56,320 research outputs found

    Analysis and perturbation of degree correlation in complex networks

    Full text link
    Degree correlation is an important topological property common to many real-world networks. In this paper, the statistical measures for characterizing the degree correlation in networks are investigated analytically. We give an exact proof of the consistency for the statistical measures, reveal the general linear relation in the degree correlation, which provide a simple and interesting perspective on the analysis of the degree correlation in complex networks. By using the general linear analysis, we investigate the perturbation of the degree correlation in complex networks caused by the addition of few nodes and the rich club. The results show that the assortativity of homogeneous networks such as the ER graphs is easily to be affected strongly by the simple structural changes, while it has only slight variation for heterogeneous networks with broad degree distribution such as the scale-free networks. Clearly, the homogeneous networks are more sensitive for the perturbation than the heterogeneous networks.Comment: 5 pages, 4 figure

    Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    Full text link
    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.Comment: 20 pages, 5 figures. In Press in Sci Rep 201

    Networks from gene expression time series: characterization of correlation patterns

    Full text link
    This paper describes characteristic features of networks reconstructed from gene expression time series data. Several null models are considered in order to discriminate between informations embedded in the network that are related to real data, and features that are due to the method used for network reconstruction (time correlation).Comment: 10 pages, 3 BMP figures, 1 Table. To appear in Int. J. Bif. Chaos, July 2007, Volume 17, Issue

    The statistical mechanics of networks

    Full text link
    We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We give exact solutions of models within this class that incorporate arbitrary degree distributions and arbitrary but independent edge probabilities. We also discuss some more complex examples with correlated edges that can be solved approximately or exactly by adapting various familiar methods, including mean-field theory, perturbation theory, and saddle-point expansions.Comment: 15 pages, 4 figure

    Self-organization of network dynamics into local quantized states

    Get PDF
    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model---a minimal-ingredients model of nodal activation and interaction within a complex network---is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements. Our results show that these self-organized, local structures can provide robust functional units to understand natural and socio-technical network-organized processes.Comment: 11 pages, 4 figure

    Quantifying the connectivity of a network: The network correlation function method

    Full text link
    Networks are useful for describing systems of interacting objects, where the nodes represent the objects and the edges represent the interactions between them. The applications include chemical and metabolic systems, food webs as well as social networks. Lately, it was found that many of these networks display some common topological features, such as high clustering, small average path length (small world networks) and a power-law degree distribution (scale free networks). The topological features of a network are commonly related to the network's functionality. However, the topology alone does not account for the nature of the interactions in the network and their strength. Here we introduce a method for evaluating the correlations between pairs of nodes in the network. These correlations depend both on the topology and on the functionality of the network. A network with high connectivity displays strong correlations between its interacting nodes and thus features small-world functionality. We quantify the correlations between all pairs of nodes in the network, and express them as matrix elements in the correlation matrix. From this information one can plot the correlation function for the network and to extract the correlation length. The connectivity of a network is then defined as the ratio between this correlation length and the average path length of the network. Using this method we distinguish between a topological small world and a functional small world, where the latter is characterized by long range correlations and high connectivity. Clearly, networks which share the same topology, may have different connectivities, based on the nature and strength of their interactions. The method is demonstrated on metabolic networks, but can be readily generalized to other types of networks.Comment: 10 figure

    Interregional synchrony of visuomotor tracking: perturbation effects and individual differences

    Get PDF
    The present study evaluated the neural and behavioural correlates associated with a visuomotor tracking task during which a sensory perturbation was introduced that created a directional bias between moving hand and cursor position. The results revealed that trajectory error increased as a result of the perturbation in conjunction with a dynamic neural reorganization of cluster patterns that reflected distinct processing. In particular, a negatively activated cluster, characterizing the degraded information processing due to the perturbation, involved both hemispheres as well as midline area. Conversely, a positively activated cluster, indicative of compensatory processing was strongly confined to the left (dominant) hemisphere. In addition, a brain-behavioural association of good vs. poor performing participants enabled to localize a neural circuit within the left hemisphere and midline area that linked with successful performance. Overall, these data reinforce the functional significance of interregional synchrony in defining response output and behavioural success
    • …
    corecore