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Abstract
Purpose The aim of this review is to discuss the most significant contributions about the role of Artificial Intelligence (AI) 
techniques to support the diagnosis of movement disorders through nuclear medicine modalities.
Methods The work is based on a selection of papers available on PubMed, Scopus and Web of Sciences. Articles not written 
in English were not considered in this study.
Results Many papers are available concerning the increasing contribution of machine learning techniques to classify Par-
kinson’s disease (PD), Parkinsonian syndromes and Essential Tremor (ET) using data derived from brain SPECT with dopa-
mine transporter radiopharmaceuticals. Other papers investigate by AI techniques data obtained by 123I-MIBG myocardial 
scintigraphy to differentially diagnose PD and other Parkinsonian syndromes.
Conclusion The recent literature provides strong evidence that AI techniques can play a fundamental role in the diagnosis 
of movement disorders by means of nuclear medicine modalities, therefore paving the way towards personalized medicine.

Keywords Artificial intelligence · Machine learning · Artificial neural network · Parkinson’s disease · Movement disorders · 
123I-FP-CIT SPECT · Nuclear medicine techniques

Introduction

In recent years, Artificial Intelligence (AI) techniques have 
been applied to the diagnosis of many nosological entities by 
means of data derived from radiological and nuclear medi-
cine modalities [1–10].

AI is an extremely active research area based on com-
puter programs able to mimic human activities, such as 
decision-making, learning, processing and understanding 
natural language and images [3, 10]. Machine learning (ML) 
is a branch of AI aiming at designing systems capable of 

automatically learning and improving from training data 
without being programmed explicitly. Machine learning 
methods play a major role in computer-assisted diagnosis, 
where they can suggest a diagnosis on an unknown case 
based on a number of previously classified (labelled) cases 
[4, 10]. Among the ML algorithms most commonly used in 
medical applications are Artificial Neural Networks (ANN), 
Classification Trees (ClT), Random Forest (RF), Support 
Vector Machines (SVM) and, more recently, Deep Learning 
(DL) [10, 11]. The background of the above-mentioned AI 
techniques is reported in details in a previous paper [10]. 
In particular, DL has been receiving increasing attention in 
medical applications during the last few years. Thanks to 
the sophisticated image representation and filtering, con-
volutional neural networks (CNN) can provide robustness 
towards input variability caused by changes in hardware and 
software settings. However, methods based on CNN tend to 
be computationally expensive at the training step (due to 
the large number on tuning parameters in the inner layers); 
furthermore, they require a large number of training samples 
to provide satisfactory generalization performance.
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The use of AI techniques in the diagnostic process of 
neurodegenerative diseases as for instance dementia and 
movement disorders, represents a promising approach [10].

In the last years, the diagnosis of Parkinson’s disease 
(PD) and Parkinsonian syndromes versus Essential Tremor 
(ET) was considerably supported by the increasing role of 
SPECT scan with presynaptic radiopharmaceuticals, such as 
the widely diffuse 123I‐2β‐carbomethoxy‐3β‐4‐iodophenyl‐
N‐3‐fluoropropyl nortropane (123I-FP-CIT) [12–16].

Furthermore, post-synaptic tracers or myocardial scin-
tigraphy with 123I-metaiodobenzylguanidine (123I-MIBG) 
significantly contribute to the differential diagnosis among 
PD and other categories of Parkinsonism [17–20].

A relevant role in the differential diagnosis of PD and 
atypical Parkinsonian syndromes associated with dementia, 
i.e. multiple-system atrophy, progressive supranuclear palsy 
and corticobasal degeneration, is played also by 18Fluoro-
deoxy-glucose (18FDG) PET, as metabolic patterns of 
regional glucose metabolism of these nosological entities are 
different and disease-specific [21, 22]. Furthermore patients 
with PD dementia (PDD) present more severe metabolic def-
icits in the parietal and frontal regions comparing with PD 
patients without cognitive impairment, while metabolic pat-
terns in PDD patients and patients with Lewy body dementia 
were broadly similar [22].

Many previous works dealing with the contribution of 
nuclear medicine modalities in movement disorders used 
AI techniques to investigate data extracted from SPECT and 
PET scans to automatically classify the pathological groups 
[3, 10, 14, 15, 23–25].

The objective of this review is to evaluate the most rel-
evant papers on this topic and investigate the contribution 
of AI techniques to improve the diagnostic process of move-
ment disorders.

Materials and methods

A selection of papers available on PubMed, Scopus and Web 
of Sciences was made. The search was based on the follow-
ing key words: artificial intelligence, machine learning, neu-
ral network, deep learning, Parkinson, movement disorders, 
SPECT and PET. If “nuclear medicine techniques” is also 
added as key word, the number of papers obtained is lower 
and they are all included in the results provided by ruling 
the previous key word. Table 1 shows the number of papers 
available on PubMed (as it includes the papers with a higher 
clinical impact) with the key words used. Since not many 
articles are available on this topic (see Table 1), the choice of 
the papers described in this expert review was based on the 
international relevance, interest for the clinical practice, date 
(most recent) and impact (most cited). Articles not written 
in English were not considered.

Results

Early diagnosis of Parkinson’s disease

Early diagnosis of PD is crucial for a prompt therapeutic 
strategy and to avoid disease progression. Brain SPECT 
through 123I-FP-CIT, a pre-synaptic radiopharmaceutical 
of the dopaminergic transporters (DAT), proved able to 
provide a significant contribution to the differential diag-
nosis of early PD and non-Parkinsonian syndromes (i.e. 
ET) [12–16].

Brain SPECT with pre‑synaptic radiopharmaceutical

To our knowledge, the first papers describing the role of 
artificial neural network classifiers to identify PD appeared 
in 2006.

Acton et al. [26] investigated 81 patients with PD and 
94 healthy control subjects through SPECT scan with the 
dopamine transporter tracer 2-[[2-[[[3-(4-chlorophenyl)-
8-methyl-8-azabicyclo[3,2,1]oct-2-yl]methyl](2-mer-
captoethyl)amino]ethyl]amino]ethanethiolato(3-)-
N2,N2′,S2,S2′]oxo-[1R-(exo-exo)]-(99m)Tc-technetium 
(99mTc-TRODAT-1). The striatum and the striatal pixel 
values extracted from the SPECT images were used as 
inputs to a three-layer ANN and the same data set was used 
to train and test the ANN in a ‘leave-one-out’ procedure. 
The classifier achieved diagnostic accuracy higher than 
any previous analysis method applied to the same data 
(overall accuracy 94.4%, specificity 97.5% and sensitivity 

Table 1  Number of papers available in PubMed with the key-words 
used on the topic considered in the review

Key-word used Number 
of papers

Artificial intelligence and Parkinson and SPECT 30
Artificial intelligence and movement disorders and SPECT 33
Artificial intelligence and Parkinson and PET 12
Artificial intelligence and movement disorders and PET 13
Machine learning and Parkinson and SPECT 29
Machine learning and Parkinson and PET 1
Machine learning and movement disorders and SPECT 25
Machine learning and movement disorders and PET 9
Deep learning and Parkinson and SPECT 5
Deep learning and Parkinson and PET 17
Neural network and Parkinson and SPECT 29
Neural network and movement disorders and SPECT 29
Neural network and Parkinson and PET 46
Neural network and movement disorders and PET 49



21Clinical and Translational Imaging (2021) 9:19–35 

1 3

91.4%). However, the authors concluded that, as with all 
applications of an ANN, it was difficult to interpret pre-
cisely what triggers in the images were being detected by 
the network. This paper, although very interesting, has the 
limit that the radiopharmaceutical used was the scarcely 
available 99m-Tc-TRODAT-1.

In the same period, Hamilton [27] carried out a study to 
differentiate PD and Essential Tremor using ANN classifi-
cation of quantified data extracted from 123I-FP-CIT brain 
SPECT images. In particular, they evaluated if a two-stage 
analysis could differentiate between various stages of Par-
kinsonian syndromes and essential tremor and if this kind 
of analysis could be undertaken in a single step using ANN. 
In the first step, the striatum-to-occipital cortex ratio was 
assessed to investigate non-early Parkinsonian syndromes 
and patients with a low ratio would be stopped at this step; 
in the second step, the putamen-to-caudate nucleus ratio was 
measured. Finally, the two-stage analysis was undertaken 
and repeated, in a single step, using an ANN. The authors 
determined that the two-stage analysis was less effective 
than the single-step process, and that the ANN could clearly 
discriminate between Parkinsonian syndromes and ET in all 
subjects studied without equivocal results. One limit of this 
study, however, was the small sample size (n = 18) and the 
unbalanced dataset (13 PD and 5 ET). Another limit was the 
“gold standard” used, which was the judgement of one single 
expert. Despite these limitations, this work is relevant in that 
it represents the first paper describing the use of an ANN on 
brain SPECT quantitative data with the most widely used 
radiopharmaceutical 123I-FP-CIT to discriminate PD and 
ET.

In a paper of Palumbo et al. [14], the authors investigated 
differential diagnosis between PD and ET from 123I-FP-CIT 
SPECT semi-quantitative data. To this end, they compared 
the performance of two different machine learning tech-
niques: a probabilistic neural network (PNN) and a clas-
sification tree. The study included 216 patients of which 
89 ET, 64 early PD with a Hoehn and Yahr (H&Y) score 
of ≤ 2 and 63 advanced PD with H&Y score ≥ 2 0.5. The 
dataset was randomly split into train and test set of equal 
size (50% of the study population each) and the fraction of 
the test set correctly classified was computed. With PNN, 
the probability of correct classification was 81.9 ± 8.1% 
(mean ± SD) in patients with early PD, 78.9 ± 8.1% in 
patients with advanced PD and 96.6 ± 2.6% in patients with 
ET. With ClT, the first decision rule gave a mean value for 
the putamen of 5.99, with a probability of correct classifica-
tion of 93.5 ± 3.4%. This means that patients with putamen 
values > 5.99 were classified as ET subjects, while patients 
with putamen values < 5.99 were classified as PD patients. 
The discrimination between the two classes of PD was pos-
sible by examining the caudate nucleus values. If the caudate 
nucleus value was higher than 6.97, patients were included 

in the early PD group (probability 69.8 ± 5.3%), while if the 
value was < 6.97, patients were classified as advanced PD 
subjects (probability 88.1% ± 8.8%).

This study showed that valid classification results could 
be obtained using both PNN and ClT classifiers, but one 
clear advantage of ClT is that it provides clinically-inter-
pretable cut-off values to differentiate between ET and PD 
of different severities. Comparing the overall results for the 
classification of patients with early and advanced PD, none 
of the classifiers emerged as clearly superior. Considering 
only patients with early PD, ClT seemed to have better dis-
crimination capability than PNN, but the trend was reversed 
when patients with advanced PD, ClT were included. It is to 
be noted that the data analyzed in this paper were extracted 
by a semi-quantitative method based on the evaluation of the 
striatal uptake as performed considering specific/nonspecific 
putamen/occipital (p/o) and caudate/occipital (c/o) binding 
ratios using a standard ROI template constructed manually 
according to a stereotactic atlas and including fixed regions 
for both c/o ratio and the p/o ratio applied to three different 
representative slices.

More recent methods to semi-quantify 123I-FP-CIT 
uptake are based on volumetric ROIs. The freely available 
Basal Ganglia V2 software is widely diffuse and it is based 
on a high-definition, 3-D striatal template, derived from 
Talairach atlas [28, 29]. The software provides automatic, 
3-D segmentation of caudate and putamen in each hemi-
sphere and an optimization protocol automatically adjusts 
the positioning of blurred templates to best match the radio-
active counts and places an occipital region of interest (ROI) 
for background evaluation. Putamen and caudate nucleus 
binding is subtracted by background binding to measure the 
specific to non-displaceable binding ratio (SBR) in caudate 
nucleus and putamen in each hemisphere.

To evaluate the diagnostic performance of 123I-FP-CIT 
brain SPECT with semi-quantitative analysis by Basal Gan-
glia V2 software, Palumbo et al. [15] investigated semi-
quantitative data of patients with suspect of PD by a sup-
port vector machine (SVM) classifier. An SVM implements 
supervised learning to analyze data and recognize patterns. 
It is commonly employed for classification and regression 
analysis. The SVM algorithm computes the class separation 
boundaries to maximize the distance between the example 
points belonging to different classes [30]. Support vec-
tor classifiers usually show good generalization capabil-
ity, therefore allowing to classify also of patients not used 
in the training phase [31]. In the paper, [15] 123I-FP-CIT 
SPECT was performed in 90 suspected PD patients hav-
ing mild symptoms (bradykinesia-rigidity and mild tremor). 
Among them, PD was confirmed in 56 patients, while 34 
resulted non-PD (essential tremor and drug-induced Parkin-
sonism). To investigate the performance of the SVM models 
implemented in Basal Ganglia V2, the authors used different 
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feature sets and estimated the classification accuracy via 
“leave-one-out” and a “fivefold” cross-validation. The first 
feature set was composed of semi-quantitative radiophar-
maceutical uptake values in the left and right putamen (PL, 
PR), and in the left and right caudate nucleus (CL,CR) for a 
total of four features—i.e., CL, CR, PL and PR. The second 
feature set considered CL and CR only, whereas the third PL 
and PR only. Age was added as a further descriptor to evalu-
ate its influence in the classification performance.

A classification performance higher than 73.9% was 
obtained with all the models. For the “Leave-one-out” 
method, PL and PR were better predictors (accuracy of 91% 
for all patients) than CL and CR descriptors, using PL, PR, 
CL, and CR diagnostic accuracy was similar to that of PL 
and PR descriptors in the different groups. Adding age as a 
feature increased accuracy in all the models. The best results 
were obtained using all the five descriptors both in PD and 
non-PD subjects (CR and CL + PR and PL + age = 96.4% 
and 94.1%, respectively). Similar results were observed for 
the “fivefold” method. In conclusion, 123I-FP-CIT SPECT 
with BasGan analysis using SVM classifier was able to 
diagnose PD. Putamen resulted the most discriminative 
descriptor for PD and the patient age influenced the clas-
sification accuracy. The limit of this study was the absence 
of healthy control subjects, as patients with mild symptoms 
(bradykinesia-rigidity and mild tremor) were examined for 
clinical purposes to confirm or exclude PD. Therefore, the 
patients studied were considered as having PD or not (non-
PD group), but a further normal group of subjects was not 
available.

Prashanth et al. [32] proposed SVM to classify 123I-FP-
CIT brain SPECT data of patients with Parkinsonian syn-
dromes. The authors analysed data from the Parkinson 
progression marker initiative (PPMI) database [33], a land-
mark and first large-scale, comprehensive, observational, 
international, multi-center study to identify PD progression 
biomarkers. The imaging features were Striatal Binding 
Ratio (SBR) values of the four striatal regions (left and right 
caudate, the left and right putamen), which were computed 
from 123I-FP-CIT SPECT images and were available from 
the PPMI database. The authors showed that SVM provided 
valuable results to correctly classify PD versus normal sub-
jects. The strengths of this interesting study are the large 
population (369 early PD and 179 normal subjects) and the 
high-classification performance, which was attained using 
only four features (left and right caudate, left and right puta-
men) and no feature selection procedure.

Taylor and Fenner [34] focused on the comparison of 
machine learning and semi-quantification methods to clas-
sify patients with movement disorders. Three machine learn-
ing algorithms were compared with a range of semi-quan-
tification methods using data from the PPMI database (209 
healthy controls and 448 PD subjects) and a locally derived 

dataset from Sheffield Teaching Hospitals NHS Founda-
tion Trust (113 patients without PDD and 191 with PDD). 
Machine learning algorithms were based on SVM with three 
different sets of features: Voxel intensities, Principal com-
ponents of image voxel intensities, Striatal binding radios 
from the putamen and caudate. Semi-quantification meth-
ods calculate striatal binding ratios (SBRs) from regions 
of interest applied to the full SPECT volume or selected 
slices, typically after automated registration to a chosen 
template and were generally based on from both putamina, 
with and without consideration of the caudates. Normal lim-
its for the SBRs were defined according to four different 
methods: minimum of age-matched controls, mean minus 
1/1.5/2 standard deviations from age-matched controls, 
linear regression of normal patient data against age (minus 
1/1.5/2 standard errors), selection of the optimum operat-
ing point on the receiver operator characteristic curve from 
normal and abnormal training data. Each machine learn-
ing and semi-quantification technique was evaluated with 
stratified, nested tenfold cross-validation. The mean accu-
racy of the semi-quantitative methods for classifying local 
data into Parkinsonian and non-Parkinsonian groups varied 
from 0.78 to 0.87, between healthy controls and Parkinson’s 
disease groups from 0.89 to 0.95 for classifying PPMI data. 
The machine learning algorithms provided mean accuracy 
between 0.88–0.92 and 0.95–0.97 for local and PPMI data, 
respectively.

The authors concluded that classification performance for 
the local database was lower than for the research database 
for both semi-quantitative and machine learning algorithms. 
Furthermore, in both datasets, they found that the machine 
learning methods provided equal or higher mean accuracy 
(with lower variance) than any of the semi-quantification 
approach, although the gain from using machine learning 
algorithms was relatively small and might be not sufficient 
to offer a significant clinical improvement.

Finally, a previous paper by Prashant et al. [35] investi-
gated the role of the symptoms developed in the premotor 
or prodromal phase in PD, that lasts at least for five years 
(and also for 20 years), between the onset of neurodegenera-
tion and manifestation of classic clinical motor symptoms. 
During this phase, non-motor symptoms, such as Rapid Eye 
Movement sleep Behaviour Disorder (RBD) and olfactory 
loss, are present. However, despite none of these symptoms 
are sufficiently specific to be used for screening, they can be 
used in combination with other potential biomarkers, such 
as Cerebrospinal fluid (CSF) measurements and 123I-FP-
CIT brain SPECT to discriminate subjects at risk of PD [36, 
37]. Prashant et al. [35] used the non-motor features of RBD 
and olfactory loss, along with other significant biomarkers, 
such as cerebrospinal fluid (CSF) measurements and dopa-
minergic imaging markers (123I-FP-CIT brain SPECT), 
from 183 healthy normal and 401 early PD subjects (Hoehn 
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and Yahr scale of 1 and 2), derived from the Parkinson’s 
PPMI database [33], to classify subjects studied using Naïve 
Bayes, SVM, Boosted Trees and Random Forests classifiers. 
The authors showed that SVM classifier achieved the best 
performance (96.40% accuracy, 97.03% sensitivity, 95.01% 
specificity, and 98.88% area under ROC). Furthermore, the 
authors stressed that they obtained better accuracy than pre-
vious works using significant features corresponding to non-
motor and imaging markers. The authors concluded that a 
combination of non-motor, CSF and imaging markers may 
be useful in the preclinical diagnosis of PD.

Brain PET

Positron-emitting pre-synaptic tracers can be useful to 
investigate movement disorders, even if they are less widely 
used compared with analogous, gamma-emitting radiocom-
pounds. Few papers are available on the use of AI to diag-
nose early PD with positron-emitting pre-synaptic tracers.

In an interesting work, Glaab et  al. integrated blood 
metabolomics and PET brain neuroimaging data to diagnose 
Parkinson’s disease [23]. Previous studies on metabolome 
changes in PD had mainly focused on systemic metabolic 
profiles alone, while the authors proposed a combination 
with other modalities, such as PET, to provide information 
about the relationship between local and systemic changes, 
both in terms of diagnostic usefulness and understanding 
of pathophysiology. The authors investigated whether the 
joint data analysis of blood metabolomics and PET imaging 
by machine learning was able to provide increased diagnos-
tic discrimination and further pathophysiological insights. 
Blood plasma samples were collected from 60 PD patients 
and 15 age- and gender-matched healthy controls to deter-
mine metabolomic profiles by gas chromatography coupled 
to mass spectrometry (GC–MS). The metabolomics profiles 
of 71 detected metabolites were compared at study baseline 
between the PD patients and the unaffected controls. Lev-
els of the unknown metabolite RI1446 showed a significant 
increase (FDR < 0.05). Suggestive increase (here defined as 
nominal p value < 0.05 and FDR < 0.5) was found for urea, 
hexadecanoic acid and dodecanoic acid, and the unknown 
metabolite RI1050. In the same cohort and at the same time, 
18F-DOPA PET was performed in 44 patients and 14 con-
trols and FDG PET was carried out in 51 patients and 16 
controls. Eighteen PD patients had a follow-up exam after 
1 year. Both data sets were processed using two machine 
learning approaches, linear support vector machines and ran-
dom forests with a leave-one-out cross-validation scheme. 
As results in the metabolomics data, the baseline comparison 
between patients and controls and the follow-up assessment 
of patients pointed to metabolite changes associated with 
oxidative stress and inflammation. Considering 18F-DOPA 
and FDG PET data, the diagnostic predictive performance 

(DPP) in the ROC analyses was highest if imaging features 
with metabolomics data were combined (ROC AUC for 
best FDOPA + metabolomics model: 0.98; AUC for best 
FDG + metabolomics model: 0.91). DPP was lower if only 
PET attributes or only metabolomics signatures were used. 
The authors concluded that the integration of blood metabo-
lomics data and PET data remarkably increased the diagnos-
tic discrimination power.

A further interesting paper by Wu et al. [25] suggested 
that radiomics features could describe the brain tissue heter-
ogeneity in PD to differentiate between patients and normal 
controls. Radiomics allows the extraction of a large num-
ber of high-level features from medical images using high-
throughput calculations. Such features reflect the potential 
pathophysiological information useful for clinical diagnosis. 
In a retrospective multi-cohort study, Wu et al. extracted 
radiomics features from 18F-FDG PET images and collected 
clinical scale results [the Unified Parkinson’s Disease Rating 
Scale (UPDRS) and Hoehn & Yahr scale (H&Y)] of two 
cohorts of patients included to document the stability and 
applicability of the proposed radiomic methods. The study 
was conducted on different samples from different PET scan-
ners with different imaging characteristics. The cohort from 
Huashan Hospital consisted of 91 normal controls (NC) and 
91 PD patients (UPDRS: 22.7 ± 11.7, H&Y: 1.8 ± 0.8), while 
the other cohort from Wuxi 904 Hospital included 26 NC 
and 22 PD patients (UPDRS: 20.9 ± 11.6, H&Y: 1.7 ± 0.9). 
The Huashan cohort was used as the training and test sets by 
fivefold cross-validation, whilst the Wuxi cohort was used 
as an independent test set. Regions of interests (ROIs) were 
identified through the atlas-based method; radiomic fea-
tures were extracted and selected using autocorrelation and 
Fisher score algorithm. A support vector machine (SVM) 
was trained to classify PD and NC based on the selected 
radiomic features. In the experiments, the authors compared 
their method with the traditional voxel values method. To 
increase robustness, the processes were repeated in 500 
times. As results, 26 brain ROIs were identified and 610 total 
radiomic features were extracted. Only 30 out of the 610 
features remained after feature selection. The accuracy of the 
proposed method was 90.97% ± 4.66% and 88.08% ± 5.27% 
in Huashan and Wuxi test sets, respectively. The authors 
concluded that high-order radiomic features extracted from 
18F-FDG PET brain images provided a valuable computer-
aided diagnosis of PD, as the radiomic features for diagnosis 
resulted more accurate than traditional voxel values. Finally, 
they suggested that future research may focus on the use of 
high-order radiomic features as quantitative biomarkers for 
early diagnosis of PD.

In a recent paper, Choi et al. [38] developed a deep learn-
ing-based cognitive signature of FDG brain PET suitable for 
PD and AD. A deep CNN (convolutional neural network) 
model to differentiate AD and normal controls (NCs) was built 
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by a training set composed of 636 FDG PET scans obtained 
from Alzheimer’s disease Neuroimaging Initiative (ADNI) 
database. The model was then transferred to images of 666 
patients with mild cognitive impairment (MCI) to identify who 
would rapidly convert to AD and it was tested in a further 
independent cohort including 62 PD patients to identify PD 
patients with dementia. The model accuracy was measured 
by the area under curve (AUC). The relationship between 
all images was visualized by two-dimensional projection of 
the deep learning-based features (128 for each patient) and 
the model was also designed to predict cognitive score of the 
examined individuals and validated in PD patients. Feature 
maps of the deep CNN model allowed to visualize cognitive 
dysfunction-related regions.

In the “Results” section, the authors showed that AUC 
of ROC discriminating AD and NC was 0.94 (95% CI 
0.89–0.98). The transferred model was able to identify MCI 
patients converting to AD (AUC = 0.82) and PD with demen-
tia (AUC = 0.81). The two-dimensional projection mapping 
visualized the degree of cognitive dysfunction compared with 
normal brains independently of different disease cohorts. Brain 
metabolic features related to the cognitive dysfunction were 
localized on individual FDG PET images. The cognitive dys-
function-related regions of individuals were different among 
and cognitive dysfunction-related regions were obtained for 
three PD patients with dementia. The regions included cingu-
late and high frontal/parietal cortices, even though cognitive 
dysfunction-related regions of the first patient were posterior 
cingulate area, those of the second patient were the superior 
frontal and parietal cortices and those of the third patient were 
the cingulate and superior frontoparietal cortices. Cognitive 
dysfunction-related regions were averaged across AD patients 
and PD patients with dementia, respectively, and the averaged 
regions were cingulate and superior frontal/parietal cortices.

Mini-mental status exam scores highly correlated with 
predicted cognitive score, an output of the model. Finally, 
the authors concluded that the deep learning-based cogni-
tive function evaluation model could be successfully trans-
ferred to multiple disease domain, thus suggesting that this 
approach could be extended to an objective cognitive sig-
nature able to provide quantitative biomarker for cognitive 
dysfunction in different neurodegenerative disorders, such 
as AD and PD.

The main results of the papers presented in this review 
and carried out using AI techniques applied to nuclear medi-
cine modalities in early PD, are reported in Table 2.

Differential diagnosis between PD and other 
Parkinsonian syndromes

Differential diagnosis between PD and other Parkinso-
nian disorders, such as Multiple System Atrophy (MSA), 
Progressive Supranuclear Palsy (PSP) and Corticobasal 

Degeneration (CBD), in addition to vascular Parkinsonism 
and drug-induced PD is also a challenging task. This is due 
to the possibility to effectively treat PD using l-Dopa or 
Dopamine-agonists, while other Parkinsonian syndromes 
do not have a valid clinical response. 123I-FP-CIT brain 
SPECT can help discriminate degenerative Parkinsonian 
syndromes from Essential Tremor, psychogenic and vascu-
lar Parkinsonism, as these nosological entities have a normal 
nigrostriatal function [14, 19, 39]. However, 123I-FP-CIT 
brain SPECT alone is not sufficient to differentiate between 
the various types of degenerative Parkinsonian syndromes.

It has been shown that neurodegenerative diseases share 
a common pathogenetic molecular mechanism character-
ized by increased accumulation of different, non-degraded, 
normal proteins in specific neuronal population and in glial 
cells, thus leading to the definition of proteinopathies, whose 
pathology is mediated by the type of proteins and by the ana-
tomical localization of protein deposits [19]. Proteinopathies 
include Tauopathies and Alpha-synucleinopathies. Tauopa-
thies include Alzheimer’s disease (AD), fronto-temporal 
dementia with parkinsonism linked to tau mutation on chro-
mosome 17 (FTDP-17T), Pick disease, PSP and CBD and 
they are characterized by intracellular inclusion of hyper-
phosphorylated and aggregated tau proteins in the form of 
neurobrillary tangles. Alpha-synucleinopathies include PD, 
PD with dementia (PDD), Lewy Body Dementia (LBD) and 
MSA, showing the presence of aggregates of phosphoryl-
ated alpha-synuclein protein called Lewy Bodies. However, 
some authors have suggested that alpha-synucleinopathies 
and tauopathies could not be possibly considered as isolated 
categories due to the dubious or mixed clinical symptoms—
especially at the early stages—although the histopathologi-
cal classification of the neurodegenerative diseases is based 
on the nature and localization of these deposits in the nerv-
ous system [19, 40].

The combination of 123I-FP-CIT brain SPECT and 
123I-MIBG myocardial scintigraphy is currently considered 
a valuable strategy for differential diagnosis between PD 
and other degenerative and vascular Parkinsonian syndromes 
[19, 34]. Indeed 123I-MIBG myocardial scintigraphy makes 
it possible to assess the sympathetic cardiac nerve terminals, 
as PD subjects have a decreased cardiac MIBG uptake com-
pared with other Parkinsonian syndromes where 123I-MIBG 
uptake is usually normal [40, 41].

123I‑MIBG scintigraphy and post‑synaptic 
radiopharmaceuticals

In a recent paper by our group [20], we performed MIBG 
myocardial scintigraphy in 85 subjects with Parkinsonian 
syndrome. Fifty of them had idiopathic Parkinson’s disease, 
26 atypical Parkinsonian syndromes (P) and nine essen-
tial tremor. Images were evaluated both qualitatively and 
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quantitatively by drawing on planar early and delayed images 
H/M ratio obtained from the regions of interest (ROIt1 and 
ROIt2). The numerical data obtained by semi-quantitative 
analysis were further processed using two machine learn-
ing techniques (SVM and RF) to obtain reliable and repro-
ducible heart/mediastinum (H/M) ratio cut-off values for 
Parkinsonian disorders. SVM classifier characteristics were 
previously described [15].

Let us just recall here that a Random Forest classifier is 
an ensemble classifier which uses a set of classification trees 
to estimate the output (diagnostic) class as function of the 
input features. In RF, each basic classifier (ClT) proposes a 
diagnostic class (vote) and the finally output is the class label 
with most votes [42, 43]. In Nuvoli et al. [20] both SVM and 
RF classifiers were used to obtain the cut-off values.

The results indicate that SVM and RF attained excellent 
classification performances, with SVM providing the high-
est accuracy followed by RF. The optimal H/M cut-off value 
was 1.55, as it remained the same for both ROIt1 and ROIt2, 
and allowed to correctly classify PD from Parkinsonian 
syndromes and ET. If patients had H/M < 1.55, they were 
diagnosed as PD; if they had values ≥ 1.55, they were clas-
sified as Parkinsonism and/or ET. No difference was found 
when early or late H/M ratios were considered separately. 
The authors concluded that the use of SVM and CT allowed 
to define the optimal H/M cut-off value either in early or 
in delayed phase, thus confirming the pivotal role played 
by [123I]MIBG cardiac scintigraphy and the effectiveness 
of H/M ratio in the differential diagnosis among PD, ET 
and other Parkinsonism. An interesting result was that early 
scans alone could be used for a reliable diagnosis, as no dif-
ference in accuracy emerged from using early or late scans, 
albeit this finding needs to be confirmed in larger studies. 
To our knowledge, this was the first study investigating the 
role of automatic classifiers to diagnose Parkinsonian syn-
dromes basing on data derived from [123I]MIBG cardiac 
scintigraphy.

A paper by Segovia et al. [44], investigated the role of 
the positron-emitting radiopharmaceutical 18F-Desmeth-
oxyfallypride [18F]DMFP, which enables imaging of the 
postsynaptic striatal dopaminergic deficit that characterizes 
non-idiopathic Parkinsonian variants, such as multiple sys-
tem atrophy (MSA) or progressive supranuclear palsy (PSP). 
The authors used an SVM classifier on pre-processed [18F]
DMFP PET data from 87 scans collected in a longitudinal 
study carried at the University of Munich [45] to distinguish 
the idiopathic and non-idiopathic Parkinsonian patients (i.e., 
PD vs. MSA and PSP). Since delimitation of the regions of 
interest in DMFP-PET images is of great importance for 
improving the automatic diagnosis of PD, the authors pro-
posed a novel methodology to pre-process 18F-DMFP-PET 
scan data to increase the accuracy of computer-aided diag-
nosis systems. The data were segmented using an algorithm 

based on Hidden Markov Random Field. As a result, each 
neuroimage was divided into four maps according to the 
intensity and the neighborhood of the voxels and these 
maps were then normalized to a Gaussian distribution with 
equal parameters for all the neuroimages. After these pre-
processing steps, an SVM classifier was used to discrimi-
nate idiopathic and non-idiopathic PD. Data pre-processed 
using this method provided higher accuracy compared with 
those pre-processed with previously applied approaches. A 
previous paper of this group [46] evaluated the ability of 
[18F]DMFP PET scan in the same dataset of patients to 
distinguish Parkinson’s disease from atypical Parkinsonian 
syndromes via an automated system based on support vector 
machines and Bayesian networks. Although the approaches 
proposed in the above papers are very promising, they have 
one main disadvantage— i.e., the use of a rather uncommon 
radiotracer, which makes the methods difficult to translate 
into the clinical practice.

Dopamine Transporters (DAT) imaging

Although 123I-FP-CIT brain SPECT is considered scarcely 
useful for the differential diagnosis of PD and degenera-
tive Parkinsonian syndromes, some papers investigated the 
role of this diagnostic tool for this task by analyzing data 
obtained via AI techniques to improve its clinical useful-
ness. In this direction, Badoud et al. [47] employed advanced 
image analysis techniques to discriminate between PD and 
different atypical Parkinsonian syndromes (APS) by eval-
uating data derived from 392 consecutive patients with 
degenerative Parkinsonism undergoing 123I-FP-CIT brain 
SPECT. This patient series included 306 PD, 24 multiple 
system atrophy (MSA), 32 progressive supranuclear palsy 
(PSP) and 30 corticobasal degeneration (CBD) subjects. 
Data analysis was based on voxel-wise univariate statisti-
cal parametric mapping and multivariate pattern recogni-
tion through linear discriminant classifiers. MSA and PSP 
showed less radiopharmaceutical uptake in the head of cau-
date nucleus comparing with PD and CBD, while no differ-
ence was observed between MSA and PSP. CBD had higher 
uptake in both putamen with respect to PD, MSA and PSP. 
Classification resulted significant for PD versus APS (AUC 
0.69, p < 0.05) and between APS categories (MSA vs CBD 
AUC 0.80, p < 0.05; MSA vs PSP AUC 0.69 p < 0.05; CBD 
vs PSP AUC 0.69 p < 0.05).

It is to note that the authors, based on the assumption 
that PD and APS might also affect the 123I-FP-CIT uptake 
outside the striatum, carried out the classification analy-
sis three times: within the striatum only, in the remaining 
brain outside the striatum, and on the entire brain. Even if 
the first proved the most informative for the classification, 
the other two also provided significant results, setting into 
evidence that dopaminergic impairment of extrastriatal 
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brain regions in PD and APS can be evaluated by advanced 
analysis techniques of molecular imaging. Some studies 
disclosed an affinity of 123I-Ioflupane for noradrenergic 
and serotoninergic receptors, especially within extrastriatal 
areas [48]. Therefore, non-dopaminergic uptake has to be 
taken into account to evaluate results of Badoud, showing 
that also extra-striatal regions provide relevant information 
to diagnose PD and other extrapyramidal syndromes, thus 
suggesting as a challenge for future research to investigate to 
what extent the discriminative information relies on textural 
feature.

However, the authors concluded that, although either stri-
atal or extra-striatal regions contain classification informa-
tion, the combination of both regions did not significantly 
improve the classification accuracy. Finally, the paper set 
into evidence that PD, MSA, PSP and CBD presented dif-
ferent patterns of dopaminergic depletion as investigated by 
123I-FP-CIT SPECT. The high specificity of 84–90% for PD 
versus APS allowed the authors to conclude that the classi-
fier was particularly useful to confirm atypical Parkinsonian 
syndromes.

Surely one point of strength of this work is the large 
population of subjects examined (n = 392 patients). Moreo-
ver, all the patients were scanned consecutively on the same 
machine using the same protocol of acquisition and, to avoid 
operator-related variability, all the post-processing proce-
dures were performed in an operator-independent manner 
including the creation of a study specific template. Sex and 
age data were used as non-explanatory co-regressors to 
compensate the impact on the nigrostriatal pathway. One 
possible limitation, however, is the retrospective nature of 
the study, although the long follow-up permitted some diag-
nostic reallocation, representing an advantage for the aim of 
this diagnosis-oriented study. Finally, the authors showed 
that, as neuropathological data were not available for most 
of patients, the diagnosis of PD and APS was clinical and 
based on well-established diagnostic criteria. In our opinion, 
this is the standard of the majority of the study carried out 
in these neurodegenerative groups, particularly in a so large 
cohort of individuals examined.

A further interesting study on this topic of Nicastro et al. 
[49] presented an automated classification method to diag-
nose degenerative Parkinsonian syndrome based on semi-
quantitative 123I-FP-CIT SPECT striatal indices and SVM 
analysis. 123I-FP-CIT SPECT was carried out at a single-
center level in 370 patients of whom 280 with Parkinson’s 
disease (PD), 21 with multiple system atrophy-Parkinso-
nian type (MSA-P), 41 with progressive supranuclear palsy 
(PSP), 28 with corticobasal syndrome (CBS) and 208 age- 
and gender-matched control subjects (mean age of the whole 
population 70.3 years, 47% female, mean disease duration at 
scan 1.4 years). Striatal volumes-of-interest (VOIs) uptake, 
VOIs asymmetry indices (AIs) and caudate/putamen (C/P) 

ratio were fed into an SVM for individual classification and 
accuracy was estimated through fivefold cross-validation. 
Univariate analysis showed significantly lower VOIs uptake, 
higher striatal AI and C/P ratio for each Parkinsonian syn-
drome compared with the controls (all p < 0.001). MSA-P 
and PSP disclosed the higher degree of striatal impairment, 
while CBS presented moderate uptake decrease and higher 
AI. The accuracy of binary classification of Parkinsonian 
syndromes versus control was 92.9%, that of pairwise binary 
classification between different Parkinsonian syndromes 
between 62.9% and 83.7%. The best results were obtained 
separating CBS from the other syndromes. Sensitivity and 
specificity values ranged between 60 and 80% for all the 
analyses. Striatal AI and C/P ratio on the more affected side 
had the highest weighting factors. In conclusion, the study 
determined that semi-quantitative 123I-FP-CIT SPECT 
striatal evaluation combined with SVM represented a chal-
lenging approach to discriminate PD from non-degenerative 
conditions and from atypical Parkinsonian syndromes at 
early stage.

Finally, a further paper by Huertas-Fernández et al. [50] 
has to be cited, which is about differentiating between vas-
cular Parkinsonism and PD by machine learning models. 
Vascular Parkinsonism (VP) is a Parkinsonian syndrome 
determined by cerebrovascular lesions and is clinically 
characterized by gait difficulties, symmetrical lower body 
bradykinesia, postural instability and absence of resting 
tremor [50, 51]. Although there are hallmarks to differenti-
ate between VP and idiopathic Parkinson’s disease (PD), 
an overlap in symptom presentation may occur and the dif-
ferential diagnosis among these conditions is not always 
easy [50, 52]. The aim of the study of Huertas-Fernández 
[50] was to develop diagnostic predictive models using data 
from two commonly used [123I]FP-CIT SPECT assessment 
methods: region-of-interest (ROI) analysis and whole-brain 
voxel-based analysis. Eighty retrospective patients with VP 
and 164 patients with PD undergoing [123I]FP-CIT SPECT 
were examined. Nuclear medicine specialists evaluated the 
images and calculated bilateral caudate and putamen [123I]
FP-CIT uptake and asymmetry indices using BRASS soft-
ware. Statistical parametric mapping (SPM) was performed 
to compare the radiolig and uptake between the two diseases 
at the voxel level. Quantitative data obtained by these two 
methods, in addition to potential confounding factors for 
dopamine transporter availability (sex, age, disease duration 
and severity), were used to build predictive models. The 
performance of logistic regression (LR), linear discriminant 
analysis and support vector machine (SVM) algorithms for 
ROI data, and their penalized versions for SPM data (penal-
ized LR, penalized discriminant analysis and SVM), were 
evaluated via tenfold cross-validation. Significant differ-
ences were observed in the ROI analysis after covariate cor-
rection between VP and PD patients in [123I]FP-CIT uptake 
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in the more affected side of the putamen and the ipsilateral 
caudate. Age, disease duration and severity were also found 
to be informative to build the statistical model. SPM analysis 
showed significant reductions of [123I]FP-CIT uptake in PD 
compared with VP in two specular clusters including areas 
corresponding to the left and right striatum. The LR model 
using ROI data reached a diagnostic predictive accuracy of 
90.3% and the SVM model using SPM data of 90.4%. The 
predictive models built with ROI data and SPM data deriv-
ing from [123I]FP-CIT SPECT therefore showed very good 
discrimination accuracy between VP and PD. However, the 
authors suggested that an external validation of the proposed 
methods was necessary to confirm their applicability across 
different centres.

The main characteristics of the papers presented in 
this review and carried out using AI techniques applied to 
nuclear medicine modalities to differentiate PD and other 
Parkinsonian syndromes, are reported in Table 3.

Discussion and conclusion

In the era of big data precision, medicine is a rapidly evolv-
ing field aiming at finding associations between quantita-
tive features extracted from imaging data and clinical out-
come. This has triggered intense research activity in the 
last few years, so much so that completely new topics—if 
not discipline—have emerged, as for instance, radiomics. It 
is believed that computer-assisted analysis of quantitative 
information from imaging data may complement standard 
radiological interpretation and, therefore, help improve diag-
nostic assessment in a number of disorders. The rationale 
behind this is that computerised method could capture and 
analyse complex patterns that would otherwise go unnoticed 
to the human eye.

In particular, here is increasing evidence that AI tech-
niques applied to nuclear medicine modalities can play a 
major role in the differential diagnosis of movement dis-
orders. This parallels the increasing research interest that 
AI is attracting in other areas, such as nuclear medicine, 
radiology, oncology, neurology and histopathology [5, 6, 10, 
53–56]. As the late Prof. Lucignani effectively underlined 
in a recent paper [1], “quantitative methods for assessing 
the status of imaging biomarkers are entering the diagnos-
tic workflow, most likely, the human visual interpretation 
of images will become insufficient and possibly inadequate 
for good clinical practice and research. Although there will 
always be a qualitative aspect to imaging, AI and quantita-
tive metrics will supplement and complement the current 
“human” methods of interpretation of imaging data in a 
holistic approach to individual patient management”.

In this scenario, AI techniques have the potential not 
only to improve the clinical classification in the diagnosis 
of movement disorders, but also to help discriminate among 
different pathological entities, therefore paving the way 
towards personalized medicine.

Although there is currently large consensus about the 
potential advantages related to the use of artificial intel-
ligence in nuclear medicine for the management of Par-
kinson’s and Parkinsonian syndromes, there are still some 
obstacles before these methodologies can be translated into 
clinical practice. One crucial step towards this end is stand-
ardisation: there is still large variability in the implementa-
tion of the overall pipeline—as regards, for instance, image 
acquisition, pre-processing, feature extraction and data 
analysis. It is necessary to define and adopt internationally 
recognised guidelines and promote large, multi-centric pro-
spective studies.
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