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Abstract. The control of light-weight compliant robot arms feedback algorithms. As is shown in this paper, it is possible
is cumbersome due to the fact that their Coriolis forces argo use a standard PID controller in a feedback loop to con-
large, and the forces exerted by the relatively weak actuatorsol the joint values of the robot towards their desired values.
may change in time as the result of external (e.g. temperaThe resulting precision, however, is rather poor; the desired
ture) influences. We describe and analyse the behaviour dfajectory is only coarsely followed (lagging and hysteresis
a light-weight robot arm, the SoftArm robot. It is found that problems), and the error in joint position is up to°10he

the hysteretic force-position relationship of the arm can bealgorithms that can be used for controlling industrial non-
explained from its structure. This knowledge is used in thecompliant robots are not usable to control compliant robots
construction of a neural-network-based controller. Experi-due to the complex, highly non-linear dynamics of the latter.
ments show that the network is able to control the robot arm |t has peen shown that neural networks can be well ap-

accurately after a training session of only a few minutes. pjied to robot control. But how do these algorithms behave
when applied to robots where self-imposed problems such
as changing kinematics are no longer academic assumption
but a reality? In this paper we want to demonstrate the utility
of neural-network-based adaptive algorithms in those cases
1 Introduction where conventional algorithms cannot be used.

Neural networks have been applied previously to the con-
When a robot system is designed, the focus generally igrol of a SoftArm robot. In Hesselroth et al. (1994) a visual
a design such that friction, gravity and payloads can beppservation of the real and desired end-effector position is
practically neglected. Therefore, robots are built extremelygirectly translated to rubbertuator pressure using a Kohonen-
stiff (i.e. non-compliant) and are equipped with joint actua- type neural network. This network learns to position the
tors strong enough to overcome threshold friction, position-end-effector within 1 cm of its desired position after learn-
dependent gravity and payloads. The merit of such an aping. However, learning sessions are very time-consuming
proach is that relatively simple control algorithms can be(in the order of hours), and each positioning trial takes in
used to position the end-effector with high accuracy. How-the order of 30s, such that the system has limited practical
ever, apart from the high cost of such robot systems and theigpplicability. Furthermore, the trajectory of the robot arm
high energy consumption because of their heavy construcyhich connects one end-point to another is uncontrolled and
tion, their large strength makes their use in environmentsscillatory. In Sakar and Schulten (1996) a hierarchical self-
where humans operate, such as hospitals and homes, t@fganising network is used not only to position the end-
dangerous. effector of the robot arm, but also to control the orientation
The search for simpler, more compliant robot systemsof the gripper. Only 300 learning trials are required to train
is therefore of importance. One such system is the Softthe system accurately, yet again the motion of the robot arm
Arm robot. The pneumatically driven actuators of this robot s slow and oscillatory, resulting in a training time in the or-
consist of ‘rubbertuators’, which are modelled after skele-der of hours. In Katayama and Kawato (1992) a single joint
tal muscle systems. The rubbertuators have a high force-tasf a similar robot arm is dynamically controlled to follow
weight ratio and are very compliant, such that the robot isa trajectory in joint space, resulting in an error in the order
safe for operation in direct contact with human operators. of about P for a fast movement. Again, these good results
Yet control of such a system is a difficult problem. Nat- are obtained only after long training sessions: in this case,
urally, coarse positional control can be obtained with simplethe authors report having followed a trajectory 2000 times

before this acceptably high accuracy was obtained.
Correspondence tdP. van der Smagt, German Aerospace Research Estab-

lishment, Department of Robotics and System Dynamics, P.O. Box 1116,  In this paper a feed-forward network based dynamic_ con-
D-82230 Wessling, Germany (e-mail: smagt@dLr.de) trol system for the SoftArm robot as produced by the Bridge-
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Table 1. Dimensions of the links and motion range of the joints of the
SoftArm robot

Item Specification
Model FAS-501
Degree of freedom 5
Rotation angle and arm length
First (shoulder) Angle +60°
Length -

Second (upper arm)  Angle  +50°
Length 410 mm
Third (lower arm) Angle +50°
Length 370 mm
Fourth (wrist pitch)  Angle +45°
Length 270 mm
Fifth (wrist roll) Angle +90°
Length -

Lifting capability max. 3 kg

tolink ¢

Fig. 1. The structure of the SoftArm robot

Fig. 2. An agonist and an antagonist rubbertuator are connected via a chain

. . . . across a sprocket; their relative lengths determine the joint pogition
stone Corporation is proposed. It is required that the systenfi P g Joint post

learns correct behaviour quickly. In Sect. 2 the various parts
of the robot system are described. In Sect. 3 the measured dy-

for stably controlling a single joint of the robot, the results fixe

llel h other in link— 1. The fi
of which are given in Sect.5. A summary is provided in d parallel to each other in link e free ends are

connected to each other by a chain. The chain goes around a

Sect. 6. sprocket fixed in linki — 1 and connected to link The an-
gular position of jointi thus depends on the relative lengths
of the tubes as shown in Fig.2. This relationship can be

2 The robot system expressed as

The robot arm was built mainly from components manufac-9 = b=l 1)
tured by the Bridgestone Corporation of Tokyo, Japan. The 2mr
whole robot system consists of a robot arm, an air compreswherer is the radius of the sprocket ardid and i, are the
sor, servo-drive and servo-valve units, and a gripper. respective lengths of the rubbertuators.

One of the greatest advantages of a rubbertuator is its

very high force-to-weight ratio of about 240, compared with

2.1 Kinematic system a value of about 16 for DC servo motors. This is especially
good for robotics applications in which the actuators for the
extreme joints are in motion as part of the arm.

The stiffnessof any joint is defined as the total pressure
po = p1+p2 of the rubbertuators that drive it. When this total
pressure is high, the joint exhibits a stiff behaviour, whereas
low pg results in a compliant behaviour.

The robot is a four-link manipulator with five degrees of
freedom. It is mounted by suspending it from its top joint. A
labelled picture of the SoftArm is reproduced in Fig. 1. The
arrangement of the joints and their range of movement ar
basically modelled after the human arm. Because its pneu@
matic actuators, each consisting of two or four inflatable rub-
ber tubes named ‘rubbertuators’, are relatively light, the arm ]
weighs only 12 kg yet can lift 3 kg. Because of its weight and 2-2 The rubbertuator drive system

compliant characteristics, this arm can be employed around

human operators or fragile equipment. Intended uses are ifihe robot is supplied with compressed air of constant pres-
hospitals, around the handicapped, for household tasks arglre. Five servo-drive units (SDUs) provide the internal con-
in areas where electrical circuits cannot be introduced. Therol circuitry for the robot. Each unit receives 11-bit preci-
dimensions and range of movement of the joints are giversion pressure signals from the host computer, converts them
in Table 1. to analogue signals, and sends them to a servo-valve unit
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(SVU). The SVU senses the pressure of each of the two rub- The SDUs allow the robot to be controlled in two modes:
bertuators it controls, and regulates this pressure by openingosition control mode(closed loop control) angressure
or closing electric valves. control mode(open loop control). When the SoftArm is con-
trolled in position control mode, an internal PID controller
(see e.g. Craig 1986) is used in a feedback loop. This PID
2.3 The gripper and its controlling valves controller uses joint position feedback from the optical shaft
encoders mounted on each joint to determine the pressure
A gripper weighing about 1kg is installed at the end of of the joints in a closed loop. Figure 3 shows a represen-
the arm. It has a simple two-fingered clamping action andiative move of one joint of the robot arm. The feedback
is powered by air pressure. The fingers are approximatelynechanism should generate a smooth motion, but due to
10 cm long. Two inlets are required: one for opening andnon-optimal feedback control the move is oscillatory.
the other for closing. The air pressure is supplied through  |n pressure control mode, the pressure values sent by
electric valves which can be controlled by the computer.  the host computer are directly translated to currents for the
valves and the rubbertuator pressures are set correspond-
) ingly. The pressure generates a force in the rubbertuators
3 Dynamics which makes the joint rotate to assume a new equilibrium

i i position.
The dynamics of anyl degree of freedom robot with rota-

tional joints can be described by the equation (Craig 1986)
T (,9797@) = F1(0)0 + F»(0) [9'9] + F5(0) [92} 3.2 Behaviour of a rubbertuator-driven joint

+Fy(0,0) + F5(0) (2)  To further understand the dynamics of the SoftArm robot,
whereT is a d-vector of torques exerted by the links, and We Will first have to investigate the behaviour of a single
0, 8, and@ are d-vectors denoting the positions, velocities, "ubbertuator. Figure 4 shows the structure of a rubbertuator.
Each actuator consists of a rubber tube sealed at one end and

. .. P -2
and accelerations of the joints. [96] and '] are vectors with an air inlet at the other end. The contraction fofiGe

[{9{9} = [91(927 0103, . .. 79d_19d]T, exerted by rubbertuatgr € {1, 2} for each joint is specified
.2} [92 2 92} - by the manufacturer as

0| =107,05,..., ,

) = (2.0 T, = ;D (a1 — @)% — 1) @)

F1(0) is the matrix of inertia (@) is the matrix of Coriolis
coefficients,F3(0) is the matrix of centrifugal coefficients,
F4(0,0) is a friction term, andFs(0) is the gravity working
on the joints.

wherep; is the supply pressure, andb are constants de-
pending on the particular tube,0w; < 0.2 is the contrac-
tion ratio which is directly (approximately linearly) related
. - to the rubbertuator length, and D; is the effective diam-
When the robot has to move from one joint position to ! J .
J b eter of the tube before displacement. Although (4) is not

another, a torque must be applied which generdte3he . . : .
problem of calculating the correct torques (forces) to haved Precise model of the rubbertuators, it suffices to describe

the robot arm follow a specified trajectory is knownias the|1r_rt])erclja_v|_ourfquahta';lvely.bb : ith
verse dynamicsindustrial robots are generally designed to e driving force of a rubbertuator varies with pressure

eliminate the interdependence between the joints, such th&nd the contraction ratio. For instance, under constant pres-

the robot arm can be approximated #yndependent mov- sure it has such a spring characteristic that the contracting
ing bodies. In that casefy and F5 are diagonal matrices force becomes stronger as the degree of contraction becomes

and F» is zero. This reduces thei&alues vector field (2) smaller. When the contraction ratio is constant, the force in-

to d independent functions of three variables for which theCreases with increasing pressure. Thus the rubbertuator has

coefficients have to be found. Also, the link actuators areSPring-like characteristics while allowing a varying spring

usually made so powerful thdf;, F3, Fy, and F5 can be constant.

considered independent 6f For this simplified (and com-

mon) case, various standard methods exist to compute the

inverse dynamics (Fu et al. 1987). This controller eliminates3.2.1 Pressure—position relatiorFrom (4) it can be seen

the requirement of knowledge of the robot arm in order tothat for any specific choice of; there exist an infinite
control it. number of valuesw; and D; which realise a specific ex-

erted forceT}. Therefore, when a joint is in equilibrium,

i.e. the external forces (gravity) are equalfp — T3, the
3.1 The dynamics of the SoftArm joint angle is dependent not only on the pressure but also

on the diameter of the tube before displacement. Since the
For the SoftArm, however, the above simplifications cannotdiameter depends on the pressure and the elongation (before
be made. Due to the use of compliant material in the acthe displacement), the new joint position depends on the
tuators, the Coriolis forces af, cannot be neglected, and new pressure as well as on the previous position. Figure 5a
the various joints affect each other greatly, leading to non-demonstrates this hysteresis effect for joint 1.
diagonal matricedy and F3. Furthermore, some of these This hysteresis can be shown by moving a joint along a
matrices change in time due to external influences. pressure trajectory fromy = 0, p2 = pmax tO p1 = Pmax, P2 =
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Fig. 3. Joint 2 of the rubbertuator robot
66 moving in position and pressure control
mode. Theleft-hand figureshows the posi-

64 tion control mode, i.e. closed loop control.
Notice the jagged curve due to the feed-
62 back in the internal PID controller; this is
probably caused by an incorrect parameter
60 setting for the integrator part of the PID
controller. In theright-hand figure pressure

58 control mode (open loop control) is used.
The figure clearly shows that it takes a long
3 5 100 150 200 time before the joint settles to its steady state
time/s time/s due to the elastic behaviour of the rubber

60

40

20

position/degrees
position/degrees

=3
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3.3 Analysis of rubbertuator behaviour

a. In order to explain and attempt to model the behaviour de-
scribed above, we have to consider the structure of a pair of
rubbertuators as shown in Fig. 2. The total fort& which

the combined rubbertuators exert on the joint is, according

| increasing pressure 0 (4),

T L L e )

’,"'II.-' I\\\\\\\\\\\\\\\}}}ﬁ\"
\

N P A S
B2
PP

AT = pi(a(1l — w1)? — b)D? — po(a(l — w2)? — b)D3.

MMM Y
I"I‘I‘I‘Il\l‘ﬂlﬂ\llIIJIII\I‘/I{IIIII/

AR KAAS)
LA

fitting  fiber cord rubberbtube 3.3.1 Pressure-force relatioli.we assume thaf) = D; =
: Dy, i.e. the rubbertuators are in their ‘middle’ position, then
Fig. 4a,b. The structure of a single rubbertuatarA photograph of a rub-
bertuatorb A schematic representation of the structure of the rubbertuator AT = [pl(l—wl)z—pz(l—wz)z)} aD? + (pz-m)sz (5)
tube
Defining Ap = p1 — p» (the ‘difference pressure’) ang) =
p1t p2 (the ‘base pressure’ atiffnesg we can express

0 and back again by incrementing and decrementing the presaT" = 1/2 [po((1 — @1)* — (1 — @2)?)
sures by a constant valugp. This results in the behaviour N2 ERY 2 2
shown in Fig.5b. The width of the gap between the two +Ap((1 @1)”+ (1 - =2) )] aD” = ApbD
curves depends on how fast the pressures are changed; tB§ settingc = w; + w» and K6 = wy — w>, this results in
slower the change in the pressures, the narrower the gap.

AT =1/2[po(w1 — w2)(c — 2) + 24p(1 — ¢)

The trajectory and velocity in joint space followed for ) )
a constant pressure increase and decrease are depicted in +(wl —@2) Ap+ ¢ Ap] aD? — bD?Ap
Fig.5c,d. The velocity is numerically computed from the 2 2

position. Near the extreme values the joint velocity decreases (K0)?
since the increase in exerted force for a constant change in = 1/2 {POKQ(C —2)+28p( -+ " 7 Ap
pressure is less. 5

+C2 Ap} aD? —bD?*Ap

D?K?
= 1/2aD?K(c — 2) pofl + * 02Ap
3.2.2 Elasticity of the rubbertuatorsThe long-term settling 1 —
behaviour of the rubber has a large effect on the position of a 5 re
joint after the desired pressure is reached and the joint seems + [C abrm sz] Ap.
to have reached its position. Figure 3 shows the position of 4
joint 2 in time when the rubbertuators are allowed to settle ‘_;;_’
for 200 s in pressure control mode. During this settling time,
the joint rotates for about°l In conclusion, we can write
The temperature of the rubbertuators (which can changexr =, 500 + 11, Ap62 + 3 Ap (6)

due to varying climate conditions or simply by using the

arm for extended periods of time) also has a large influencdo understand this result, we must look at those values of
on the pressure—position relation. When repeatedly moving and Ap where AT in (6) is 0, i.e. the system is in equi-
the robot to the same pressure, the system drifts gradualliibrium. The trajectory followed in Fig. 7 corresponds to the
to different positions (Fig. 6). measured trajectories of Fig. 5b.
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04 30.

position/degrees
position/degrees

-304

-60-
-204

Fig. 5a—d. Hysteresis in SoftArm position-
ing for joint 1. a The joint angle reached
when p1/p2 is changed from 600/900 to
675/825 to 750/750 to 825/675 to 900/600

4 -2000 -1000

0 1000

to 825/675 to 750/750 to 675/825 and back
again. The position reached depends both
on the previous position and on the new

2000

position/degrees
velocity / (°/ms)

pressuresb The joint is moved by apply-
ing a constant pressure incremed{p to
rubbertuator 1 and the same decrement to
rubbertuator 2. When the extreme pressures
are reached, the direction is reversedhe

o

N

/ joint position while the trajectory ob is

followed; d shows the velocity. An extreme
joint position is reached at = 0 ms and

t = 1000 ms. From = 0 to ¢ = 1000 the
change in pressures for the rubbertuators is
constant. Since the exerted force is constant

/
\\r/ / | c 4}

time/ms

0 500

position/degrees

6 10

time/min

12

Fig. 6. Drift of the rubbertuators when the robot is used for a long period of

time. The pressures of the rubbertuators are repeatedly increased/decreased

by 1% of the total pressure

Fig. 7. Equilibrium line of (6). For the figure we have taken > 0,
pu2 >0anduz >0

. 1000
time/ms

near the equilibrium point, the joint has a
constant acceleration profile

1500 2000

3.3.2 Explaining hysteretic behavioufhe hysteretic be-
haviour of a rubbertuator-driven joint can be modelled by
substituting different values foD in (4). This hysteretic
behaviour is, in fact, a result of the material used in the
rubbertuators (Holownia 1977).
If we assume that rubbertuator 1 has a diaméder=

D + AD before displacement, and that rubbertuator 2 has a
diameterD, = D — AD before displacement, then (4) can
be written as
AT = Pi(a(1 — w1)? — b)(D + AD)?

+Py(a(l — wz)? — b)(D — AD)?
= Py(a(1 — w1)? — b)(D?+ AD? + 2DAD)

+Py(a(1 — @) — b)(D? + AD? — 2DAD). )

By splitting this equation in three parts fap, AD and
DAD we can apply (6) by substituting firdd and then
AD in (5), such that

AT = papod + p Apt? + pzAp
1ol + i Ap? + s Ap
2DAD [pa(a(l — @1)* — b) + pa(a(l — w2)* — b)]
= (ua + ) pob + (2 + p5) Apb? + (uz + piz) Ap
+11y Apf + 1y pot? + 143 po ®)

by applying similar transformations as above. Thus the pa-
rametersy, andp are

AD?

, AD
Hi = Hi D2’

1y = p D

Again we can plot the equilibrium lines of (8) by solving
AT = 0. This has to be done fadD > 0 and AD < 0,
which results in different signs for the parametgfs The



438

neural network

(9,990

Fig. 9. The neural robot control system in a feedback loop with the robot

N and Hayes (1970). Thus we can, with some accuracy, find

TN 0, 9, andd at each desired time. )

] AN The measured pressupgf], 0[4], 0[], andd[:], and the

N desiredd,[i], 04[], and 64[¢] are input to a feed-forward

N neural network_ 4. The network then generates a target
e pressurep[i+1] which is sent to the roboi2. The obtained

rotation, after the pressure change has been applied, is used

as a new learning sample. Thus, the network performs the

Fig. 8. Equilibrium lines of (8)_. In this case we have taken+ 7 > 0, mapping

p2 + ph > 0, pu3 + pg > 0, while we useduf > 0, uy < 0 anduf >0

for the dotted li dpf > 0, uy > 0anduy > 0 for th i . T ar AL AP 6 A 8 EY — o [
Ii(:]ret e dotted ling and 1’ > 0, uy > 0 anduf > O for the continuous % (pl[l],9[2],9[2],9[2]9d[l],9d[l],9d[2]) = pafi + 1]

The new pressure is sent to the robot to determine

result is shown in Fig. 8. From this figure it is clear that the 22 (0], 0[4], pali], pali + 1]) = (i + 1, 0i + 1))
hysteresis can be explained from the model of a rubbertuator-

driven joint. and a new learning sample is available:
0 (pali], 011, 041, 61a10Li + 11, 6[i + 1], 6[i + 1)
4 Control of the SoftArm =pa[i +1] 9)

- ) L.
From the above it is obvious that a precise model for thewhere% indicates the ideal controller. This ideal controller

pneumatic actuators cannot be easily constructed. When th(éetl;ines tlhhe corr:troller we would Ilike tlcl) have to ug,%ntrol the
robot arm is used for accurate positioning and orientation©P0t Alt 0“9} we cannot Iana yr:'.caé’ consg t awe
of the end-effector, an adaptive algorithm is preferred for€an construct earning samples whic escrib€, and use
controlling the robot. these to approximate™.

In this section an adaptive system will be described

which is capable of making one of the robot’s joints fol-
low a prescribed trajectory. 4.2 Neural network structure

The control system consists of two neural networks run-
4.1 System setup ning on two processors in parallel. One neural network (the
controlling network) gathers the data from the robot and cal-

From (6) it can be seen that the torque depends on the presulates the joint velocity and acceleration, uses these data to
sure differencedp, the stiffnesgg, and the diameter before compute the new joint pressures, and generates a learning
displacementD; ». Since the value ofD;, is not known sample. By definition of 4~ and.#2, the learning sample
and cannot easily be measured, we instead campusbe-  created is given by from (9). It is sent to the second
fore displacement in combination withto carry the same neural network (the learning network). This network main-
information. tains a set of samples to which newly generated samples are

The task of the robot controller is to generate pressuresdded, or are used to replace older samples (van der Smagt
pa(t) for the first muscle of a joint, such that a specified 1995). Minimisation is performed on this set of samples.
trajectory(64(t), 0a(t), 6a(?)) is followed. The ‘stiffnessp, + Thus this neural network is taught to approximaf® as
p2 is always kept constant, such that the pressure from thavell as possible from the available learning samples. The
second rubbertuator can be derived from the first. Since theesulting optimal weight matrix is sent from the learning
system is a discrete-step closed loop, we will employ annetwork to the controlling network.
index [i] instead of continuous time); For the single joint problem, both networks are feed-

The robot control system, which is depicted in Fig. 9, forward networks consisting of seven inputs, 15 hidden units
receives valueg[:] from the robot at intervals of approxi- and one output. The learning network is trained using conju-
mately 20 ms. To obtain noise-insensitive estimate®afid  gate gradient optimisation with Powell restarts as described
0, these values are fitted to orthonormal polynomials follow-in van der Smagt (1994). Conjugate gradient optimisation
ing an incremental algorithm derived from Forsythe (1957)methods use second-order information of the function that
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0/degrees 04/degrees
60 60
30 0
0 100 00 300 —60_ - 30 60
(Y ts "\l“m 0/degrees
—30 —30 Fig. 10. Using the internal PID controller to follow the tra-
jectory8,4(t) = csin(t). Theleft-hand figureshows the desired
—60 ~60 and actual trajectories versusTheright-hand figuredepicts
the desired Horizontal axi$ versus the actualértical axig
-90 -90 trajectory
6/degrees 8,/ degrees
60 60
30 30
0/degrees
0
—60 -3 30 60 Fig. 11. Using the neural network controller to follow the tra-
jectory 64(t) = csin(t). The left-hand figureshows the desired
—30 —30 (continuous ling and actual dotted ling trajectories versus.
Theright-hand figuredepicts the desiredhfrizontal axi$ versus
—60 —60 the actual Yertical axi9 trajectory. This behaviour is recorded
after 5min of learning

has to be minimised. In this case, the error function is calcu- /¢
lated in a second-order approximation using local informa- ooy
tion, which is subsequently minimised (this operation takes 4ot
n steps for a system with degrees of freedom c.q. weights). ‘
During minimisation the second-order approximation is up- 2000
dated using local information and the minimisation proce- |
dure is subsequently repeated. See, for example, Press et al.“ |
(1986), Shewchuk (1994) or other numerical analysis bookS,y} |
for further information. ’

-40004 }

-6000+

5 Results

Fig. 12. Learning the control. The figure shows the desirgey ling and
actual €ontinuous ling trajectories versus. This figure clearly shows that
the network learns to follow the trajectory very quickly

To evaluate the success of the neural controller, it is com
pared with the internal PID controller on two trajectories.
For the first trajectory one of the joints of the robot arm
has to follow a trajectorgy(t) = csin(t); for the second, the

trajectory is more complicated;(t) = csin()cos'(11). The Figure 11 shows the control of the same target trajectory
success of each controller is measured by compafif)  depicted in Fig. 10 after a long training session. As the figure
with the actual trajectory(t). shows, the trajectory is accurately followed except in the

extrema, where an error of approximatelp’lremains. The
right-hand part of Fig. 11 shows the desired versus the actual
5.1 A simple trajectory trajectory. It is clear that the system no longer suffers from
hysteresis.
First the internal PID controller is tested on the trajectory.  The initial learning behaviour is shown in Fig.12. It is
The result of this trial is shown in Fig. 10. As this figure clearly shown in this figure that the network learns to control
shows, the PID controller suffers from three problems. First,the robot after only a few trials. However, the behaviour such
the internal parameters of the controller are not set correctlyas depicted in Fig. 11 is only possible after a training session
leading to the jagged form of the curve. Second, the con-of approximately 2000 s.
troller is lagging behind the desired trajectory. The third
problem is the most serious: as the right-hand part in Fig. 10
shows, the PID controller does not solve the hysteresis prob5.2 A more complex trajectory
lem. The relationship(t)—0,(t) depends on the direction of
motion. Furthermore, this position difference is larger thanThe system, with no a priori knowledge, has also been
the error caused by the incorrect PID parameters (jaggedtained on a trajectory sit)cos(11t). Initially, the trajectory
ness). was followed only very coarsely. After 16 trials, however,
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6/degrees - To find the optimal number of hidden units needed in
0 the neural network, as well as the optimal size of the set of
H " o learning samples over which minimisation is performed, we
R used the method described in3njauskas et al. (1992) (cf.
Barron 1991). With this method, an asymptotical model of
: the error function is constructed and used to find the optimal
number of hidden units and learning samples to attain a
certain error in the approximation.
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