
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2014-001

2014

Streaming Computations with Precise Control Streaming Computations with Precise Control

Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger Chamberlain

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Peng; Agrawal, Kunal; Buhler, Jeremy; and Chamberlain, Roger, "Streaming Computations with Precise
Control" Report Number: WUCSE-2014-001 (2014). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Streaming Computations with Precise Control

Peng Li, Kunal Agrawal, Jeremy Buhler, Roger D. Chamberlain

Department of Computer Science and Engineering

Washington University in St. Louis

St. Louis, MO 63130

{pengli, kunal, jbuhler, roger}@wustl.edu

Abstract

Streaming computing is a paradigm of distributed computing that features networked nodes connected

by first-in-first-out data channels. Communication between nodes may include not only high-volume data

tokens but also infrequent and unpredictable control messages carrying control information, such as data

set boundaries, exceptions, or reconfiguration requests. In many applications, it is necessary to order

delivery of control messages precisely relative to data tokens, which can be especially challenging when

nodes can filter data tokens. Existing approaches, mainly data serialization protocols, do not exploit the

low-volume nature of control messages and may not guarantee that synchronization of these messages

with data will be free of deadlock.

In this paper, we propose an efficient messaging system for adding precisely ordered control messages

to streaming applications. We use a credit-based protocol to avoid the need to tag data tokens and control

messages. For potential deadlocks caused by filtering behavior and global synchronization, we propose

deadlock avoidance solutions and prove their correctness. Experimental results show that with our

messaging system, we can substantially improve the performance of a sparse-data streaming application

by filtering unnecessary data tokens.

1 Introduction

Streaming computing is a paradigm for parallel and distributed computing. A streaming application is a
network of computing nodes connected by first-in-first-out (FIFO) data channels. Each node processes in-
coming data in streaming (equivalently, online or one-pass) fashion. Streaming can exploit common types
of parallelism in applications, such as task parallelism, data parallelism, and pipeline parallelism. Example
applications include digital signal processing [11], molecular modeling [7], computational biology [9], multi-
media [10], and Internet traffic analysis [4]. Frameworks such as StreamIt [17], Auto-Pipe [8], Storm [3], and
MillWheel [4] have been implemented to support development of streaming applications.

If a node emits no data on an output channel in response to some input, we say that the node has filtered
the input on that channel. Filtering is a natural behavior in applications such as machine learning [21] and
biological sequence comparison [9]. Other applications do not naturally filter data but can be implemented
in a filtering way for higher performance. We consider a classic statistics problem, computing variance of
pixel intensities in an image, as a compelling example.

The canonical formula for population variance, denoted by σ2, is

σ2 =
1

N

N∑

i=1

(zi − z)2, (1)

where z is the average of the N values. Equation 1 seems to requires a two-pass calculation process: one pass
to compute the mean, and the second to compute the variance using the mean. However, we can convert
this computation to a one-pass algorithm [22, 6] that is more streaming-friendly:

σ2 = z2 − z2 (2)

1

We can implement Equation 2 as a streaming computation as in Figure 1. The source node u duplicates
input data to v and w, which compute z2 and z2 respectively. These quantities are then merged at node x
to compute variance values.

u x

w

v

Z

Z
2

2
σ

zzz N
...

21

Figure 1: A streaming computation for variance. It occurs as part of large streaming computing systems,
including the next generation of VERITAS [20], a ground-based gamma-ray observatory system.

A typical way of computing variances for a stream of images is to process every pixel value until an
image boundary is reached, then emit the image’s variance. In applications that process sparse images, a lot
of pixel values are zero. There is no need for node u to send those zeroes, which consume communication
bandwidth and processing time at v and w. Instead, u can filter out all zeroes; however, this means that
the number of values received by v and w varies from image to image, and u must promptly notify v and w
when an image boundary is reached.

Notifications of image boundaries are a type of control messages that are distinct from the stream of
pixel values. They are inserted by a node into the filtered stream unpredictably and infrequently, and they
impact the behavior of downstream nodes when they arrive. Importantly, control messages must be precisely
ordered relative to the data stream – it is incorrect for a node to group a pixel from before a boundary with
the image after the boundary, or vice versa.

Precisely ordered control messages arise in many streaming computations to ensure correctness and/or
to boost performance. The variance example is one case of communicating boundaries between finite-length
streams. Exceptions in out-of-order CPUs are another common case where precise ordering is needed relative
to an instruction stream, only parts of which are sent to each functional unit. In streaming applications with
filtering and synchronization, control messages can also be used to avoid deadlocks [13]. These examples
involve nodes that can filter their inputs, though precise ordering is also useful for non-filtering paradigms
like SDF.

In this work, we describe an efficient strategy for adding precisely ordered control messages to streaming
applications with filtering behavior. We pay particular attention to applications in which the communication
channels connecting compute nodes have small, statically determined buffer sizes, and in which control
messages are kept separate from the data stream for reasons of performance or ease of implementation.
These properties are expected for channels implemented in hardware (e.g. connections among CPU cores or
FPGAs) and in software systems where data is strongly typed. Under these circumstances, careful attention
must be paid to preserve the desired semantics and to avoid the possibility of deadlocks if buffers become full.
We give protocols to ensure precise ordering and deadlock freedom, prove their correctness, and demonstrate
experimentally that an optimization enabled by control messages can benefit application throughput.

The rest of the report is organized as follows. Section 2 provides details of our dataflow model and control
message delivery requirements. In Section 3, we discuss a protocol to ensure precise ordering semantics
between data and control for a pair of nodes. Section 4 extends this protocol to work on arbitrary directed
acyclic graphs of nodes with filtering behavior. Section 5 gives experimental results. Related work is discussed
in Section 6, and Section 7 concludes.

2

vu

q

q'

Figure 2: An edge with paired data and control channels q and q′.

2 Background

This section describes the synchronized filtering dataflow (SFDF) computing model that forms the basis of
our work. We introduced SFDF in [13]; this work extends that model to accommodate separate control and
data paths between nodes.

Our model has two tiers: for the first tier, we focus on communication between a pair of sender and
receiver, ignoring global synchronization; for the second tier, we bring global synchronization into consider-
ation. If the interested user wants to apply our result, he/she can decide which model to use according the
characteristics of the applications. In both tiers, we try to make as few assumptions as possible so that our
model can be applied to a broad range of applications.

2.1 Application Topology

An application consists of compute nodes organized in a directed acyclic multigraph. Nodes are connected by
one-way channels, each of which reliably delivers data from a sender to a receiver in FIFO order. However,
channels have no timing guarantee. Each channel has a known, finite buffer capacity that does not change
at runtime. We denote by |q| the buffer size of channel q. In practice, it might be possible to shrink or
expand the channel buffers of software applications, but in some circumstances (e.g. FPGA applications), it
is difficult to change buffer size at runtime, so as a general rule, we assume channel buffers cannot be resized
dynamically.

There are two types of channels: data and control, which carry data tokens and control messages re-
spectively. As shown in Figure 2, for each data channel q connecting two nodes, there is a parallel control
channel q′. (We refer to this pair of channels as the edge between the nodes.) A node can choose to listen for
input on at most one channel at a time; once a channel is chosen for listening, the node can take no further
action until input appears on that channel.

2.2 Filtering and Data Channel Synchronization

When a node of an SFDF application receives and processes input data, it may produce zero or one data
token on each of its output data channels. If no token is produced for some input on a given output channel,
we say that the node has filtered its input on that channel.

When a node takes as input two or more data streams, each of which may be subject to filtering by
upstream nodes, the semantics of joining these multiple streams must be clearly defined.

In SFDF, data tokens emitted into a channel bear strictly increasing integer indices. In a single compu-
tation, a node may consume only data tokens with a common index i, and any output tokens produced by
this computation will also have index i. Moreover, the node may not begin computing on data tokens with
index i until, for each of its input channels, either the next token on that input has index i, or it is known
that no token with index i will ever appear. These semantics ensure that, even though different channels
are not synchronized, all tokens with a common index, and only such tokens, are processed together by a
single node. In other words, in a single computation, a node should only consume data tokens with the same
index, and all data tokens with the same index emitted by senders must be consumed by the node in only
one computation.

Note that, if it is possible for a node to receive inputs on only a subset of its input channels due to
filtering, then the application designer must specify the meaning of the node’s computation for all such
possible subsets.

3

2.3 Control Channel Behavior

Control channels carry control messages, which have one of a finite set of types and can contain arbitrary
content. The order in which control and data are processed is precise: if a node sends a data token with
index i on data channel q of an edge, followed immediately by a control message on the associated control
channel q′, then this message should be processed by the receiving node after computing on all input data
with index i but before consuming data with any index > i. A node may send multiple control messages on
an edge between two consecutive data indices.

Intuitively, control messages are sent only rarely compared to data tokens. By splitting these messages out
into their own channels, we avoid multiplexing them with the data tokens in the higher-volume data channels.
This separation permits strong typing assumptions about data channels, which may lead to more efficient
implementation; moreover, it simplifies the common case of sending and receiving data between nodes, which
may benefit the application’s latency and throughput. Unfortunately, while multiplexing data and control in
one channel trivially guarantees precise ordering, the same is not true for separate, unsynchronized control
and data channels.

In what follows, we first give a protocol to ensure precise ordering of control messages and data tokens
on a single edge. This protocol is independent of SFDF’s global synchronization requirements between data
channels. We then show how to extend our protocol to ensure that SFDF applications with control channels
execute safely without global deadlock.

3 Ensuring Precise Control-Data Ordering

To guarantee precise ordering of control messages and data tokens between a sender and receiver, we design
a protocol in which the sender uses the control channel to enforce the ordering at the receiver. Enforcement
is mediated through the use of credits.

Consider an edge e consisting of two nodes connected by data and control channels q and q′. We will
enforce precise ordering of control messages and data tokens on this edge through the use of credits. The
sender and receiver each maintain internal credit balances, which are integer values that are initially zero.
When a receiver receives some number c of credits on e, its credit balance RCBe is incremented by c; when it
consumes a data token on e, RCBe is decremented by one. The sender’s credit balance SCBe is incremented
by one whenever it sends a data token; when it sends c credits to the receiver on e, SCBe is decremented by
c.

Credits can be attached to any control message. If credits must be sent but no other control message
is pending, the sender may send a credit message with no intrinsic content but its attached credit. When
the receiver sees a control message with attached credit, it immediately increments its credit balance and
may then switch to the data channel and attempt to read data tokens without first processing the control
message itself.

3.1 Credit Balance Protocols

Intuitively, a credit represents permission from the sender for the receiver to consume a data token. It implies
that there are no pending control messages that must be processed before consuming the next data token. The
receiver may consume data tokens as long as its credit balance is positive, but when the balance goes to
zero, it must wait for the sender either to supply more credits or to send control messages that should be
processed before the next data token. The formal protocol followed by the receiver is given in Algorithm 1.

The sender, for its part, must issue credit to consume a pending data token only after it knows that no
control message should precede that token. It is not necessary for the sender to issue the credit immediately
after the token; indeed, the volume of credit messages can be reduced by letting the data channel buffer
tokens until either a control message must be issued or the buffer is full. To this end, Algorithm 2 gives a
sender’s protocol parametrized by a threshold T , which should be set less than the buffer size of the outgoing
data channel. When the threshold is exceeded with no intervening control messages, the sender issues credit
to drain the data channel’s buffer. Note that, in this and all following protocols, all emit operations block
until the output channel is not full.

4

Algorithm 1: Receiver Credit Balance Protocol

while RCB = 0 do

wait for a control message on q′

let c be credit value carried by message
if c = 0 then

consume message
else

Detach c credits from message
RCB← RCB+ c

wait for a data token on q
consume token
RCB← RCB− 1

Algorithm 2: Sender Credit Balance Protocol

if token is ready then

emit token on q
SCB← SCB+ 1

while control message is ready OR SCB > T do

emit message on q′ with SCB credits
SCB← 0

3.2 Correctness and Safety

We argue that the sender and receiver protocols ensure precise ordering of control messages vs. data tokens.

Theorem 3.1. If a receiver and sender are connected by an edge and behave as in Algorithms 1 and 2, and
the sender issues a data token d followed by a control message m, then the receiver will process m after d
but before the next token following d.

Proof. The sender’s protocol never sends the credit necessary to consume a data token before sending the
token itself. Hence, when d is sent, the receiver does not have the credit needed to accept it. This credit
is sent only with control message m and is sufficient only to process d and any unreceived data tokens sent
prior to d. Hence, the receiver sees m, uses its credits to accept d and any prior tokens, and then processes
m.

For any data token d′ sent after d, the receiver will not receive the credit needed to accept it until after
processing m.

The above argument assumes that the sender and receiver are always able to make progress. Because the
data and control channels have finite buffers, the sender could at some point be blocked trying to send a data
token or control message into a channel with a full buffer, or the receiver could be blocked waiting for tokens
or messages when none are yet visible to it. If both the sender and the receiver are blocked indefinitely, the
system is deadlocked. We now verify that our protocol makes such a deadlock impossible.

Theorem 3.2. If a receiver and sender are connected by an edge and behave as in Algorithms 1 and 2, this
pair of nodes will never deadlock.

Proof. To verify freedom from deadlock, we must check that two bad cases never occur. (These are special
cases of the general blocking cycle described in [14, 15], which is proved there to be the only way an SFDF
application can deadlock.)

• Case 1. The sender is blocked writing a full data channel q while the receiver is blocked reading an
empty control channel q′.

• Case 2. The sender is blocked writing a full control channel q′ while the receiver is blocked reading an
empty data channel q.

5

We first address Case 1. If the data channel is full, but the receiver is reading the control channel, then
the receiver has no credits to consume data tokens. If no control message with credits is in flight, then the
sender has sent |q| data tokens without sending any credits. Since the sender’s threshold T = |q|, it would
have sent credits before trying to send token |q| + 1, which contradicts the assumption that no credits are
in flight. Hence, the receiver will be able to drain the data channel after finite time, and the nodes are not
deadlocked.

We now consider Case 2. If the control channel is full, but the receiver is blocked reading the data channel,
then the receiver has at least one unexpended credit. But the sender never issues such credits before issuing
the corresponding data tokens. Hence, there must be enough data tokens in flight to expend the receiver’s
credits, and it will consume them and switch to reading the control channel after finite time.

4 Combining SFDF with Precise Control

We now explore how to combine SFDF’s synchronization of multiple, possibly filtered input streams with the
use of separate data and control channels. Recall that an SFDF application is a directed acyclic multigraph.
Each edge e of this multigraph now consists of two channels: a data channel qe, and a control channel q′e.
Each edge also holds variables sufficient to implement the credit protocols of the previous section, including
sending and receiving credit balances SCBe and RCBe and a threshold Te that is smaller than data channel
buffer size |qe|.

Algorithm 3 describes how to combine SFDF with control channels. To ensure precise data and control
ordering, each node implements Algorithm 1 on each of its input edges and Algorithm 2 on each of its
output edges. Edges are processed sequentially in an arbitrary order. To synchronize across data channels,
the receiving protocol is split into two parts: part one ensures that data tokens are available on all input
edges’ data channels, while part two decides which tokens to read (based on their indices) in order to start
the next computation. The common index i of tokens consumed by a computation at a node is called the
computation index. Note that no attempt is made to synchronize control messages across edges.

Not every node in an application may have inputs or outputs. In particular, source nodes have no inputs
but rather generate tokens and messages spontaneously, following only the output part of the protocol.

Unfortunately, this straightforward combination of SFDF and the credit protocols is prone to deadlock.
We explore this issue and its remediation next.

4.1 Deadlocks Due to Full Data Channels

To classify possible deadlocks in SFDF networks with control, we first review the notion of blocking.

Definition 1 (Blocking Relation). If a node v is waiting for input (either control or data) from an
upstream neighbor u, or if v is waiting to send output to a downstream neighbor u because the channel
buffer between them is full, we say that u blocks v, denoted u ⊣ v. If there exists a sequence of nodes
v1 . . . vn such that vi ⊣ vi+1 for 1 ≤ i < n, we write v1 ⊣

+ vn.

The following result of [13] also applies to SFDF with control channels, using essentially the same proof:

Theorem 4.1 (Deadlock Theorem). An SFDF application deadlocks iff during the computation, there
exists a node u s.t. u ⊣+ u and there are unprocessed data tokens or control messages in some channel.

In other words, deadlock is equivalent the presence of a blocking cycle in the application graph.
To further focus the discussion, we make two simplifications. First, we will assume until otherwise stated

that no control channel ever becomes full during a computation. This is intuitively reasonable if control
messages are sent much less frequently than data tokens. Second, we observe that, because a node always
sends the credit to receive a data token after the token itself, a node cannot block indefinitely on an empty
data channel. Indeed, if a node is waiting on a data channel, then it has unexpended credit, which means
the corresponding data token is already in flight.

With the above simplifications, a blocking cycle must contain only two types of edges: full data channels
and empty control channels. The following example shows that such a deadlock is possible. Consider four
nodes connected as in Figure 1 above, with edges uv, vx, uw, and wx. Every computation of u produces

6

Algorithm 3: Single-node behavior in SFDF with control messages.

foreach input edge e do

while RCBe = 0 do

wait for a control message on q′e
let c be credit value carried by message
if c = 0 then

consume message
else

Detach c credits from message
RCBe ← RCBe + c

wait for a data token on qe
let i be least index among data tokens on all edges
foreach input edge e do

if token on qe has index i then
consume token
RCBe ← RCBe − 1

perform computation for index i
foreach output edge e do

if token is ready on e then

emit token on qe with index i
SCBe ← SCBe + 1

while control message is ready on e OR SCBe > Te do

emit message with SCBe credits
SCBe ← 0

data tokens on quv and quw, and every computation of v produces a data token on qvx; however, w filters
more than half of its inputs on qwx. Assume the data channels on all four edges have the same buffer size 32,
the threshold for scheduling credit messages is T = 31 (recall that a credit message is prompted if buffered
tokens are more than T), and that no control messages are sent other than credit messages. After some
computations, the system reaches the state shown in Figure 3.

At this point, if u does one more computation (and w filters the resulting data token), then we have that
(1) u is blocked by v on a full quv; (2) v is blocked by x on a full qvx; (3) x is blocked by w waiting for credit
on an empty control channel q′wx; and (4) w, which has no pending tokens and hence no credit, is blocked
by u waiting for credit on the empty control channel q′uw. Hence, the system is deadlocked with a blocking
cycle.

This example actually illustrates two related but distinct causes of deadlock. If w sends no data on qwx,
then deadlock occurs because x has no input on this channel but does not know that none will arrive. This
kind of deadlock also occurs in SFDF networks without control channels [13]. If, however, w sends some
data on qwx, x has enough data to make progress, but in the absence of control messages, nothing prompts
w to send its stored credit to enable x to use the data. This kind of deadlock is a side effect of the credit
protocols. Below, we propose a modified protocol to avoid both causes of deadlock.

4.2 Avoiding Deadlocks with Periodic Communication

To avoid deadlock, we modify our protocol in two ways. First, we periodically flush pending credit from the
sender to the receiver, so that data tokens cannot linger indefinitely at the receiver with no credit. Second,
we periodically notify the receiver if tokens with consecutive indices have been filtered by upstream senders,
using a new kind of control message called a dummy message that carries the index of the sender’s most
recent computation.

The augmented protocol is shown in Algorithm 4. The receiver’s protocol is essentially unchanged, except
that, instead of a data token with index i, an edge may present a dummy message with index j ≥ i, which
implies that no token with index i will ever be received on that edge, and it should therefore not block

7

u x

w

v

0

< 32

0

0

320

32

no
n-f
ull

0

ful
l full

non-full

RCB

SCB

Figure 3: A deadlock example. w filters 46 of 64 consumed data tokens and no other node filters data. Now
data channels uv and vx are full, blocking u and v; SCB values for uw and wx are not big enough to prompt
credit messages, blocking w and x.

computation i from proceeding.
The sender’s protocol is augmented with two state variables: LastSentIdxe, which tracks the index of

the last data token actually sent by the sender, and LastRecvIdxe, which tracks the last index for which
the receiver has permission to consume inputs with that index from e. If the sender does too much work
(as measured by the size of the gap between the index i of the most recent computation and LastRecvIdxe)
without enabling the receiver to proceed, then it either flushes its pending credit for any data tokens sent
in this gap, or, if no tokens were sent, transmits a dummy message with index i to tell the receiver not to
expect them. The largest permissible gap size for an edge e is called its heartbeat interval, denoted in the
protocol by [e].

The remaining question is how large to make the heartbeat interval for each edge. It would be trivially
safe to set [e] = 0 for every e, but doing so would flush credit or send a dummy after every computation, which
would add excessive communication overhead. Instead, we utilize the following scheme adapted from [15].
Given a dataflow graph G, for each undirected cycle C of G, suppose the set of clockwise edges is H1 and
the set of counterclockwise edges is H2. We enforce the following inequality constraints for cycle C:

Σe∈H1
[e] < Σe∈H2

|qe| (3)

Σe∈H2
[e] < Σe∈H1

|qe|. (4)

An application graph may have more than one undirected cycle, in which case each such cycle generates a
pair of constraints as described. We also need to avoid local deadlocks, so the following constraint, which
we specified for the sender’s protocol of Section 3, is added for each edge e:

[e] < |qe|. (5)

The union of all these constraints defines a feasible polyhedron of heartbeat intervals for the application,
and we select a set of intervals from this feasible region.

Theorem 4.2. Assuming that control channels never become full, if every node in an SFDF application
behaves as Algorithm 4 with heartbeat intervals constrained by Inequalities (3), (4), and (5), then the appli-
cation cannot deadlock.

Proof. As noted above, if control channels never become full, the only possible deadlocks involve full data
and empty control channels.

WLOG, the history of control messages that leads to deadlock includes only credit messages and dummy
messages; other control messages never cause a node to stop listening on a channel, and control channels
are never full, so these other messages do not impact ability to make progress. Also, since control channels
never fill, an application that deadlocks will still deadlock if we set every control channel buffer size to an
arbitrarily large value.

8

Algorithm 4: Adding dummy messages to SFDF with control.

foreach input edge e do

while RCBe = 0 do

wait for a control message on q′e
let c be credit value carried by message
if c = 0 then

if message is a dummy then
break

consume message

else

Detach c credits from message
RCBe ← RCBe + c

if RCBe > 0 then

wait for a data token on qe
let i be least index among tokens on edges with

RCB > 0 and dummies on edges with RCB = 0
foreach input edge e do

if RCBe > 0 AND token on qe has index i then
consume token
RCBe ← RCBe − 1

else if dummy on q′e has index i then
discard dummy

perform computation for index i
foreach output edge e do

if token is ready on e then

emit token on qe with index i
SCBe ← SCBe + 1
LastSentIdxe ← i

if SCBe = 0 AND i− LastRecvIdxe > [e] then
emit dummy on q′e with index i
LastRecvIdxe ← i

while control message is ready on e OR i− LastRecvIdxe > [e] do
emit message on q′e with SCBe credits
SCBe ← 0
LastRecvIdxe ← LastSentIdxe

In [15, Algorithm 1], we gave a protocol for avoiding deadlock in SFDF networks in which dummy
messages are multiplexed with data tokens on the data channel, and no control channels exist. We will
leverage this result to show that Algorithm 4 is also deadlock-free. Let Γ be an SFDF application with
control channels. We construct a similar SFDF application Φ without control channels and give a mapping
from histories of data and control transmission in Γ to histories in Φ. We then argue that (1) every history
in Γ that follows Algorithm 4 with heartbeat intervals as described maps to a provably deadlock-free history
in Φ, and (2) if the mapped history in Φ does not end in deadlock, neither does the original history in Γ.

To form Φ, clone the dataflow graph of Γ, including nodes and edges. For each channel pair qγe and q
′γ
e

of Γ, create in Φ data channels qφe and q
′φ
e with the same buffer sizes in Γ.

We map histories in Γ to histories in Φ as follows. For each computation at a node Γ, the corresponding
node of Φ performs a computation with the same index. After the computation, if a data token is emitted on
qγe , emit a data token with the same index on qφe ; if a credit message is emitted on q

′γ
e , emit a dummy message

with the index of LastRecvIdxe on q
′φ
e ; if a dummy message is emitted on q

′γ
e , emit a dummy message with

the same index on both qφe and q
′φ
e .

With the mapping from Γ to Φ, we make the following claims.

9

Claim 4.3. For any computation history in Γ that follows Algorithm 4 with heartbeat intervals as indicated,
the mapped computation history in Φ completes without deadlock.

Proof. Due to space constraints, we only sketch the proof. It may be verified that, given Algorithm 4 and our
mapping, each node of Φ issues dummies in exactly the way directed by the deadlock avoidance protocol for
SFDF in [15, Algorithm 1]. Moreover, the dummy intervals (i.e. maximum number of data tokens that can be
filtered without sending a dummy message) for each edge in Φ can be computed based on the corresponding
heartbeat intervals in Γ. It may then be verified that these intervals meet the inequality criteria given in [15,
Section III.C] (which are essentially identical to Inequalities 3 and 4) that guarantee that Φ’s computation
can never deadlock. �

Claim 4.4. If node vφ of Φ can advance its computation index (CI) to iv, so can the corresponding node vγ

of Γ.

Proof. We prove by induction on tuple (v, iv).
Bas. v is a source node and i = 1, trivially true.
Ind. Suppose u1, u2, . . . , uk are topological predecessors of v. In order for vφ to advance its CI to iv, their
CI’s first have to be advanced to at least iu1

, iu2
, . . . , iuk

, respectively. According to the IH, uγ
j has also

advanced its CI’s to at least iuj
, j = {1, 2, . . . , k}.

During vφ’s computation on index iv, on each channel pair qφe and q
′φ
e , according to the construction of

Φ, vφ either (1) consumes a data token with index iv on qφe and sees a dummy message with index ≥ iv on
q′e (it also discards the dummy message if its index is iv) or (2) discards a dummy message with index iv on
both qφe and q

′φ
e .

According to the mapping from Γ to Φ, if case (1) happens, vγ receives a data token with index i and
has credit to consume it; if case (2) happens, vγ receives a dummy message on q

′γ
e . In either case, vγ can

finish processing input on edge e. After vγ finishes processing all input edges, it computes and sends output,
including data tokens, dummy messages, and credit messages. Data tokens and dummy messages are one-
to-one mapped to those in Φ, so they will be sent successfully. A credit message is mapped to a dummy
message, so there is no problem in sending credit messages. Hence, vγ can advance to iv. �

Conclude that, since a mapped history of computations in Φ is always able to make progress, and a
computation in Γ makes progress whenever the mapped computation in Φ does, it must be that an arbitrary
computation in Γ can always make progress, and hence Γ is deadlock-free.

4.3 Deadlocks Due to Full Control Channels

We assumed previously that no node is ever blocked due to a full message channel. If the number of
control messages generated per data token is a priori bounded, this assumption can be enforced by statically
allocating a large enough buffer for each control channel. In particular, for each edge e, if we set |q′e| > m|qe|,
then the edge’s sender can safely emit up to m control messages per data token. The larger control buffer
guarantees that qe will fill before q′e, so that the sender blocks on the data channel, not the control channel.
In practice, it might be possible to derive weaker bounds, e.g. that a node never sends more than b control
messages for each d data tokens, in which case we could set |q′e| > b/d · |qe|.

If we do not a priori bound the number of control messages sent per data token, a new type of deadlock
involving full control channels is possible, as the following example shows. Consider the same four nodes of
Figure 1. For computation index 1, u sends a data token to v, which in turns sends a token to x, but u sends
nothing to w. v then attempts to send |q′vx| + 1 control messages to x. After the first control message, x
has credit for edge vx and then blocks waiting for credit on edge q′wx. Hence, v eventually blocks on the full
control channel q′vx. If u then attempts to send |q′uv| + 1 control messages on edge uv, that edge’s control
buffer will fill as well. At this point, (1) u is blocked by v on the full q′uv; (2) v is blocked by x on the full
q′vx; (3) x is blocked by w on the empty q′wx; and (4) w is blocked by u on the empty q′uw. Hence, the system
is deadlocked.

One way to avoid deadlocks on full control channels is to utilize the protocol of Algorithm 4, setting the
heartbeat interval [e] to 0 for every edge e. This causes a node to schedule a dummy message for every
filtered data token and to always send a credit immediately after sending a data token.

10

Theorem 4.5. If every node in an SFDF application behaves as in Algorithm 4 using heartbeat interval 0 for
every edge, the application cannot deadlock, even if the control messages sent per data token are unbounded.

Proof. We first prove that all nodes can advance to the same computation index as source nodes do.

Claim 4.6. If all source nodes can advance their computation indices (CI) to I, so can all nodes.

Proof. We prove it in two steps. First, we prove that all nodes can advance their CI to 1, the lowest computing
index by induction on the topology of the dataflow graph. Let u0, u1, . . . , un be a fixed topological order of
the application graph.

Bas. Source nodes can advance CI to 1.
Ind. Suppose u0, u1, . . . , uk can advance CI to 1, which means for node uk+1, all its predecessors have
advanced their CI to 1. For each incoming edge e of uk+1, u can consume control messages on q′e until
seeing a credit message, if the upstream node does not filter the data token on qe, or a dummy message,
if the upstream nodes filters the data token. In either case, uk+1 is able to finish waiting on e to proceed
to the computation. After finishing computation, uk+1 sends control messages and possible data tokens on
output channels. It may send multiple control messages on a output channel, but all control messages can be
consumed by the receiver asynchronously, so it won’t be blocked indefinitely by an output message channel;
it sends at most one data token, so it won’t be blocked indefinitely by an output data channel.

Hence all nodes can advance their CI to 1.
Now we prove the claim with an induction on CI. Suppose all nodes can advance their computing index

to i, we show that if all source nodes can advance their CI to i + 1, so can all nodes. Indeed, we know all
nodes can finish computing on index i and clear channel buffers for computing on index i+1, with a similar
induction on a fixed topological order, as we just did for index 1, we can prove all nodes can advance CI to
i+ 1. �

We can see that when source nodes start a new computation index, all nodes of the application can
advance to that computation index, which means no deadlock can happen.

4.4 Adding Output Buffers

In distributed computing, nodes often use local output buffers to reduce amortized communication overhead.
Outgoing data tokens are simply queued in the node’s output buffer until they can be sent in a batch. An
output buffer is simply a special, sender-controlled case of the abstract channel buffers in SFDF, so provided
these buffers are of size at least [e] for every edge, and sending credits causes the output buffer to be flushed,
we can still describe the application’s behavior by Algorithm 4 and so can guarantee deadlock freedom.

5 Experimental Evaluation

We have implemented support for precisely ordered control messages in filtering SFDF on top of Auto-Pipe,
a framework for streaming applications [8]. To evaluate the performance impact of filtering and control
messages, we implemented the streaming application for computing variance described in Figure 1.

In our experiments, node u generates simulated VERITAS images, each consisting of 32 × 32 = 1024
integer-valued pixels. Nodes v and w compute the mean and mean-of-squared-values for each image, respec-
tively, and x receives these and computes standard deviations. We tested images with 10%, 30%, 50%, 70%,
and 90% random zeros. We set heartbeat intervals appropriately to ensure deadlock freedom, as described
above. To simulate the case in which the application is implemented without filtering, we tested the filtering
implementation with a heartbeat interval of 0. We implemented the application both with and without
per-node output buffers to compare throughputs. We ran experiments on a 2.6-GHz, six-core AMD Opteron
processor. Each node of the application was mapped onto a separate physical processor core. Communication
channels were implemented in shared memory.

Figure 4 illustrates observed throughput (in images/second) for increasingly sparse images when the
heartbeat interval is set to 16 for each edge. (Qualitatively similar results were observed for intervals of 32,
64, and 128.) For sparse images, filtering greatly improves application throughput. Profiling reveals that
node w, which computes the mean of squares, is the bottleneck in the pipeline. Node w’s workload decreases
linearly as the filtering ratio increases.

11

�

�����

�����

�����

�����

�����

�� �� �� �� ��

T
h

ro
u

g
h

p
u

t
(d

a
ta

 s
e

ts
/s

e
c

)

Percentage of zeroes

Filter_OB NoFilter_OB Filter_NC NoFilter_NC

Figure 4: Throughput of variance application vs. rate of filtering (heartbeat interval = 16). Filter OB,
NoFilter OB, Filter NB, NoFilter NB represent: filtering w/ output buffer, non-filtering w/ output buffer,
filtering w/o output buffer, and non-filtering w/o output buffer.

This experiment provides an example of how filtering unnecessary data in streaming applications can
boost throughput, even with the overhead needed to implement precise control and avoid deadlock. We
further investigated the impact of local output buffers as a strategy to limit the overhead of copying data
through shared memory buffers. With output buffers, observed throughput increased by 3-4x.

6 Related Work

The control messaging system proposed in this paper is based on synchronized filtering dataflow (SFDF),
which can be viewed as Homogeneous Synchronous Dataflow (HSDF) [12] with the addition of node filtering.
HSDF is a special type of Synchronous Dataflow (SDF) [11] where the data rate (the number of items a
node reads/writes from its input/output channels) is 1 for all channels. SFDF applications are vulnerable to
deadlocks with finite buffer capacity due to filtering and synchronization. We previously described the use of
dummy messages, a special type of control message, sent in-band with data streams to avoid deadlock [13, 14,
5, 15]. The system in this paper incorporates dummy messages but instead delivers them through dedicated
control channels.

Synchronizing data streams and control messages is also common in network protocols. For example, the
Internet Control Message Protocol (ICMP) is designed to exchange control messages between two Internet
devices during data transmission [16]. Those protocols are too complex for streaming computing, where nodes
are usually tightly coupled and a simpler, higher-performance protocol is preferred. While tagging-based
data serialization procotols (e.g. Thrift [1] and Protocol Buffers [2]) can be an option, they are inefficient
in supporting infrequent control messages. Moreover, serialization breaks the regularity of data streams,
making it hard to avoid deadlocks.

The work most closely related to ours is StreamIt’s Teleport Messaging system [18, 19]. Both their
work and our work address the problem of sending infrequent and irregular control messages for streaming
applications computing on regular data streams. The key difference is that Teleport Messaging is based on
the SDF model and uses dependence analysis for precise event handling, while our precise control mechanism,
the Credit Balance Protocol, does not rely on any specific model. We also provide remedy for deadlocks
when the messaging system works with a synchronized filtering dataflow model, which is not discussed in
Teleport Messaging.

12

7 Conclusion and Future Work

Precisely ordered control messages are important to the correctness and performance of streaming appli-
cations. In this work, we have designed and implemented a messaging system that works for streaming
computations in which nodes can filter their inputs. It can work even in streaming pipelines that require
global synchronization, as in SFDF. We have given protocols and sufficient design constraints to avoid dead-
locks while delivering precise control even in the presence of filtering. Experimental results show that filtering
with our protocol can substantially improve a sparse-data streaming computation’s throughput.

In the future, we will further investigate the performance impact of precise control messages. While we
have increased application throughput, increasing buffer sizes will also increase end-to-end latency. Choosing
static buffer sizes to balance throughput and latency considerations is a problem for future work. Another
open problem is how to efficiently find the highest-throughput set of heartbeat intervals that satisfy the
constraints of Inequalities (3), (4), and (5). Currently, computing a satisfactory (not necessarily maximal)
set of intervals given the buffer sizes requires superpolynomial time in the application size. We will investigate
faster interval selection algorithms with stronger guarantees.

References

[1] Apache thrift. Accessed: June 30, 2014.

[2] Protocol buffers. Accessed: June 30, 2014.

[3] Storm. Accessed: June 30, 2014.

[4] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam
McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: fault-tolerant stream processing
at internet scale. Proc. VLDB Endowment, 6(11):1033–1044, 2013.

[5] Jeremy D Buhler, Kunal Agrawal, Peng Li, and Roger D Chamberlain. Efficient deadlock avoidance for
streaming computation with filtering. In Proc. 17th ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming, pages 235–246. ACM, 2012.

[6] Tony F Chan, Gene H Golub, and Randall J LeVeque. Algorithms for computing the sample variance:
Analysis and recommendations. The American Statistician, 37(3):242–247, 1983.

[7] M. Erez, J.H. Ahn, A. Garg, W.J. Dally, and E. Darve. Analysis and performance results of a molecular
modeling application on Merrimac. In ACM/IEEE Supercomputing Conf., Nov. 2004.

[8] Mark A. Franklin, Eric J. Tyson, James H. Buckley, Patrick Crowley, and John Maschmeyer. Auto-
pipe and the X language: A pipeline design tool and description language. In IEEE Int’l Parallel and
Distributed Processing Symp., 2006.

[9] Arpith C. Jacob, Joseph M. Lancaster, Jeremy Buhler, Brandon Harris, and Roger D. Chamberlain.
Mercury BLASTP: Accelerating protein sequence alignment. ACM Transactions on Reconfigurable
Technology and Systems, 1(2), 2008.

[10] B. Khailany, W.J. Dally, S. Rixner, U.J. Kapasi, P. Mattson, J. Namkoong, J.D. Owens, B. Towles, and
A. Chang. Imagine: Media processing with streams. IEEE Micro, pages 35–46, March/April 2001.

[11] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proc. IEEE, 75(9), 1987.

[12] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of synchronous data flow programs
for digital signal processing. IEEE Trans. Comput., 36(1):24–35, January 1987.

[13] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger D. Chamberlain. Deadlock avoidance for streaming
computations with filtering. In Proc. 22nd ACM Symp. on Parallelism in Algorithms and Architectures,
pages 243–252, 2010.

13

[14] Peng Li, Kunal Agrawal, Jeremy Buhler, Roger D. Chamberlain, and Joseph M. Lancaster. Deadlock-
avoidance for streaming applications with split-join structure: Two case studies. In IEEE Int’l Conf.
on Application-specific Systems, Architectures and Processors, pages 333–336, July 2010.

[15] Peng Li and Jeremy Buhler. Polyhedral constraints for bounded-memory execution of synchronized
filtering dataflow. Workshop on Data-Flow Execution Models for Extreme Scale Computing, September
2013.

[16] Jon Postel. Internet control message protocol. RFC-792.

[17] W. Thies, M. Karczmarek, and S.P. Amarasinghe. StreamIt: A language for streaming applications. In
Int’l Conf. on Compiler Construction, 2002.

[18] William Thies. Language and Compiler Support for Stream Programs. PhD thesis, Massachusetts
Institute of Technology, Feb 2009.

[19] William Thies, Michal Karczmarek, Janis Sermulins, Rodric Rabbah, and Saman Amarasinghe. Teleport
messaging for distributed stream programs. In Proc. 10th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pages 224–235. ACM, 2005.

[20] Eric J Tyson, James Buckley, Mark A Franklin, and Roger D Chamberlain. Acceleration of atmospheric
Cherenkov telescope signal processing to real-time speed with the Auto-Pipe design system. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 595(2):474–479, 2008.

[21] P. Viola and M. Jones. Robust real-time object detection. Int’l J. Computer Vision, 57(2), 2002.

[22] BP Welford. Note on a method for calculating corrected sums of squares and products. Technometrics,
4(3):419–420, 1962.

14

	Streaming Computations with Precise Control
	Recommended Citation

	icpads14.dvi

