115 research outputs found

    Multilayered Heterogeneous Parallelism Applied to Atmospheric Constituent Transport Simulation

    Get PDF
    Heterogeneous multicore chipsets with many levels of parallelism are becoming increasingly common in high-performance computing systems. Effective use of parallelism in these new chipsets constitutes the challenge facing a new generation of large scale scientific computing applications. This study examines methods for improving the performance of two-dimensional and three-dimensional atmospheric constituent transport simulation on the Cell Broadband Engine Architecture (CBEA). A function offloading approach is used in a 2D transport module, and a vector stream processing approach is used in a 3D transport module. Two methods for transferring incontiguous data between main memory and accelerator local storage are compared. By leveraging the heterogeneous parallelism of the CBEA, the 3D transport module achieves performance comparable to two nodes of an IBM BlueGene/P, or eight Intel Xeon cores, on a single PowerXCell 8i chip. Module performance on two CBEA systems, an IBM BlueGene/P, and an eight-core shared-memory Intel Xeon workstation are given

    Hierarchical N-Body problem on graphics processor unit

    Get PDF
    Galactic simulation is an important cosmological computation, and represents a classical N-body problem suitable for implementation on vector processors. Barnes-Hut algorithm is a hierarchical N-Body method used to simulate such galactic evolution systems. Stream processing architectures expose data locality and concurrency available in multimedia applications. On the other hand, there are numerous compute-intensive scientific or engineering applications that can potentially benefit from such computational and communication models. These applications are traditionally implemented on vector processors. Stream architecture based graphics processor units (GPUs) present a novel computational alternative for efficiently implementing such high-performance applications. Rendering on a stream architecture sustains high performance, while user-programmable modules allow implementing complex algorithms efficiently. GPUs have evolved over the years, from being fixed-function pipelines to user programmable processors. In this thesis, we focus on the implementation of Barnes-Hut algorithm on typical current-generation programmable GPUs. We exploit computation and communication requirements present in Barnes-Hut algorithm to expose their suitability for user-programmable GPUs. Our implementation of the Barnes-Hut algorithm is formulated as a fragment shader targeting the selected GPU. We discuss implementation details, design issues, results, and challenges encountered in programming the fragment shader

    Streaming Computations with Precise Control

    Get PDF

    ISCR Annual Report: Fical Year 2004

    Full text link

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    RICH: implementing reductions in the cache hierarchy

    Get PDF
    Reductions constitute a frequent algorithmic pattern in high-performance and scientific computing. Sophisticated techniques are needed to ensure their correct and scalable concurrent execution on modern processors. Reductions on large arrays represent the most demanding case where traditional approaches are not always applicable due to low performance scalability. To address these challenges, we propose RICH, a runtime-assisted solution that relies on architectural and parallel programming model extensions. RICH updates the reduction variable directly in the cache hierarchy with the help of added in-cache functional units. Our programming model extensions fit with the most relevant parallel programming solutions for shared memory environments like OpenMP. RICH does not modify the ISA, which allows the use of algorithms with reductions from pre-compiled external libraries. Experiments show that our solution achieves the performance improvements of 11.2% on average, compared to the state-of-the-art hardware-based approaches, while it introduces 2.4% area and 3.8% power overhead.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Economy and Competitiveness (contract TIN2015-65316-P), and by Generalitat de Catalunya (contracts 2017- SGR-1414 and 2017-SGR-1328). V. Dimić has been partially supported by the Agency for Management of University and Research Grants (AGAUR) of the Government of Catalonia under Ajuts per a la contractació de personal investigador novell fellowship number 2017 FI_B 00855. M. Moretó has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Ramón y Cajal fellowship number RYC-2016-21104. M. Casas has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal fellowship number RYC-2017-23269. This manuscript has been co-authored by National Technology & Engineering Solutions of Sandia, LLC. under Contract No. DENA0003525 with the U.S. Department of Energy/National Nuclear Security AdministrationPeer ReviewedPostprint (author's final draft

    The Synchronized Filtering Dataflow

    Get PDF
    In the past decade, the world has seen the rise of big data, which calls for a paradigm shift in data processing. Streaming processing, where data are processed in their spatial or temporal order, is increasingly common. Meanwhile, parallel computing has become a household term in the computing world. The combination of streaming processing and parallel computing, streaming computing, has been playing an important role in data processing. A streaming computing system is a network of nodes connected by unidirectional first-in first-out (FIFO) data channels. When a node has multiple input channels, to ensure the deterministic behavior of the whole system, synchronization is required on those channels when the node consumes data. After a streaming computing node finishes a computation, it may choose not to produce output on some of its output channels. This behavior, known as filtering, is data-dependent and unpredictable. When filtered data streams are synchronized, applications can deadlock due to empty and full channel buffers. To avoid deadlocks and ensure bounded-memory execution, we turn to model-based approaches. In this dissertation, we propose the synchronized filtering dataflow (SFDF) to model synchronization and filtering behaviors. We avoid deadlocks in SFDF applications by augmenting data streams with dummy messages. We design decentralized algorithms that compute a dummy interval for each channel during compilation time and schedule dummy messages according to the dummy intervals during runtime. The runtime parts of our algorithms are very efficient, adding little overhead to computing nodes, but computing dummy intervals could be very time-consuming on general dataflow graphs. We design efficient algorithms to compute dummy intervals for streaming applications with special topologies. In particular, we focus on series-parallel directed acyclic graphs (SP-DAGs) and CS4 DAGs, where each undirected cycle is single-source and single-sink. We further extend our work to describe a set of polyhedral constraints that define all sets of safe dummy intervals for any dataflow graphs, which gives us more flexibility to choose dummy intervals. We also provide a polynomial-time algorithm to verify the safety of given dummy intervals for SP-DAGs. Dummy messages are only one type of control message used by streaming applications. We extend our SFDF model to support more types of control message, which are precisely synchronized with data streams. We use two types of control messages, dummy message and credit message, to guarantee bounded-memory execution. We demonstrate that the extended model can help improve performance of some applications by adding filtering behavior to non-filtering applications

    Efficient Deadlock Avoidance for Streaming Computation with Filtering

    Get PDF
    In this report, we show that deadlock avoidance for streaming computations with filtering can be performed efficiently for a large class of DAG topologies. We first give efficient algorithms for dummy interval computation in series-parallel DAGs, then generalize our results to a larger graph family, the CS4DAGs, in which every undirected cycle has exactly one source and one sink. Our results show that, for a large set of application topologies that are both intuitively useful and formalizable, the streaming model with filtering can be implemented safely with reasonable compilation overhead

    Indexed dependence metadata and its applications in software performance optimisation

    No full text
    To achieve continued performance improvements, modern microprocessor design is tending to concentrate an increasing proportion of hardware on computation units with less automatic management of data movement and extraction of parallelism. As a result, architectures increasingly include multiple computation cores and complicated, software-managed memory hierarchies. Compilers have difficulty characterizing the behaviour of a kernel in a general enough manner to enable automatic generation of efficient code in any but the most straightforward of cases. We propose the concept of indexed dependence metadata to improve application development and mapping onto such architectures. The metadata represent both the iteration space of a kernel and the mapping of that iteration space from a given index to the set of data elements that iteration might use: thus the dependence metadata is indexed by the kernel’s iteration space. This explicit mapping allows the compiler or runtime to optimise the program more efficiently, and improves the program structure for the developer. We argue that this form of explicit interface specification reduces the need for premature, architecture-specific optimisation. It improves program portability, supports intercomponent optimisation and enables generation of efficient data movement code. We offer the following contributions: an introduction to the concept of indexed dependence metadata as a generalisation of stream programming, a demonstration of its advantages in a component programming system, the decoupled access/execute model for C++ programs, and how indexed dependence metadata might be used to improve the programming model for GPU-based designs. Our experimental results with prototype implementations show that indexed dependence metadata supports automatic synthesis of double-buffered data movement for the Cell processor and enables aggressive loop fusion optimisations in image processing, linear algebra and multigrid application case studies
    • …
    corecore