208 research outputs found

    Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Get PDF
    The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods

    Passivity and synchronization of coupled different dimensional delayed reaction-diffusion neural networks with dirichlet boundary conditions

    Get PDF
    Two types of coupled different dimensional delayed reaction-diffusion neural network (CDDDRDNN) models without and with parametric uncertainties are analyzed in this paper. On the one hand, passivity and synchronization of the raised network model with certain parameters are studied through exploiting some inequality techniques and Lyapunov stability theory, and some adequate conditions are established. On the other hand, the problems of robust passivity and robust synchronization of CDDDRDNNs with parameter uncertainties are solved. Finally, two numerical examples are given to testify the effectiveness of the derived passivity and synchronization conditions

    Synchronization analysis of coupled fractional-order neural networks with time-varying delays

    Get PDF
    In this paper, the complete synchronization and Mittag-Leffler synchronization problems of a kind of coupled fractional-order neural networks with time-varying delays are introduced and studied. First, the sufficient conditions for a controlled system to reach complete synchronization are established by using the Kronecker product technique and Lyapunov direct method under pinning control. Here the pinning controller only needs to control part of the nodes, which can save more resources. To make the system achieve complete synchronization, only the error system is stable. Next, a new adaptive feedback controller is designed, which combines the Razumikhin-type method and Mittag-Leffler stability theory to make the controlled system realize Mittag-Leffler synchronization. The controller has time delays, and the calculation can be simplified by constructing an appropriate auxiliary function. Finally, two numerical examples are given. The simulation process shows that the conditions of the main theorems are not difficult to obtain, and the simulation results confirm the feasibility of the theorems

    Synchronization of Complex-Valued Dynamical Networks

    Get PDF
    Dynamical networks (DNs) have been broadly applied to describe natural and human systems consisting of a large number of interactive individuals. Common examples include Internet, food webs, social networks, neural networks, etc. One of the crucial and significant collective behaviors of DNs is known as synchronization. In reality, synchronization phenomena may occur either inside a network or between two or more networks, which are called “inner synchronization” and “outer synchronization”, respectively. On the other hand, many real systems are more suitably characterized by complex-valued dynamical systems, such as quantum systems, complex Lorenz system, and complex-valued neural networks. The main focus of this thesis is on synchronization of complex-valued dynamical networks (CVDNs). In this thesis, we firstly design a delay-dependent pinning impulsive controller to study synchronization of time-delay CVDNs. By taking advantage of the Lyapunov function in the complex field, some delay-independent synchronization criteria of CVDNs are established, which generalizes some existing synchronization results. Then, by employing the Lyapunov functional in the complex field, several delay-dependent sufficient conditions on synchronization of CVDNs with various sizes of delays are constructed. Moreover, we study synchronization of CVDNs with time-varying delays under distributed impulsive controllers. By taking advantage of time-varying Lyapunov function/ functional in the complex domain, several synchronization criteria for CVDNs with time-varying delays are derived in terms of complex-valued linear matrix inequalities (LMIs). Then, we propose a memory-based event-triggered impulsive control (ETIC) scheme with three levels of events in the complex field to investigate the synchronization problem of CVDNs with both discrete and distributed time delays, and we further consider an event-triggered pinning impulsive control (ETPIC) scheme combining the proposed ETIC and a pinning algorithm to study synchronization of time-delay CVDNs. Results show that the proposed ETIC scheme and ETPIC scheme can effectively synchronize CVDNs with the desired trajectory. Secondly, we study generalized outer synchronization of drive-response time-delayed CVDNs via hybrid control. A hybrid controller is proposed in the complex domain to construct response complex-valued networks. Some generalized outer synchronization criteria for drive-response CVDNs are established, which extend the existing generalized outer synchronization results to the complex field. Thirdly, we study the average-consensus problem of potential complex-valued multi-agent systems. A complex-variable hybrid consensus protocol is proposed, and time delays are taken into account in both the continuous-time protocol and the discrete-time protocol. Delay-dependent sufficient conditions are established to guarantee the proposed complex-variable hybrid consensus protocol can solve the average-consensus problem. Lastly, as a practical application for complex-valued networked systems, the synchronization problem of master-slave complex-valued neural networks (CVNNs) is studied via hybrid control and delayed ETPIC, respectively. We also investigate the state estimation problem of CVNNs by designing the adaptive impulsive observer in the complex field

    Exponential Synchronization of Stochastic Complex Dynamical Networks with Impulsive Perturbations and Markovian Switching

    Get PDF
    This paper investigates the exponential synchronization problem of stochastic complex dynamical networks with impulsive perturbation and Markovian switching. The complex dynamical networks consist of Îş modes, and the networks switch from one mode to another according to a Markovian chain with known transition probability. Based on the Lyapunov function method and stochastic analysis, by employing M-matrix approach, some sufficient conditions are presented to ensure the exponential synchronization of stochastic complex dynamical networks with impulsive perturbation and Markovian switching, and the upper bound of impulsive gain is evaluated. At the end of this paper, two numerical examples are included to show the effectiveness of our results
    • …
    corecore