67 research outputs found

    Sampled Data Control of a Compliant Actuated Joint Using On/Off Solenoid Valves

    Get PDF
    This paper proposes a new control system design method for a compliant actuated joint using on/off solenoid valves. Themathematical modelling and the system’s hardware are described in detail. The control design method is presented in ageneral manner so it could be applied for any other similar system. For the present system, the designed controller is implementedvia a digital computer and it is characterised by very good performance and simplicity. The success of the proposedmethod is validated via simulations and experiment

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    Development of intelligent McKibben actuator

    Get PDF
    The aim of this study is to develop an intelligent McKibben actuator with an integrated soft displacement sensor inside, so that displacement of this actuator can be controlled without having any extra devices attached. In addition, the high compliance which is a positive feature of the McKibben actuator is still conserved. This paper consists of four main parts. First of all, different types of soft displacement sensors made out of rubber were composed, and tested for their functional characteristics. Secondly, the intelligent McKibben actuator was developed with the soft displacement sensor incorporated within. Then, experiments of the position servo control with a single intelligent McKibben actuator were carried out. At last a robot arm mechanism was designed with two intelligent McKibben actuators, and those experimental results showed a great potential for its future applications.</p

    Pneumatic muscle actuators within robotic and mechatronic systems

    Get PDF

    Development of intelligent McKibben actuator with built-in soft conductive rubber sensor

    Get PDF
    This study aims at the development of an intelligent McKibben actuator, in which a soft rubber displacement sensor is integrated. Recently, the McKibben actuator has attracted engineers because of light weight, high output power and high compliance. But in the case of using it for servo control at present, the systems need encoders or potentiometers, therefore the systems tend to grow in size and take away from compliance which is an important advantage for a safe and secure mechanism. We have developed a soft displacement sensor and incorporated it in a McKibben actuator, named it the intelligent McKibben actuator, and proved its potential.</p

    EFFECTS OF BRAID ANGLE ON PNEUMATIC ARTIFICIAL MUSCLE ACTUATOR PERFORMANCE

    Get PDF
    ABSTRACT Pneumatic artificial muscles (PAMs) provide numerous advantages for use as actuators in a wide variety of mechanical systems. Our study focused on determining the effects of braid angle on the performance of PAMs. This paper discusses how we constructed a set of PAMs with varying braid angle, predicted their performance using analytical models, gathered empirical data characterizing the PAMs, and compared the analytical predictions with the experimental results. We constructed six PAMs of different braid angles between 38 o and 73 o . To predict PAM performance, we used an analysis based on the force equilibrium equations for a pressurized actuator. We first quantified the performance limits of each actuator in a series of static characterization tests. Then we subjected each PAM to cyclical displacement testing. Finally, a series of cyclical tests were performed with a pre-strain applied to the PAMs, to better approximate their typical use. Our results showed variation of braid angle causes significant differences in performance among the six PAMs tested; PAMs with larger braid angle generated higher blocked force and exhibited greater contraction. The empirical data matched the model predictions based on our estimates for the braid angle of a given PAM

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Analysis of a Pneumatic Artificial Muscle and Construction of a Model

    Get PDF
    The purpose of thesis is to show the result of the analysis Pneumatic Artificial Muscle (PAM). Thus, more information to understand on its behavior in generating force for actuation is obtained. The content of this report consists of few sections such as the introduction, literature review, methodology, result and discussion and conclusion. The introduction part consists of project background and problem statement that discuss PAM behavior while researching about this project. The introduction also discuss about the objective and scope of study which is to analyze the behavior of Pneumatic Muscle by using Finite Element Analysis on ANSYS software. The methodology and project planning is stated to show the flow of the thesis and also the Gantt chart provided shows the working schedule that I follow during all this period of year. The result and discussion shows that the construction of 3D PAM model is mainly consists of flexible, inflatable membrane for which the material type and properties are being specified as neoprene rubber. The result of the model is verified according to the solution obtained from the literature. The thesis is concluded by making an observation towards muscle deformation supported evidence by tables provided by ANSYS software. The deformation of the muscle shows the structural behavior changes after Finite Element Analysis. The PAM expanded with the change in volume and also in diameter. The volume increases while the length decrease when pressure applied
    • …
    corecore