3,730 research outputs found

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Electromagnetic Interference and Compatibility

    Get PDF
    Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials

    Control and Optimization of Fuel Cell Based Powertrain for Automotive Applications

    Get PDF
    Fuel cell powered electric vehicles, with fast-refueling time, high energy density, and zero CO2 emissions, are becoming a promising solution for future fossil-free transportation. However, the relatively slow dynamic response and the inability of recovering the regenerative energy make vehicles solely powered by fuel cells not an immediately attractive solution. Instead, hybrid vehicles powered by fuel cells combined with energy buffers such as batteries and supercapacitors could be of more interest. Due to the unique characteristics of each energy buffer, the vehicle performance may vary with the hybrid energy storage system configuration. This thesis performs a comprehensive study on various energy storage configurations for applications in fuel cell hybrid electric vehicles. This thesis first examines the fuel cell/supercapacitor passive hybrid configuration where the fuel cell and supercapacitor share the same DC-link voltage. The power distribution between them is inherently determined by their internal resistances. Therefore, the DC-link voltage varies and depends on the vehicle power demand. In this work, a fuel cell/supercapacitor passive hybrid powertrain is first modeled and evaluated. Simulation results show that the energy efficiency is 53%–71% during propulsion and 84%–94% during braking, respectively. Moreover, a 3 kW lab-scale fuel cell/supercapacitor passive hybrid system is designed and investigated. Experimental results show that the fuel cell takes time to respond to a load change, while the supercapacitor provides the transient power, which makes it possible to downsize the fuel cell.Since the passive configuration loses the active controllability, this thesis further considers a fully-active fuel cell/supercapacitor system to improve the controllability of the power distribution. This configuration requires a boost converter for the fuel cell and a buck-boost converter for the supercapacitor. In this work, an adaptive power split method is used to smooth the fuel cell current and prevent the supercapacitor from exceeding its lower and upper charge limits. The cut-off frequency of the low-pass filter is adaptively controlled by the spectrum area ratio. Experimental results show that the supercapacitor state-of-charge is effectively controlled within the desired range. Moreover, a load disturbance compensator is proposed and demonstrated to improve the control performance such that the DC-link voltage fluctuation caused by the load current variation is significantly reduced.This thesis also investigates the cost-effectiveness of different energy buffers hybridized with fuel cells in various trucking applications. First, a chance-constraint co-design optimization problem is formulated. Convex modeling steps are presented to show that the problem can be decomposed and solved using convex programming. Results show that the power rating of the electric machine can be dramatically reduced when the delivered power is satisfied in a probabilistic sense. Moreover, the hybridization of fuel cells with lithium-ion batteries results in the lowest cost while the vehicle using lithium-ion capacitors as the energy buffer can carry the heaviest payload. This work also develops a robust co-design optimization framework considering the uncertainties in parameters (e.g., vehicle movement) and design decision variables (e.g., scaling factors of fuel cells and batteries). Results show that these uncertainties might propagate to uncertainties in state variables (e.g., battery energy) and optimization variables (e.g., battery power), leading to a larger battery capacity and therefore a higher total cost in robust optimal solutions. In summary, this thesis performs a comprehensive study on control and optimization of fuel cell based powertrains for automotive applications. This will provide a guidance on component selection and sizing, as well as powertrain system configuration and optimization for design of fuel cell powered electric vehicles

    Advanced Modeling of SiC Power MOSFETs aimed to the Reliability Evaluation of Power Modules

    Get PDF

    Recent Topics in Electromagnetic Compatibility

    Get PDF
    Recent Topics in Electromagnetic Compatability discusses several topics in electromagnetic compatibility (EMC) and electromagnetic interference (EMI), including measurements, shielding, emission, interference, biomedical devices, and numerical modeling. Over five sections, chapters address the electromagnetic spectrum of corona discharge, life cycle assessment of flexible electromagnetic shields, EMC requirements for implantable medical devices, analysis and design of absorbers for EMC applications, artificial surfaces, and media for EMC and EMI shielding, and much more

    High-Temperature Optoelectronic Device Characterization and Integration Towards Optical Isolation for High-Density Power Modules

    Get PDF
    Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in terms of thermal management, power efficiency, power density, operating environments, and reliability. However, regular semiconductor optoelectronic materials and devices have significant difficulty functioning in high-temperature environments. Modular integration of optoelectronic devices into high-temperature power modules is restricted due to the significant optical efficiency drop at elevated temperatures. The quantum efficiency and long-term reliability of optoelectronic devices decrease at elevated temperatures. The motivation for this study is to develop optoelectronic devices, specifically optocouplers, that can be integrated into high-density power modules. A detailed study on optoelectronic devices at high temperature enables us to explore the possibility of scaling high-density power modules by integrating high-temperature optoelectronic devices into the power module. The primary goal of this study is to characterize and verify the high-temperature operation of optoelectronic devices, including light-emitting diodes and photodiodes based on WBG materials. The secondary goal is to identify and integrate optoelectronic devices to achieve galvanic isolation in high-density power modules working at elevated temperatures. As part of the study, a high-temperature packaging, based on low temperature co-fired ceramic (LTCC), suitable to accommodate optoelectronic devices, will also be designed and developed

    Comparative Study of Power Semiconductor Devices in a Multilevel Cascaded H-Bridge Inverter

    Get PDF
    This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET and IGBT modeling tools in Saber® were extensively utilized to create the models of the power devices used in the simulations. The inverter system is also analyzed using Saber-Simulink cosimulation method to feed control signals from Simulink into Saber. The results in this investigation show better performances using a SiC MOSFET-based grid-connected BESS inverter with a better return of investment

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed
    • …
    corecore