956 research outputs found

    Analysis and Reduction of the Impact of Thermal Noise on the Full-Duplex OFDM Radio

    Get PDF
    International audienceSelf-Interference has been significantly reduced by current cancelation methods for the practical design of Full- Duplex wireless. However, the residual self-interference is still much stronger than the thermal noise due to many factors, e.g. phase noise in local oscillator, I/Q imbalance, thermal noise and so on, limiting the self-interference cancelation. In this paper, the influence of the thermal noise on the active self-interference cancelation (ASIC) for wideband Full-Duplex OFDM wireless system is analytically studied and demonstrated. We propose a little modification to the structure of data packet of IEEE 802.11g to reduce the impact of the thermal noise on the active selfinterference cancelation (ASIC) for Full-Duplex OFDM wireless. The ADS-Matlab co-simulation results show that we can reduce the residual self-interference to only 1.5dB higher than the receiver thermal noise

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication

    All-Digital Self-interference Cancellation Technique for Full-duplex Systems

    Full text link
    Full-duplex systems are expected to double the spectral efficiency compared to conventional half-duplex systems if the self-interference signal can be significantly mitigated. Digital cancellation is one of the lowest complexity self-interference cancellation techniques in full-duplex systems. However, its mitigation capability is very limited, mainly due to transmitter and receiver circuit's impairments. In this paper, we propose a novel digital self-interference cancellation technique for full-duplex systems. The proposed technique is shown to significantly mitigate the self-interference signal as well as the associated transmitter and receiver impairments. In the proposed technique, an auxiliary receiver chain is used to obtain a digital-domain copy of the transmitted Radio Frequency (RF) self-interference signal. The self-interference copy is then used in the digital-domain to cancel out both the self-interference signal and the associated impairments. Furthermore, to alleviate the receiver phase noise effect, a common oscillator is shared between the auxiliary and ordinary receiver chains. A thorough analytical and numerical analysis for the effect of the transmitter and receiver impairments on the cancellation capability of the proposed technique is presented. Finally, the overall performance is numerically investigated showing that using the proposed technique, the self-interference signal could be mitigated to ~3dB higher than the receiver noise floor, which results in up to 76% rate improvement compared to conventional half-duplex systems at 20dBm transmit power values.Comment: Submitted to IEEE Transactions on Wireless Communication

    Self-interference cancellation enabling high-throughput short-reach wireless full-duplex communication

    Get PDF
    In-band full-duplex (FD) wireless communication allows the simultaneous transmission and reception of data at the same frequency band, effectively doubling the spectral efficiency and data rate while reducing the latency. Previously published designs mostly target the self-interference (SI) cancellation in conventional wireless systems. In this paper, we focus on real-time SI cancellation for short-reach wireless FD systems. The superior signal quality of a point-to-point short-reach wireless system, allows the utilization of wideband communications to achieve a high throughput. Besides, in such wireless systems, the impacts of phase noise and nonlinear distortions are largely reduced, easing the SI cancellation. Moreover, the degradation of signal reception quality due to FD operation is experimentally evaluated in different environments. Experimental results of a prototype implementation show that a combination of antenna isolation and digital cancellation can already achieve an overall SI cancellation performance of 72.5 dB over a bandwidth of 123 MHz. This prototype can support a high-data-rate FD communication link of close to 1 Gbps up to 300 cm with an error vector magnitude lower than -26 dB in a typical indoor environment

    Full-Duplex OFDM Radar With LTE and 5G NR Waveforms: Challenges, Solutions, and Measurements

    Get PDF
    This paper studies the processing principles, implementation challenges, and performance of OFDM-based radars, with particular focus on the fourth-generation Long-Term Evolution (LTE) and fifth-generation (5G) New Radio (NR) mobile networks' base stations and their utilization for radar/sensing purposes. First, we address the problem stemming from the unused subcarriers within the LTE and NR transmit signal passbands, and their impact on frequency-domain radar processing. Particularly, we formulate and adopt a computationally efficient interpolation approach to mitigate the effects of such empty subcarriers in the radar processing. We evaluate the target detection and the corresponding range and velocity estimation performance through computer simulations, and show that high-quality target detection as well as high-precision range and velocity estimation can be achieved. Especially 5G NR waveforms, through their impressive channel bandwidths and configurable subcarrier spacing, are shown to provide very good radar/sensing performance. Then, a fundamental implementation challenge of transmitter-receiver (TX-RX) isolation in OFDM radars is addressed, with specific emphasis on shared-antenna cases, where the TX-RX isolation challenges are the largest. It is confirmed that from the OFDM radar processing perspective, limited TX-RX isolation is primarily a concern in detection of static targets while moving targets are inherently more robust to transmitter self-interference. Properly tailored analog/RF and digital self-interference cancellation solutions for OFDM radars are also described and implemented, and shown through RF measurements to be key technical ingredients for practical deployments, particularly from static and slowly moving targets' point of view.Comment: Paper accepted by IEEE Transactions on Microwave Theory and Technique

    Optimal Signaling of MISO Full-Duplex Two-Way Wireless Channel

    Full text link
    We model the self-interference in a multiple input single output (MISO) full-duplex two-way channel and evaluate the achievable rate region. We formulate the boundary of the achievable rate region termed as the Pareto boundary by a family of coupled, non-convex optimization problems. Our main contribution is decoupling and reformulating the original non-convex optimization problems to a family of convex semidefinite programming problems. For a MISO full-duplex two-way channel, we prove that beamforming is an optimal transmission strategy which can achieve any point on the Pareto boundary. Furthermore, we present a closed-form expression for the optimal beamforming weights. In our numerical examples we quantify gains in the achievable rates of the proposed beamforming over the zero-forcing beamforming.Comment: To appear in IEEE ICC 2015, London, U
    • …
    corecore