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Abstract. The control of light-weight compliant robot arms
is cumbersome due to the fact that their Coriolis forces are
large, and the forces exerted by the relatively weak actuators
may change in time as the result of external (e.g. tempera-
ture) influences. We describe and analyse the behaviour of
a light-weight robot arm, the SoftArm robot. It is found that
the hysteretic force-position relationship of the arm can be
explained from its structure. This knowledge is used in the
construction of a neural-network-based controller. Experi-
ments show that the network is able to control the robot arm
accurately after a training session of only a few minutes.

1 Introduction

When a robot system is designed, the focus generally is
a design such that friction, gravity and payloads can be
practically neglected. Therefore, robots are built extremely
stiff (i.e. non-compliant) and are equipped with joint actua-
tors strong enough to overcome threshold friction, position-
dependent gravity and payloads. The merit of such an ap-
proach is that relatively simple control algorithms can be
used to position the end-effector with high accuracy. How-
ever, apart from the high cost of such robot systems and their
high energy consumption because of their heavy construc-
tion, their large strength makes their use in environments
where humans operate, such as hospitals and homes, too
dangerous.

The search for simpler, more compliant robot systems
is therefore of importance. One such system is the Soft-
Arm robot. The pneumatically driven actuators of this robot
consist of ‘rubbertuators’, which are modelled after skele-
tal muscle systems. The rubbertuators have a high force-to-
weight ratio and are very compliant, such that the robot is
safe for operation in direct contact with human operators.

Yet control of such a system is a difficult problem. Nat-
urally, coarse positional control can be obtained with simple
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feedback algorithms. As is shown in this paper, it is possible
to use a standard PID controller in a feedback loop to con-
trol the joint values of the robot towards their desired values.
The resulting precision, however, is rather poor; the desired
trajectory is only coarsely followed (lagging and hysteresis
problems), and the error in joint position is up to 10◦. The
algorithms that can be used for controlling industrial non-
compliant robots are not usable to control compliant robots
due to the complex, highly non-linear dynamics of the latter.

It has been shown that neural networks can be well ap-
plied to robot control. But how do these algorithms behave
when applied to robots where self-imposed problems such
as changing kinematics are no longer academic assumption
but a reality? In this paper we want to demonstrate the utility
of neural-network-based adaptive algorithms in those cases
where conventional algorithms cannot be used.

Neural networks have been applied previously to the con-
trol of a SoftArm robot. In Hesselroth et al. (1994) a visual
observation of the real and desired end-effector position is
directly translated to rubbertuator pressure using a Kohonen-
type neural network. This network learns to position the
end-effector within 1 cm of its desired position after learn-
ing. However, learning sessions are very time-consuming
(in the order of hours), and each positioning trial takes in
the order of 30 s, such that the system has limited practical
applicability. Furthermore, the trajectory of the robot arm
which connects one end-point to another is uncontrolled and
oscillatory. In Sakar and Schulten (1996) a hierarchical self-
organising network is used not only to position the end-
effector of the robot arm, but also to control the orientation
of the gripper. Only 300 learning trials are required to train
the system accurately, yet again the motion of the robot arm
is slow and oscillatory, resulting in a training time in the or-
der of hours. In Katayama and Kawato (1992) a single joint
of a similar robot arm is dynamically controlled to follow
a trajectory in joint space, resulting in an error in the order
of about 1◦ for a fast movement. Again, these good results
are obtained only after long training sessions: in this case,
the authors report having followed a trajectory 2000 times
before this acceptably high accuracy was obtained.

In this paper a feed-forward network based dynamic con-
trol system for the SoftArm robot as produced by the Bridge-
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Fig. 1. The structure of the SoftArm robot

stone Corporation is proposed. It is required that the system
learns correct behaviour quickly. In Sect. 2 the various parts
of the robot system are described. In Sect. 3 the measured dy-
namical behaviour of the robot arm is described, and theoret-
ically explained. Section 4 describes a simple neural system
for stably controlling a single joint of the robot, the results
of which are given in Sect. 5. A summary is provided in
Sect. 6.

2 The robot system

The robot arm was built mainly from components manufac-
tured by the Bridgestone Corporation of Tokyo, Japan. The
whole robot system consists of a robot arm, an air compres-
sor, servo-drive and servo-valve units, and a gripper.

2.1 Kinematic system

The robot is a four-link manipulator with five degrees of
freedom. It is mounted by suspending it from its top joint. A
labelled picture of the SoftArm is reproduced in Fig. 1. The
arrangement of the joints and their range of movement are
basically modelled after the human arm. Because its pneu-
matic actuators, each consisting of two or four inflatable rub-
ber tubes named ‘rubbertuators’, are relatively light, the arm
weighs only 12 kg yet can lift 3 kg. Because of its weight and
compliant characteristics, this arm can be employed around
human operators or fragile equipment. Intended uses are in
hospitals, around the handicapped, for household tasks and
in areas where electrical circuits cannot be introduced. The
dimensions and range of movement of the joints are given
in Table 1.

Table 1. Dimensions of the links and motion range of the joints of the
SoftArm robot

Item Specification
Model FAS–501
Degree of freedom 5
Rotation angle and arm length
First (shoulder) Angle ±60◦

Length –
Second (upper arm) Angle ±50◦

Length 410 mm
Third (lower arm) Angle ±50◦

Length 370 mm
Fourth (wrist pitch) Angle ±45◦

Length 270 mm
Fifth (wrist roll) Angle ±90◦

Length –

Lifting capability max. 3 kg

link i� 1

to link i

�i

T2

T1

l1

l2

�1

�2

Fig. 2. An agonist and an antagonist rubbertuator are connected via a chain
across a sprocket; their relative lengths determine the joint positionθi

The torque applied to each joint can be controlled by
setting the pressuresρ1 of the agonist andρ2 of the antago-
nist rubbertuator pairs. The rubbertuators to drive linki are
fixed parallel to each other in linki − 1. The free ends are
connected to each other by a chain. The chain goes around a
sprocket fixed in linki− 1 and connected to linki. The an-
gular position of jointi thus depends on the relative lengths
of the tubes as shown in Fig. 2. This relationship can be
expressed as

θ =
l1 − l2

2πr
(1)

wherer is the radius of the sprocket andl1 and l2 are the
respective lengths of the rubbertuators.

One of the greatest advantages of a rubbertuator is its
very high force-to-weight ratio of about 240, compared with
a value of about 16 for DC servo motors. This is especially
good for robotics applications in which the actuators for the
extreme joints are in motion as part of the arm.

The stiffnessof any joint is defined as the total pressure
ρ0 = ρ1+ρ2 of the rubbertuators that drive it. When this total
pressure is high, the joint exhibits a stiff behaviour, whereas
a low ρ0 results in a compliant behaviour.

2.2 The rubbertuator drive system

The robot is supplied with compressed air of constant pres-
sure. Five servo-drive units (SDUs) provide the internal con-
trol circuitry for the robot. Each unit receives 11-bit preci-
sion pressure signals from the host computer, converts them
to analogue signals, and sends them to a servo-valve unit
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(SVU). The SVU senses the pressure of each of the two rub-
bertuators it controls, and regulates this pressure by opening
or closing electric valves.

2.3 The gripper and its controlling valves

A gripper weighing about 1 kg is installed at the end of
the arm. It has a simple two-fingered clamping action and
is powered by air pressure. The fingers are approximately
10 cm long. Two inlets are required: one for opening and
the other for closing. The air pressure is supplied through
electric valves which can be controlled by the computer.

3 Dynamics

The dynamics of anyd degree of freedom robot with rota-
tional joints can be described by the equation (Craig 1986)

T
(
θ, θ̇, θ̈

)
= F1(θ)θ̈ + F2(θ)

[
θ̇θ̇

]
+ F3(θ)

[
θ̇

2
]

+F4(θ, θ̇) + F5(θ) (2)

whereT is a d-vector of torques exerted by the links, and
θ, θ̇, and θ̈ ared-vectors denoting the positions, velocities,

and accelerations of thed joints. [θ̇θ̇] and [θ̇
2
] are vectors[

θ̇θ̇
]

=
[
θ̇1θ̇2, θ̇1θ̇3, . . . , θ̇d−1θ̇d

]T
,[

θ̇
2
]

=
[
θ̇2

1, θ̇
2
2, . . . , θ̇

2
d

]
, (3)

F1(θ) is the matrix of inertia,F2(θ) is the matrix of Coriolis
coefficients,F3(θ) is the matrix of centrifugal coefficients,
F4(θ, θ̇) is a friction term, andF5(θ) is the gravity working
on the joints.

When the robot has to move from one joint position to
another, a torque must be applied which generatesT . The
problem of calculating the correct torques (forces) to have
the robot arm follow a specified trajectory is known asin-
verse dynamics. Industrial robots are generally designed to
eliminate the interdependence between the joints, such that
the robot arm can be approximated byd independent mov-
ing bodies. In that case,F1 and F3 are diagonal matrices
andF2 is zero. This reduces the 3d-values vector field (2)
to d independent functions of three variables for which the
coefficients have to be found. Also, the link actuators are
usually made so powerful thatF1, F3, F4, andF5 can be
considered independent ofθ. For this simplified (and com-
mon) case, various standard methods exist to compute the
inverse dynamics (Fu et al. 1987). This controller eliminates
the requirement of knowledge of the robot arm in order to
control it.

3.1 The dynamics of the SoftArm

For the SoftArm, however, the above simplifications cannot
be made. Due to the use of compliant material in the ac-
tuators, the Coriolis forces ofF2 cannot be neglected, and
the various joints affect each other greatly, leading to non-
diagonal matricesF1 and F3. Furthermore, some of these
matrices change in time due to external influences.

The SDUs allow the robot to be controlled in two modes:
position control mode(closed loop control) andpressure
control mode(open loop control). When the SoftArm is con-
trolled in position control mode, an internal PID controller
(see e.g. Craig 1986) is used in a feedback loop. This PID
controller uses joint position feedback from the optical shaft
encoders mounted on each joint to determine the pressure
of the joints in a closed loop. Figure 3 shows a represen-
tative move of one joint of the robot arm. The feedback
mechanism should generate a smooth motion, but due to
non-optimal feedback control the move is oscillatory.

In pressure control mode, the pressure values sent by
the host computer are directly translated to currents for the
valves and the rubbertuator pressures are set correspond-
ingly. The pressure generates a force in the rubbertuators
which makes the joint rotate to assume a new equilibrium
position.

3.2 Behaviour of a rubbertuator-driven joint

To further understand the dynamics of the SoftArm robot,
we will first have to investigate the behaviour of a single
rubbertuator. Figure 4 shows the structure of a rubbertuator.
Each actuator consists of a rubber tube sealed at one end and
with an air inlet at the other end. The contraction forceTj
exerted by rubbertuatorj ∈ {1, 2} for each joint is specified
by the manufacturer as

Tj = ρjD
2
j

(
a(1−$j)2 − b

)
(4)

whereρj is the supply pressure,a and b are constants de-
pending on the particular tube, 0≤ $j < 0.2 is the contrac-
tion ratio which is directly (approximately linearly) related
to the rubbertuator lengthlj , andDj is the effective diam-
eter of the tube before displacement. Although (4) is not
a precise model of the rubbertuators, it suffices to describe
their behaviour qualitatively.

The driving force of a rubbertuator varies with pressure
and the contraction ratio. For instance, under constant pres-
sure it has such a spring characteristic that the contracting
force becomes stronger as the degree of contraction becomes
smaller. When the contraction ratio is constant, the force in-
creases with increasing pressure. Thus the rubbertuator has
spring-like characteristics while allowing a varying spring
constant.

3.2.1 Pressure–position relation.From (4) it can be seen
that for any specific choice ofρj there exist an infinite
number of values$j andDj which realise a specific ex-
erted forceTj . Therefore, when a joint is in equilibrium,
i.e. the external forces (gravity) are equal toT1 − T2, the
joint angle is dependent not only on the pressure but also
on the diameter of the tube before displacement. Since the
diameter depends on the pressure and the elongation (before
the displacement), the new joint position depends on the
new pressure as well as on the previous position. Figure 5a
demonstrates this hysteresis effect for joint 1.

This hysteresis can be shown by moving a joint along a
pressure trajectory fromρ1 = 0, ρ2 = ρmax to ρ1 = ρmax, ρ2 =
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Fig. 3. Joint 2 of the rubbertuator robot
moving in position and pressure control
mode. Theleft-hand figureshows the posi-
tion control mode, i.e. closed loop control.
Notice the jagged curve due to the feed-
back in the internal PID controller; this is
probably caused by an incorrect parameter
setting for the integrator part of the PID
controller. In theright-hand figure, pressure
control mode (open loop control) is used.
The figure clearly shows that it takes a long
time before the joint settles to its steady state
due to the elastic behaviour of the rubber

fiber cord

increasing pressure

a.

b.
fitting rubber tube

Fig. 4a,b.The structure of a single rubbertuator.a A photograph of a rub-
bertuator.b A schematic representation of the structure of the rubbertuator
tube

0 and back again by incrementing and decrementing the pres-
sures by a constant value∆ρ. This results in the behaviour
shown in Fig. 5b. The width of the gap between the two
curves depends on how fast the pressures are changed; the
slower the change in the pressures, the narrower the gap.

The trajectory and velocity in joint space followed for
a constant pressure increase and decrease are depicted in
Fig. 5c,d. The velocity is numerically computed from the
position. Near the extreme values the joint velocity decreases
since the increase in exerted force for a constant change in
pressure is less.

3.2.2 Elasticity of the rubbertuators.The long-term settling
behaviour of the rubber has a large effect on the position of a
joint after the desired pressure is reached and the joint seems
to have reached its position. Figure 3 shows the position of
joint 2 in time when the rubbertuators are allowed to settle
for 200 s in pressure control mode. During this settling time,
the joint rotates for about 1◦.

The temperature of the rubbertuators (which can change
due to varying climate conditions or simply by using the
arm for extended periods of time) also has a large influence
on the pressure–position relation. When repeatedly moving
the robot to the same pressure, the system drifts gradually
to different positions (Fig. 6).

3.3 Analysis of rubbertuator behaviour

In order to explain and attempt to model the behaviour de-
scribed above, we have to consider the structure of a pair of
rubbertuators as shown in Fig. 2. The total force∆T which
the combined rubbertuators exert on the joint is, according
to (4),

∆T = ρ1(a(1−$1)2 − b)D2
1 − ρ2(a(1−$2)2 − b)D2

2.

3.3.1 Pressure-force relation.If we assume thatD = D1 =
D2, i.e. the rubbertuators are in their ‘middle’ position, then

∆T =
[
ρ1(1−$1)2−ρ2(1−$2)2)

]
aD2 + (ρ2−ρ1)bD2 (5)

Defining∆ρ = ρ1 − ρ2 (the ‘difference pressure’) andρ0 =
ρ1 + ρ2 (the ‘base pressure’ orstiffness) we can express

∆T = 1/2
[
ρ0
(
(1−$1)2 − (1−$2)2

)
+∆ρ

(
(1−$1)2 + (1−$2)2

)]
aD2 −∆ρbD2

By settingc = $1 + $2 andKθ = $1 −$2, this results in

∆T = 1/2[ρ0($1 −$2)(c− 2) + 2∆ρ(1− c)

+
($1 −$2)2

2
∆ρ +

c2

2
∆ρ

]
aD2 − bD2∆ρ

= 1/2

[
ρ0Kθ(c− 2) + 2∆ρ(1− c) +

(Kθ)2

2
∆ρ

+
c2

2
∆ρ

]
aD2 − bD2∆ρ

= 1/2aD2K(c− 2)︸ ︷︷ ︸
µ1

ρ0θ +
aD2K2

4︸ ︷︷ ︸
µ2

θ2∆ρ

+

[
c2aD2

4
− bD2

]
︸ ︷︷ ︸

µ3

∆ρ.

In conclusion, we can write

∆T = µ1ρ0θ + µ2∆ρθ2 + µ3∆ρ (6)

To understand this result, we must look at those values of
θ and∆ρ where∆T in (6) is 0, i.e. the system is in equi-
librium. The trajectory followed in Fig. 7 corresponds to the
measured trajectories of Fig. 5b.
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Fig. 5a–d. Hysteresis in SoftArm position-
ing for joint 1. a The joint angle reached
when ρ1/ρ2 is changed from 600/900 to
675/825 to 750/750 to 825/675 to 900/600
to 825/675 to 750/750 to 675/825 and back
again. The position reached depends both
on the previous position and on the new
pressures.b The joint is moved by apply-
ing a constant pressure increment∆ρ to
rubbertuator 1 and the same decrement to
rubbertuator 2. When the extreme pressures
are reached, the direction is reversed.c The
joint position while the trajectory ofb is
followed; d shows the velocity. An extreme
joint position is reached att = 0 ms and
t = 1000 ms. Fromt = 0 to t = 1000 the
change in pressures for the rubbertuators is
constant. Since the exerted force is constant
near the equilibrium point, the joint has a
constant acceleration profile
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Fig. 6. Drift of the rubbertuators when the robot is used for a long period of
time. The pressures of the rubbertuators are repeatedly increased/decreased
by 1% of the total pressure
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Fig. 7. Equilibrium line of (6). For the figure we have takenµ1 > 0,
µ2 > 0 andµ3 > 0

3.3.2 Explaining hysteretic behaviour.The hysteretic be-
haviour of a rubbertuator-driven joint can be modelled by
substituting different values forD in (4). This hysteretic
behaviour is, in fact, a result of the material used in the
rubbertuators (Holownia 1977).

If we assume that rubbertuator 1 has a diameterD1 =
D +∆D before displacement, and that rubbertuator 2 has a
diameterD2 = D − ∆D before displacement, then (4) can
be written as

∆T = P1(a(1−$1)2 − b)(D + ∆D)2

+P2(a(1−$2)2 − b)(D −∆D)2

= P1(a(1−$1)2 − b)(D2 + ∆D2 + 2D∆D)

+P2(a(1−$2)2 − b)(D2 + ∆D2 − 2D∆D). (7)

By splitting this equation in three parts forD, ∆D and
D∆D we can apply (6) by substituting firstD and then
∆D in (5), such that

∆T = µ1ρ0θ + µ2∆ρθ2 + µ3∆ρ

µ′1ρ0θ + µ′2∆ρθ2 + µ′3∆ρ

2D∆D
[
ρ1(a(1−$1)2 − b) + ρ2(a(1−$2)2 − b)

]
= (µ1 + µ′1)ρ0θ + (µ2 + µ′2)∆ρθ2 + (µ3 + µ′3)∆ρ

+µ′′1∆ρθ + µ′′2ρ0θ
2 + µ′′3ρ0 (8)

by applying similar transformations as above. Thus the pa-
rametersµ′i andµ′′i are

µ′i = µi
∆D2

D2
, µ′′i = µi

∆D

D
.

Again we can plot the equilibrium lines of (8) by solving
∆T = 0. This has to be done for∆D > 0 and∆D < 0,
which results in different signs for the parametersµ′′i . The
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Fig. 8. Equilibrium lines of (8). In this case we have takenµ1 + µ′
1 > 0,

µ2 + µ′
2 > 0, µ3 + µ′

3 > 0, while we usedµ′′
1 > 0, µ′′

2 < 0 andµ′′
3 > 0

for the dotted line, andµ′′
1 > 0, µ′′

2 > 0 andµ′′
3 > 0 for the continuous

line

result is shown in Fig. 8. From this figure it is clear that the
hysteresis can be explained from the model of a rubbertuator-
driven joint.

4 Control of the SoftArm

From the above it is obvious that a precise model for the
pneumatic actuators cannot be easily constructed. When the
robot arm is used for accurate positioning and orientation
of the end-effector, an adaptive algorithm is preferred for
controlling the robot.

In this section an adaptive system will be described
which is capable of making one of the robot’s joints fol-
low a prescribed trajectory.

4.1 System setup

From (6) it can be seen that the torque depends on the pres-
sure difference∆ρ, the stiffnessρ0, and the diameter before
displacementD1,2. Since the value ofD1,2 is not known
and cannot easily be measured, we instead can useρ1,2 be-
fore displacement in combination withθ to carry the same
information.

The task of the robot controller is to generate pressures
ρ1(t) for the first muscle of a joint, such that a specified
trajectory

(
θd(t), θ̇d(t), θ̈d(t)

)
is followed. The ‘stiffness’ρ1+

ρ2 is always kept constant, such that the pressure from the
second rubbertuator can be derived from the first. Since the
system is a discrete-step closed loop, we will employ an
index [i] instead of continuous time (t).

The robot control system, which is depicted in Fig. 9,
receives valuesθ[i] from the robot at intervals of approxi-
mately 20 ms. To obtain noise-insensitive estimates ofθ̇ and
θ̈, these values are fitted to orthonormal polynomials follow-
ing an incremental algorithm derived from Forsythe (1957)

interpolate
Θ ΘΘ

Θ Θd d dΘ

neural network

Θ (t)( ) (t)

( ) (t)
�(t+�t)

�(t)

Fig. 9. The neural robot control system in a feedback loop with the robot

and Hayes (1970). Thus we can, with some accuracy, find
θ, θ̇, and θ̈ at each desired time.

The measured pressureρ1[i], θ[i], θ̇[i], and θ̈[i], and the
desiredθd[i], θ̇d[i], and θ̈d[i] are input to a feed-forward
neural networkN . The network then generates a target
pressureρ1[i+1] which is sent to the robotR. The obtained
rotation, after the pressure change has been applied, is used
as a new learning sample. Thus, the network performs the
mapping

N
(
ρ1[i], θ[i], θ̇[i], θ̈[i]θd[i], θ̇d[i], θ̈d[i]

)
= ρ1[i + 1]

The new pressure is sent to the robot to determine

R
(
θ[i], θ̇[i], ρ1[i], ρ1[i + 1]

)
=
(
θ[i + 1], θ̇[i + 1]

)
and a new learning sample is available:

C 0
(
ρ1[i], θ[i], θ̇[i], θ̈[i]θ[i + 1], θ̇[i + 1], θ̈[i + 1]

)
= ρ1[i + 1] (9)

whereC 0 indicates the ideal controller. This ideal controller
defines the controller we would like to have to control the
robot. Although we cannot analytically constructC 0, we
can construct learning samples which describeC 0, and use
these to approximateC 0.

4.2 Neural network structure

The control system consists of two neural networks run-
ning on two processors in parallel. One neural network (the
controlling network) gathers the data from the robot and cal-
culates the joint velocity and acceleration, uses these data to
compute the new joint pressures, and generates a learning
sample. By definition ofN and R, the learning sample
created is given byC 0 from (9). It is sent to the second
neural network (the learning network). This network main-
tains a set of samples to which newly generated samples are
added, or are used to replace older samples (van der Smagt
1995). Minimisation is performed on this set of samples.
Thus this neural network is taught to approximateC 0 as
well as possible from the available learning samples. The
resulting optimal weight matrix is sent from the learning
network to the controlling network.

For the single joint problem, both networks are feed-
forward networks consisting of seven inputs, 15 hidden units
and one output. The learning network is trained using conju-
gate gradient optimisation with Powell restarts as described
in van der Smagt (1994). Conjugate gradient optimisation
methods use second-order information of the function that
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Fig. 10. Using the internal PID controller to follow the tra-
jectoryθd(t) = csin(t). The left-hand figureshows the desired
and actual trajectories versust. The right-hand figuredepicts
the desired (horizontal axis) versus the actual (vertical axis)
trajectory

Fig. 11. Using the neural network controller to follow the tra-
jectory θd(t) = csin(t). The left-hand figureshows the desired
(continuous line) and actual (dotted line) trajectories versust.
Theright-hand figuredepicts the desired (horizontal axis) versus
the actual (vertical axis) trajectory. This behaviour is recorded
after 5 min of learning

has to be minimised. In this case, the error function is calcu-
lated in a second-order approximation using local informa-
tion, which is subsequently minimised (this operation takes
n steps for a system withn degrees of freedom c.q. weights).
During minimisation the second-order approximation is up-
dated using local information and the minimisation proce-
dure is subsequently repeated. See, for example, Press et al.
(1986), Shewchuk (1994) or other numerical analysis books
for further information.

5 Results

To evaluate the success of the neural controller, it is com-
pared with the internal PID controller on two trajectories.
For the first trajectory one of the joints of the robot arm
has to follow a trajectoryθd(t) = csin(t); for the second, the
trajectory is more complicated:θd(t) = csin(t)cos2(11t). The
success of each controller is measured by comparingθd(t)
with the actual trajectoryθ(t).

5.1 A simple trajectory

First the internal PID controller is tested on the trajectory.
The result of this trial is shown in Fig. 10. As this figure
shows, the PID controller suffers from three problems. First,
the internal parameters of the controller are not set correctly,
leading to the jagged form of the curve. Second, the con-
troller is lagging behind the desired trajectory. The third
problem is the most serious: as the right-hand part in Fig. 10
shows, the PID controller does not solve the hysteresis prob-
lem. The relationshipθ(t)–θd(t) depends on the direction of
motion. Furthermore, this position difference is larger than
the error caused by the incorrect PID parameters (jagged-
ness).

Fig. 12. Learning the control. The figure shows the desired (grey line) and
actual (continuous line) trajectories versust. This figure clearly shows that
the network learns to follow the trajectory very quickly

Figure 11 shows the control of the same target trajectory
depicted in Fig. 10 after a long training session. As the figure
shows, the trajectory is accurately followed except in the
extrema, where an error of approximately 1.5◦ remains. The
right-hand part of Fig. 11 shows the desired versus the actual
trajectory. It is clear that the system no longer suffers from
hysteresis.

The initial learning behaviour is shown in Fig. 12. It is
clearly shown in this figure that the network learns to control
the robot after only a few trials. However, the behaviour such
as depicted in Fig. 11 is only possible after a training session
of approximately 2000 s.

5.2 A more complex trajectory

The system, with no a priori knowledge, has also been
trained on a trajectory sin(t)cos2(11t). Initially, the trajectory
was followed only very coarsely. After 16 trials, however,
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Fig. 13.Training the system on a sin(t)cos2(11t) trajectory. Thecontinuous
line is the target trajectory; thedotted linethe actual trajectory. Initially,
the trajectory is followed reasonably well where velocity is constant; after
only 16 trials the whole trajectory is followed with an average error of 0.1◦

accurate trajectory following was obtained, with an error of
1◦ near the extrema, and less than 0.1◦ on the slope (Fig. 13).

6 Discussion

In this paper we have applied a neural-network based con-
troller to a pneumatic robot arm with complex, highly non-
linear dynamics which change in time due to external in-
fluences. This controller has been shown to perform better
than the manufacturer-specified PID controller, and learns
the correct trajectory following after only a few trials. The
investigations have led to a better understanding of the Sof-
tArm robot. It has been shown that the pressure-position
relationships of the joints are a direct consequence of the be-
haviour of the rubbertuators. Furthermore, it has been shown
that the time integral of the base pressureρ1 + ρ2 is directly
related to the joint rotation that this pressure change insti-
gates.

In the current experiments, the controller is applied to
only one joint at a time. This means that the system is re-
duced from a 35-dimensional (or 21-dimensional when the
gripper is treated separately) to a 7-dimensional one. How-
ever, previous experience with scalability of neural-network-
driven robot controllers (van der Smagt 1995) has shown
promising results, with the availability of the required com-
puting power.

To find the optimal number of hidden units needed in
the neural network, as well as the optimal size of the set of
learning samples over which minimisation is performed, we
used the method described in Vyšniauskas et al. (1992) (cf.
Barron 1991). With this method, an asymptotical model of
the error function is constructed and used to find the optimal
number of hidden units and learning samples to attain a
certain error in the approximation.
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