorder. The diagnosis of PD is challenging, especially in the differential diagnosis of parkinsonism and in early PD detection. Due to the advantages of machine learning such as learning complex data patterns and making inferences for individuals, machine-learning techniques have been increasingly applied to the diagnosis of PD, and have shown some promising results. Machine-learning-based imaging applications have made it possible to help differentiate parkinsonism and detect PD at early stages automatically in a number of neuroimaging studies. Comparative studies have shown that machine-learning-based SPECT image analysis applications in PD have outperformed conventional semi-quantitative analysis in detecting PD-associated dopaminergic degeneration, performed comparably well as experts\u27 visual inspection, and helped improve PD diagnostic accuracy of radiologists. Using combined multi-modal (imaging and clinical) data in these applications may further enhance PD diagnosis and early detection. To integrate machine-learning-based diagnostic applications into clinical systems, further validation and optimization of these applications are needed to make them accurate and reliable. It is anticipated that machine-learning techniques will further help improve differential diagnosis of parkinsonism and early detection of PD, which may reduce the error rate of PD diagnosis and help detect PD at pre-motor stage to make it possible for early treatments (e.g., neuroprotective treatment) to slow down PD progression, prevent severe motor symptoms from emerging, and relieve patients from suffering

    Statistical Neuroimage Modeling, Processing and Synthesis based on Texture and Component Analysis: Tackling the Small Sample Size Problem

    Get PDF
    The rise of neuroimaging in the last years has provided physicians and radiologist with the ability to study the brain with unprecedented ease. This led to a new biological perspective in the study of neurodegenerative diseases, allowing the characterization of different anatomical and functional patterns associated with them. CAD systems use statistical techniques for preparing, processing and extracting information from neuroimaging data pursuing a major goal: optimize the process of analysis and diagnosis of neurodegenerative diseases and mental conditions. With this thesis we focus on three different stages of the CAD pipeline: preprocessing, feature extraction and validation. For preprocessing, we have developed a method that target a relatively recent concern: the confounding effect of false positives due to differences in the acquisition at multiple sites. Our method can effectively merge datasets while reducing the acquisition site effects. Regarding feature extraction, we have studied decomposition algorithms (independent component analysis, factor analysis), texture features and a complete framework called Spherical Brain Mapping, that reduces the 3-dimensional brain images to two-dimensional statistical maps. This allowed us to improve the performance of automatic systems for detecting Alzheimer's and Parkinson's diseases. Finally, we developed a brain simulation technique that can be used to validate new functional datasets as well as for educational purposes

    Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis

    Get PDF
    The term amyotrophic lateral sclerosis (ALS) comprises a heterogeneous group of fatal neurodegenerative disorders of largely unknown etiology characterized by the upper motor neurons (UMN) and/or lower motor neurons (LMN) degeneration. The development of brain imaging biomarkers is essential to advance in the diagnosis, stratification and monitoring of ALS, both in the clinical practice and clinical trials. In this review, the characteristics of an optimal imaging biomarker and common pitfalls in biomarkers evaluation will be discussed. Moreover, the development and application of the most promising brain magnetic resonance (MR) imaging biomarkers will be reviewed. Finally, the integration of both qualitative and quantitative multimodal brain MR biomarkers in a structured report will be proposed as a support tool for ALS diagnosis and stratification

    Correction des effets de volume partiel en tomographie d'émission

    Get PDF
    Ce mémoire est consacré à la compensation des effets de flous dans une image, communément appelés effets de volume partiel (EVP), avec comme objectif d application l amélioration qualitative et quantitative des images en médecine nucléaire. Ces effets sont la conséquence de la faible résolutions spatiale qui caractérise l imagerie fonctionnelle par tomographie à émission mono-photonique (TEMP) ou tomographie à émission de positons (TEP) et peuvent être caractérisés par une perte de signal dans les tissus présentant une taille comparable à celle de la résolution spatiale du système d imagerie, représentée par sa fonction de dispersion ponctuelle (FDP). Outre ce phénomène, les EVP peuvent également entrainer une contamination croisée des intensités entre structures adjacentes présentant des activités radioactives différentes. Cet effet peut conduire à une sur ou sous estimation des activités réellement présentes dans ces régions voisines. Différentes techniques existent actuellement pour atténuer voire corriger les EVP et peuvent être regroupées selon le fait qu elles interviennent avant, durant ou après le processus de reconstruction des images et qu elles nécessitent ou non la définition de régions d intérêt provenant d une imagerie anatomique de plus haute résolution(tomodensitométrie TDM ou imagerie par résonance magnétique IRM). L approche post-reconstruction basée sur le voxel (ne nécessitant donc pas de définition de régions d intérêt) a été ici privilégiée afin d éviter la dépendance aux reconstructions propres à chaque constructeur, exploitée et améliorée afin de corriger au mieux des EVP. Deux axes distincts ont été étudiés. Le premier est basé sur une approche multi-résolution dans le domaine des ondelettes exploitant l apport d une image anatomique haute résolution associée à l image fonctionnelle. Le deuxième axe concerne l amélioration de processus de déconvolution itérative et ce par l apport d outils comme les ondelettes et leurs extensions que sont les curvelets apportant une dimension supplémentaire à l analyse par la notion de direction. Ces différentes approches ont été mises en application et validées par des analyses sur images synthétiques, simulées et cliniques que ce soit dans le domaine de la neurologie ou dans celui de l oncologie. Finalement, les caméras commerciales actuelles intégrant de plus en plus des corrections de résolution spatiale dans leurs algorithmes de reconstruction, nous avons choisi de comparer de telles approches en TEP et en TEMP avec une approche de déconvolution itérative proposée dans ce mémoire.Partial Volume Effects (PVE) designates the blur commonly found in nuclear medicine images andthis PhD work is dedicated to their correction with the objectives of qualitative and quantitativeimprovement of such images. PVE arise from the limited spatial resolution of functional imaging witheither Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography(SPECT). They can be defined as a signal loss in tissues of size similar to the Full Width at HalfMaximum (FWHM) of the PSF of the imaging device. In addition, PVE induce activity crosscontamination between adjacent structures with different tracer uptakes. This can lead to under or overestimation of the real activity of such analyzed regions. Various methodologies currently exist tocompensate or even correct for PVE and they may be classified depending on their place in theprocessing chain: either before, during or after the image reconstruction process, as well as theirdependency on co-registered anatomical images with higher spatial resolution, for instance ComputedTomography (CT) or Magnetic Resonance Imaging (MRI). The voxel-based and post-reconstructionapproach was chosen for this work to avoid regions of interest definition and dependency onproprietary reconstruction developed by each manufacturer, in order to improve the PVE correction.Two different contributions were carried out in this work: the first one is based on a multi-resolutionmethodology in the wavelet domain using the higher resolution details of a co-registered anatomicalimage associated to the functional dataset to correct. The second one is the improvement of iterativedeconvolution based methodologies by using tools such as directional wavelets and curveletsextensions. These various developed approaches were applied and validated using synthetic, simulatedand clinical images, for instance with neurology and oncology applications in mind. Finally, ascurrently available PET/CT scanners incorporate more and more spatial resolution corrections in theirimplemented reconstruction algorithms, we have compared such approaches in SPECT and PET to aniterative deconvolution methodology that was developed in this work.TOURS-Bibl.électronique (372610011) / SudocSudocFranceF
    corecore