2,165 research outputs found

    Design and Control of a Compliant Parallel Manipulator

    Get PDF
    We describe a novel design for a compliant arm that can be mounted on a mobile robot. Because the arm is compliant, a mobile robot can manipulate or interact with objects that are not precisely positioned in the environment. The main features of the arm are the in-parallel architecture and a novel control scheme that allows us to easily control the Cartesian stiffness or impedance in the plane. Springs are added in series to the limbs of the parallel manipulator. We analyze one limb and the manipulator to determine its performance when either controlling the force applied to an object or controlling its stiffness. Further, we present experimental results that show the performance of the compliant arm

    Design and implementation of an actively adjustable spring mechanism via redundant actuation

    Get PDF
    This study presents the theoretical results and experimental validation of an adjustable stiffness mechanism. The use of redundant actuation is emphasized in the design of a one-degree-of-freedom Watt II mechanism capable of independently controlling the effective stiffness without a change in equilibrium position. This approach is in contrast to previous spring mechanism designs unable to actively control the spring rate independent of deflection, and has potential applications in various types of suspension and assembly systems. Results indicate that driving the redundantly actuated, unidirectional, spring mechanism requires attaching two direct brush-type direct current motors on each of the two grounded revolute joints, and that the concept of adjustable springs has proven to be valid regardless of the friction effects. The torques are controlled with corresponding power amplifiers which incorporate current control loops, and the effective stiffness of the system is dependent on the redundant actuator torques of the motors

    Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot

    Get PDF
    In this work, a novel planar parallel continuum robot (PCR) is introduced, consisting of three kinematic chains that are coupled at a triangular end-effector platform and include tendon-actuated continuum segments. The kinematics of the resulting structure are derived by adapting the descriptions for conventional planar parallel manipulators to include constant curvature bending of the utilized continuous segments. To account for friction and non-linear material effects, a data-driven model is used to relate tendon displacements and curvature of the utilized continuum segments. A calibration of the derived kinematic model is conducted to specifically represent the constructed prototype. This includes the calibration of geometric parameters for each kinematic chain and for the end-effector platform. During evaluation, positioning repeatability of 1.0% in relation to one continuum segment length of the robot, and positioning accuracy of 1.4%, are achieved. These results are comparable to commonly used kineto-static modeling approaches for PCR. The presented model achieves high path accuracies regarding the robot's end-effector pose in an open-loop control scenario

    Dexterity, workspace and performance analysis of the conceptual design of a novel three-legged, redundant, lightweight, compliant, serial-parallel robot

    Get PDF
    In this article, the mechanical design and analysis of a novel three-legged, agile robot with passively compliant 4-degrees-of-freedom legs, comprising a hybrid topology of serial, planar and spherical parallel structures, is presented. The design aims to combine the established principle of the Spring Loaded Inverted Pendulum model for energy efficient locomotion with the accuracy and strength of parallel mechanisms for manipulation tasks. The study involves several kinematics and Jacobian based analyses that specifically evaluate the application of a non-overconstrained spherical parallel manipulator as a robot hip joint, decoupling impact forces and actuation torques, suitable for the requirements of legged locomotion. The dexterity is investigated with respect to joint limits and workspace boundary contours, showing that the mechanism stays well conditioned and allows for a sufficient range of motion. Based on the functional redundancy of the constrained serial-parallel architecture it is furthermore revealed that the robot allows for the exploitation of optimal leg postures, resulting in the possible optimization of actuator load distribution and accuracy improvements. Consequently, the workspace of the robot torso as additional end-effector is investigated for the possible application of object manipulation tasks. Results reveal the existence of a sufficient volume applicable for spatial motion of the torso in the statically stable tripodal posture. In addition, a critical load estimation is derived, which yields a posture dependent performance index that evaluates the risks of overload situations for the individual actuators

    Planar mechanism for passive tilt-compensation

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Cataloged from PDF version of thesis.Includes bibliographical references (p. 81-83).This work investigated the design and testing of a planar mechanism for passively compensating tilt between two flat surfaces brought into close proximity. The proposed design uses flexural components which eliminate friction and ensure smooth motion. To achieve this alignment in one of the two surfaces, two heights were fixed. The first height was fixed by a preload from a micrometer head. The second height was fixed by the clamping of a post. This was achieved by using a variation of an existing in-plane clamp design. After the post was clamped, the alignment from the conformal contact of the two surfaces was fixed. An error analysis is presented to estimate the uncertainty in the alignment. For experimentally characterizing the tilt error, capacitance probes were used to measure the alignment errors. It was found that the maximum uncertainty in the alignment was on the order of 50 [mu]rad, making this design suitable for micro-scale planar alignment applications.by Justin Yi-Shen Lai.S.B

    A review on design of upper limb exoskeletons

    Get PDF

    Advancements in Prosthetics and Joint Mechanisms

    Get PDF
    abstract: Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented. A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait like behavior of passive systems for slow walking speeds. For higher walking speeds the powered ankle system is capable of adding the necessary energy to propel the user forward and remain similar to able bodied gait, effectively replacing the calf muscle. While running has not fully been achieved through past powered ankle devices the full power necessary is reached in this work for running and sprinting while achieving 4x’s power amplification through the powered ankle mechanism. A theoretical approach to robotic joints is then analyzed in order to combine the advantages of both passive and powered systems. Energy methods are shown to provide a correct behavioral analysis of any robotic joint system. Manipulation of the energy curves and mechanism coupler curves allows real time joint behavioral adjustment. Such a powered joint can be adjusted to passively achieve desired behavior for different speeds and environmental needs. The effects on joint moment and stiffness from adjusting one type of mechanism is presented.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    A kinematic-coupling-based adaptive fixture for high precision positioning applications in flexible manufacturing systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2002.Includes bibliographical references (p. 83-84).The means to achieve micron level accuracy and repeatability with detachable fixtures will be an enabling technology in future manufacturing processes. Given the many sources of time variable errors in fixture alignment (i.e. thermal, load, vibration), the integration of actuators and sensors within fixtures will be necessary to achieve real-time error compensation. This thesis examines the fundamental issues and design challenges associated with implementing a first prototype of a mechanized fixture. The device utilizes adjustable parallel kinematics (to achieve accuracy) and the interface of a three-groove kinematic coupling (to achieve repeatability). The result is a new fixture technology, dubbed the Accurate and Repeatable Kinematic Coupling (ARKC). The ARKC is equipped to accept six independent actuation inputs that make it possible to obtain decoupled small-motion adjustment in six axes. The kinematic model for the adjustable position control of the coupling is derived. The main contribution of this thesis is the experimental verification of the model. Experiments show less than 13% systematic error between the adjustable kinematic theory and experimental data. Although not a subject of this work, the systematic error can be mapped and removed from the coupling performance via software. The result will be a coupling with accuracy and repeatability of approximately 5 microns. Implementation of the device in flexible manufacturing systems is discussed. A case study that examines the performance of the ARKC in a next generation manufacturing process is included. Theoretical results from the case study show that the ARKC can be used to provide the precision alignment and positioning requirements of next generation semiconductor test equipment.by Carlos A. Araque.S.M

    Optimal Design of Beam-Based Compliant Mechanisms via Integrated Modeling Frameworks

    Get PDF
    Beam-based Compliant Mechanisms (CMs) are increasingly studied and implemented in precision engineering due to their advantages over the classic rigid-body mechanisms, such as scalability and reduced need for maintenance. Straight beams with uniform cross section are the basic modules in several concepts, and can be analyzed with a large variety of techniques, such as Euler-Bernoulli beam theory, Pseudo-Rigid Body (PRB) method, chain algorithms (e.g.~the Chained Beam-Constraint Model, CBCM) and Finite Element Analysis (FEA). This variety is unquestionably reduced for problems involving special geometries, such as curved or spline beams, variable section beams, nontrivial shapes and, eventually, contacts between bodies. 3D FEA (solid elements) can provide excellent results but the solutions require high computational times. This work compares the characteristics of modern and computationally efficient modeling techniques (1D FEA, PRB method and CBCM), focusing on their applicability in nonstandard problems. In parallel, as an attempt to provide an easy-to-use environment for CM analysis and design, a multi-purpose tool comprising Matlab and modern Computer-Aided Design/Engineering (CAD/CAE) packages is presented. The framework can implement different solvers depending on the adopted behavioral models. Summary tables are reported to guide the designers in the selection of the most appropriate technique and software architecture. The second part of this work reports demonstrative case studies involving either complex shapes of the flexible members or contacts between the members. To improve the clarity, each example has been accurately defined so as to present a specific set of features, which leads in the choice of a technique rather than others. When available, theoretical models are provided for supporting the design studies, which are solved using optimization approaches. Software implementations are discussed throughout the thesis. Starting from previous works found in the literature, this research introduces novel concepts in the fields of constant force CMs and statically balanced CMs. Finally, it provides a first formulation for modeling mutual contacts with the CBCM. For validation purposes, the majority of the computed behaviors are compared with experimental data, obtained from purposely designed test rigs

    A lifting and actuating unit for a planar nanoprecision drive system

    Get PDF
    Ein wesentlicher Treiber in vielen heutigen Technologiebereichen ist die Miniaturisierung von elektrischen, optischen und mechanischen Systemen. Mehrachsige Geräte mit großen Verfahrbereichen und extremer Präzision spielen dabei nicht nur in der Messung und Qualitätssicherung, sondern auch in der Fabrikation und Manipulation von Nanometerstrukturen eine entscheidende Rolle. Die vertikale Bewegungsaufgabe stellt eine besondere Herausforderung dar, da die Schwerkraft des bewegten Objektes permanent kompensiert werden muss. Diese Arbeit schlägt dafür eine Vertikalhub- und -aktuiereinheit vor und trägt damit zur Weiterentwicklung von Nanometer-Präzisionsantriebssystemen bei. Grundlegende mögliche kinematische Integrationsvarianten werden betrachtet und entsprechend anwendungsrelevanter Kriterien gegenübergestellt. Der gezeigte parallelkinematische Ansatz zeichnet sich durch seine gute Integrierbarkeit, geringe negative Einflüsse auf die umliegenden Systeme, sowie die Verteilung der Last auf mehrere Stellglieder aus. Folgend wird ein konstruktiver Entwicklungsprozess zusammengestellt, um diese favorisierte Variante weiter auszuarbeiten. Im Laufe dieses Prozesses wird die zu entwickelnde Einheit in das Gesamtsystem eingeordnet und ihre Anforderungen, Randbedingungen und enthaltenen Teilsysteme definiert. Die vertikale Aktuierung besteht dabei aus zwei Systemen: Einer pneumatische Gewichtskraftkompensation und einem elektromagnetischen Präzisionsantrieb. Das technische Prinzip der Hubeinheit wird erstellt und die Teilsysteme im verfügbaren Bauraum angeordnet. Daraus wird ein detailliertes Modell des pneumatischen Aktors abgeleitet, dieser dimensioniert und dessen Eigenschaften bestimmt. Die Ausdehnung dieses Teilsystems definiert die räumlichen Grenzen für den umliegenden Präzisionsantrieb. Zur Auslegung dieses Antriebs wird das Kraft-/Leistungsverhältnis als Zielgröße definiert. Mit Hilfe von numerischer Simulation und Optimierung werden Geometrien für verschiedenste Topologien entworfen und bewertet. Die geeignetste Variante wird mit allen Teilsystemen in eine Einheit integriert und auskonstruiert. Abschließend werden zukünftige Schritte für die Integration der Einheit in ein Präzisionsantriebssystem dargestellt und mögliche Anwendungsszenarien in der Nanofabrikation präsentiert.A central driver in many of today's fields of technology is the miniaturization of electrical, optical and mechanical systems. Multi-axis devices with large travel ranges and extreme precision play a decisive role, not only in measurement and quality assurance, but also in the fabrication and manipulation of nanometer structures. The vertical movement task poses a special challenge, since the gravitational load of the moving object must be compensated permanently. This thesis proposes a vertically lifting and actuating unit and thus contributes to the further development of nanometer precision drive systems. Basic possible kinematic integration variants are considered and compared according to application relevant criteria. The presented parallel kinematic approach is characterized by its good integrability, its minimal negative influences on the surrounding systems, as well as the distribution of the load to several actuators. Subsequently, a constructive development process is compiled to further develop this favoured variant. During this process the unit to be developed is integrated into the overall system. Further, its requirements, boundary conditions and subsystems are defined. The vertical actuation consists of two systems: A pneumatic weight force compensation and an electromagnetic precision drive. The technical principle of the lifting unit is developed and the subsystems are arranged in the available design space. Based on this, a detailed model of the pneumatic actuator is created, its dimensions derived and properties obtained. These dimensions define the spatial limits for the surrounding precision actuator. For the design of this actuator, the force-power ratio is chosen as the objective quantity. Using numerical simulations and optimization, geometries for various topologies are created and evaluated. The most suitable variant is designed and integrated with all other subsystems into one unit. Finally, upcoming steps for integrating the unit into a precision drive system are outlined and possible future applications in the field of nanofabrication are presented
    • …
    corecore