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1 Introduction

Increasing power consumption, heat dissipation, and other issues have lead
to the rapid prevalence of multicore microprocessor chip architectures in re-
cent years. Exploiting the potential parallelism of multiple cores on a sin-
gle chip is an unprecedented challenge to application developers. A growing
body of knowledge suggests heterogeneous multicore chipsets will be integral
to the next generation of supercomputers. Roadrunner, a heterogeneous dis-
tributed memory supercomputer based on the Cell Broadband Engine Archi-
tecture (CBEA), is the first system to achieve a sustained petaFLOPS.1 This is
prominent evidence of the potential of heterogeneous multicore chipsets. Multi-
layered heterogeneous parallelism offers an impressive number of FLOPS, but
at the cost of staggering hardware and software complexity. In order to build
the next generation of scientific software for heterogeneous systems, multiple
levels of heterogeneous parallelism must be applied effectively.

Geophysical models are comprehensive multiphysics simulations common
in the environmental and life sciences. These models consider hundreds of vari-
ables such as temperature, pressure, terrain features, diffusion rates, chemical
concentrations, reaction rates, and wind vector fields for every point in the
domain. These models solve systems of equations involving between 106 and
109 double-precision floating point values, require hours or days of runtime
on small compute clusters, and tend to be highly parallel. Mass flux may be
approximated though a finite difference scheme on a fixed domain grid, and
chemical reactions, photosynthetic processes, and particulate processes are em-
barrassingly parallel on a fixed domain grid. Subdividing the problem through
domain decomposition, appropriate application of data-parallel BLAS opera-
tions, and numerical integration schemes with weak data dependencies have
been used successfully to parallelize geophysical models on shared-memory and
distributed-memory clusters.

Multicore chipsets push the physical constraints of computation by allowing
many processes to be assigned to the same node while reducing the machine’s
physical footprint. Many instances of the same core on a single chip may
be economically or physically infeasible, particularly if caches are shared be-
tween cores. In practice, memory I/O bottlenecks scalability long before every
node achieves maximum load. Heterogeneous, or accelerated, multicore chipsets
specify subsets of cores for particular applications to optimize on-chip space.
For example, cores may be specialized for memory I/O or compute-intensive
liner algebra. The specialized cores are called accelerators since they rely a tra-
ditional CPU for general computation. An accelerator’s high FLOP count and
additional memory I/O efficiency hides memory latency as the chip is over-
subscribed. Therefore, accelerated multicore chipsets exhibit much stronger
scalability than homogeneous multicore chipsets while facilitating good phys-
ical scalability.

1 http://www.ibm.com/news/us/en/2008/06/2008_06_09.html

http://www.ibm.com/news/us/en/2008/06/2008_06_09.html
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This study demonstrates the potential of heterogeneous multicore archi-
tectures to speed up geophysical simulations. Several methods for improving
the performance of the chemical constituent transport module in Fixedgrid,
a prototype comprehensive atmospheric model, on the CBEA are explored.
The major contributions of this study are:

1. An examination of function offloading, a popular multicore programming
paradigm, as a method for porting a two-dimensional chemical constituent
transport module to the CBEA.

2. A scalable method for transferring incontiguous data to and from CBEA
accelerator cores. Virtually every scientific code involves multidimensional
data structures with incontiguous data. Scalability can be severely ham-
pered if careful consideration is not given to data layout and transfer.

3. A method for using every layer of polymorphic parallelism in the CBEA
called vector stream processing. This method combines asynchronous ex-
plicit memory transfers with vectorized kernel functions to maximize ac-
celerator core throughput while maintaining code readability. Our imple-
mentation refactors statically for single- or double-precision data types.

4. A detailed performance analysis of two- and three-dimensional finite dif-
ference fixed grid chemical constituent transport on three CBEA systems,
an IBM BlueGene/P distributed-memory system, and a Intel Xeon shared
memory multiprocessor.

The experimental results show that function offloading is a good method for
porting existing scientific codes, but it may not achieve maximum performance.
Vector stream processing produces better scalability for computationally-intense
constituent transport simulation. By using vector stream processing to leverage
the polymorphic parallelism of the CBEA, the 3D transport module achieves
the same performance as two nodes of an IBM BlueGene/P supercomputer, or
eight cores of an Intel Xeon homogeneous multicore system, with one CBEA
chip.

2 Related Work

2.1 Homogeneous Multicore Chipsets

There is a growing body of work documenting the performance of specialized
algorithms on multicore processors. Chen et al. [10] optimized the Fast Fourier
Transform on the IBM Cyclops-64 chip architecture, a large-scale homogeneous
multicore chip architecture with 160 thread units. Their FFT implementation,
using only one Cyclops-64 chip, achieved over four times the performance
of an Intel Xeon Pentium 4 processor, though a thorough understanding of
the problem and of the underlying hardware were critical to achieving good
performance in their application.

Douillet and Gao [15] developed a method for automatically generating a
multi-threaded software-pipelined schedule from parallel or non-parallel im-
perfect loop nests written in a standard sequential language such as C or
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FORTRAN. Their method exhibits good scalability on the IBM Cyclops-64
multicore architecture up to 100 cores, showing that enhanced compilers can
produce efficient multicore code, even if the programmer lacks domain-specific
knowledge. However, these methods are not easily transferable to heteroge-
neous architectures, as they assume every core is equally applicable to every
task.

Many high-performance applications show significant performance improve-
ment on multicore processors. Alam and Agarwal [2] characterized computa-
tion, communication and memory efficiencies of bio-molecular simulations on
a Cray XT3 system with dual-core Opteron processors. They found that the
communication overhead of using both cores in the processor simultaneously
can be as low as 50% as compared to the single-core execution times.

2.2 Heterogeneous Multicore Chipsets

The Cell Broadband Engine (Cell BE) was developed as a multimedia pro-
cessor, so it’s no surprise that it achieves excellent performance as an H.264
decoder [4], JPEG 2000 encoding server [28], speech codec processor [34], ray
tracing engine [26, 5], and high performance MPEG-2 decoder [3]. The Cell
BE is also a promising platform for high-performance scientific computing.
Williams et al. achieved a maximum speedup of 12.7x and power efficiency of
28.3x with double-precision general matrix multiplication, sparse matrix vec-
tor multiplication, stencil computation, and Fast Fourier Transform kernels
on the Cell BE, compared with AMD Opteron and Itanium2 processors [33].
Their single precision kernels achieved a peak speedup of 37.0x with 82.4x
power efficiency when compared with the AMD Opteron.

Leveraging the parallelism of heterogeneous systems can be particularly
fruitful. Blagojevic et al. [6] developed a runtime system and scheduling poli-
cies to exploit polymorphic and layered parallelism on the CBEA. By applying
their methods to a Maximum Likelihood method for phylogenetic trees, they
realized a 4x performance increase on the Cell BE in comparison with a dual-
processor Hyperthreaded Xeon system. Hieu et al. [21] combined the heteroge-
neous SIMD features of the SPEs and PPE to achieve an 8.8x speedup for the
Striped Smith-Waterman algorithm as compared to an Intel multicore chipset
with SSE2 and a GPGPU implementation executed on NVIDIA GeForce 7800
GTX. Our work applies multiple layers of heterogeneous parallelism to finite
difference codes on a fixed grid.

Applying heterogeneous SIMD to scientific codes is an active topic of re-
search. Ibrahim and Bodin [24] introduced runtime data fusion for the CBEA
to dynamically reorganize finite element data to facilitate SIMD-ization while
minimizing shuffle operations. By combining this method with hand-optimized
DMA requests and buffer repairs, they achieved a sustained 31.2 gigaFLOPS
for an implementation of the Wilson-Dirac Operator. Furthermore, by using
the heterogeneous features of the PPE to analyze data frames, they were able
to reduce memory bandwidth by 26%. Our work takes advantage of the prob-
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lem structure of finite diference atmospheric simulation to minimize runtime
data preparation. Data is padded and organized statically such that only vec-
tor starting addresses must be calculated at runtime.

2.3 Stream Processing Architectures

Stream processing is a programming paradigm for exploiting parallelism. Given
a stream of data, a set of computational kernels (functions or operations)
are applied to each element in the stream. Often the kernels are pipelined.
This method is particularly useful when programming several separate com-
putational units without explicitly managing allocation, synchronization, and
communication.

Sequoia is a popular stream processing programming language with imple-
mentations for CBEA, GPGPU, distributed memory clusters, and others [17].
Sequoia simplifies stream processing, but often imposes a performance penalty.
The current version of Sequoia for the CBEA makes extensive use of the mail-
box registers, resulting in significant SPE idle times. Improving Sequoia per-
formance is an active research topic. Spade is a declarative stream processing
engine for the System S stream processing middleware [19]. It targets versa-
tility and scalability to be adequate for future-generation stream processing
platforms. A prototype implementation for the CBEA is under development.
Erez and Ahn [16] mapped unstructured mesh and graph algorithms to the
Merrimac [13] stream processing infrastructure and achieved between 2.0x and
4.0x speedup as compared to a baseline architecture that stresses sequential
access. We use triple-buffered explicit memory transfers with instruction bar-
rier synchronization to create multiple SIMD data streams on the CBEA while
avoiding the mailbox registers. We call this approach vector stream processing.

3 The Cell Broadband Engine Architecture

The IBM Cell Broadband Engine (Cell BE) is a heterogeneous multicore pro-
cessor which has drawn considerable attention in both industry and academia.
The Cell BE was originally designed for the game box market, and therefore it
has a low cost and low power requirements. Nevertheless, it has archived un-
precedented peak single-precision floating point performance, making it suit-
able for high-performance computing.

The Cell BE is the first implementation of the Cell Broadband Engine Ar-
chitecture (CBEA). The main components of the CBEA are a multithreaded
Power Processing element (PPE) and eight Synergistic Processing elements
(SPEs) [18]. These elements are connected with an on-chip Element Intercon-
nect Bus (EIB) with a peak bandwidth of 204.8 Gigabytes/second. The PPE
is a 64-bit dual-thread PowerPC processor with Vector/SIMD Multimedia ex-
tensions [12] and two levels of on-chip cache. Each SPE is a 128-bit processor
with two major components: a Synergistic Processor Unit (SPU) and a Mem-
ory Flow Controller (MFC). All SPE instructions are executed on the SPU.
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Fig. 1 A high-level description of the Cell Broadband Engine based on the PowerXCell
8i product brief. Available components vary by platform. JTAG and debug interfaces are
only available in IBM BladeCenter installations, and the Sony PlayStation 3 has only six
programmable SPEs

The SPE includes 128 registers of 128 bits and 256 KB of software-controlled
local storage.

The only memory directly available to an SPE is its own local storage. An
SPE must use direct memory access (DMA) requests to access RAM. All DMA
transfers are handled by the MFC. Data transferred between local storage and
main memory must be 8-byte aligned and no more than 16 KB in size. The
MFC supports only DMA transfer of blocks are are 1, 2, 4, 8, or multiples of
16 bytes long. Data blocks that are a multiple of 128 bytes in size and 128-byte
aligned are transfered most efficiently.

The Cell BE is primarily a single-precision floating point processor. Its
peak single-precision FP performance is 230.4 Gflops, but peak performance
for double-precision is only 21.03 [11]. Mixed-precision methods should be con-
sidered when solving double-precision problems on this chipset [7]. The Pow-
erXCell 8i processor is the second implementation of the CBEA and is intended
for high-performance, double-precision floating-point intensive workloads that
benefit from large-capacity main memory. According to the processor tech-
nology brief, double-precision codes may see up to an 8x performance boost
with this chipset. Roadrunner at Los Alamos, the first computer to achieve a
sustained petaFLOPS, uses the PowerXCell 8i processor.

The CBEA’s heterogeneous design and non-blocking data access capabili-
ties allow for a variety of programming methodologies. A traditional approach,
which views each SPE as an independent processor, is certainly possible. This
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is the common approach for codes which are predominately composed of ho-
mogeneous parallel routines and codes ported directly from homogeneous mul-
ticore architectures. The traditional approach is often easier to program and
may reduce debugging and optimization times, but it sacrifices much of the
CBEA’s processing power. The CBEA also excels as a stream processor. When
used as a stream processor, the SPUs apply kernel functions to data provided
by the MFC. SPEs can be pipelined to rapidly apply multiple kernels to the
same stream of data. Another popular model is the function offload model.
In this case, functions with SIMD operations or stream-like properties are of-
floaded to the SPEs, while the PPE performs the bulk of general processing.
The CBEA’s polymorphic parallelism allows combinations of all these methods
to be dynamically applied as needed.

4 Atmospheric Chemistry and Transport Modeling

Earth’s atmospheric state is the result of a complex and dynamic combination
of hundreds of interacting processes. Weather prediction, air quality policy, and
climate change prediction are just a few of the many practical applications that
require accurate atmospheric models. In order to accurately describe the chem-
ical state of the atmosphere, a model must consider the chemical interactions
of air-born chemical species together with their sources, long range transport,
and deposition. A chemical kinetics module is used to describe chemical inter-
actions, and a chemical constituent transport module is used to describe the
motion of chemicals in the atmosphere. These processes are referred to gener-
ally as chemistry and transport, respectively. This study focuses on transport.

4.1 Chemical Transport Modeling

Chemical transport modules (CTMs) solve mass balance equations for con-
centrations of trace species in order to determine the fate of pollutants in
the atmosphere [30]. These equations are described in detail in [31] and [22].
The basic mathematical equations for transport and reaction can be derived
by considering these mass balance equations. Let ct

x = (c1(x, t)...cs(x, t))T be
concentrations of s chemical species, with spatial variable x ∈ Ω ⊂ R

d (d = 2
or 3), and time t ≥ 0. Transport and reaction are given by
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where ak are the atmospheric wind velocities, dk are the turbulent diffusion co-
efficients, and fj(c

t
x, x, t) describes the nonlinear chemistry of chemical species

s together with emissions and deposition.
By considering a simple space discretization on a uniform grid (xi = ih)

with a mesh width h = 1
m

, solutions to Equation 1 can be approximated by
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finite difference methods. This produces the third order upwind-biased advec-
tion discretization (Equation 2) and the second order diffusion discretization
(Equation 3) for t′ > t [23].
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The 3D stencil for upwind-biased discretization is shown in Figure 2. Di-

mension splitting can be used to to apply Equations 2 and 3 to each dimension
of a d-dimensional model independently. Parallelism is introduced by reducing
a d-dimensional problem to a set of independent one-dimensional problems.
Equations 2 and 3 can be implemented as a single computational routine and
applied to each dimension of the concentration matrix individually and in
parallel. This forms the kernel functions for use in streaming architectures.
Dimension splitting is common in many transport models and other scientific
applications, thus the techniques given in this paper are applicable to existing
codes.

Fig. 2 3D discretization stencil for explicit upwind-biased advection/diffusion

Dimension splitting introduces a local truncation error at each time step.
This error can be reduced by a symmetric time splitting method [23]. Time
splitting methods are frequently used when applying different time stepping
methods to different parts of an equation. For example, chemical processes
are stiff, which calls for an implicit ODE method, but explicit methods are
more suitable for space-discretized advection. By interleaving time steps taken
in each dimension, the truncation error is reduced. In brief, a linear ODE
describing time-stepped chemical transport, w′(t) = Aw(t) where A = A1 +
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A2 + A3, can be approximated by

wn+1 = e∆tAwn ≈ e
∆t

2
A3e

∆t

2
A2e∆tA1e

∆t

2
A2e

∆t

2
A3wn, (4)

where eB = I + B + 1
2B2 + . . . + 1

k!B
k + . . . is the exponential function of a

matrix, and ∆t is the timestep. This is a multi-component second order Strang
splitting method [32]. For three-dimensional discretization, take A1, A2, A3 to
be representative of discretization along the z, y, and x axes, respectively, or for
two-dimensional discretization, take A3 = [0] and A2, A3 to be representative
of discretization along the x and y axes, respectively. Figure 3 illustrates time
splitting applied to 2D and 3D discretization. A half time step (∆t

2 ) is used
when calculating mass flux along the minor axes, and a whole time step is
used when calculating mass flux along the major axis. This process is equal to
calculating the mass flux in one step, but reduces truncation error to O(∆t3)
[23].

5 FIXEDGRID

Fixedgrid is a comprehensive prototypical atmospheric model based the
state-of-the-art Sulfur Transport and dEposition Model version 3 (STEM-III)
[8]. Fixedgrid describes chemical transport according to Equations 2 and 3
and uses an implicit Rosenbrock method to integrate a 79-species SAPRC’99
[9] atmospheric chemical mechanism for VOCs and NOx. Chemistry and trans-
port processes can be selectively disabled to observe their effect on monitored
concentrations, and Fixedgrid’s modular design makes it easy to introduce
new methods. 2D and 3D transport kernels allow Fixedgrid to address a
range of mass-balance problems.

Fixedgrid is an experimental platform for geophysical modeling. The do-
mains simulated by Fixedgrid are simplistic in comparison to the real world,
but the processes are those used in production models. Properly-formatted
real-world data may be used without issue. Mechanisms can be optimized and

(a) Two-dimensions (b) Three-dimensions

Fig. 3 Second order time splitting methods for 2D and 3D transport discretization
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profiled in Fixedgrid without confounding performance variables, and vari-
ous programming methodologies can be reliably compared without rewriting
a comprehensive model.

Most emerging multicore technologies support the C programming lan-
guage or some derivative of C, so Fixedgrid is written in 100% C. STEM-III
is a mix of FORTRAN 77, Fortran 90, and C, so the relevant parts of STEM-III
were translated from Fortran to C for Fixedgrid. Although there are several
tools for automatically translating Fortran to C, such tools often produce code
that is difficult to read and maintain, so the Fortran source was translated by
hand. All Fortran parameter statements were changed to C preprocessor di-
rectives and modules were encapsulated by C header files. This produced the
basic serial version, suitable for any C compiler, which is the baseline for ex-
perimental measurement. This version does not support multiple cores, SIMD,
or any accelerator features, but it has been tuned to minimize array copies and
exploit locality. The source code is approximately 62% larger than the original
Fortran, mostly due to C’s lack of array syntax.

5.1 Data Storage and Layout

Atmospheric simulation requires a considerable amount of data. For each point
in a d-dimensional domain, a state vector consisting of wind vectors, diffusion
rates, temperature, sunlight intensity, and chemical concentrations for every
species of interest are required. On an x × y × z domain of 600 × 600 × 12
points considering n = 79 chemical species, approximately 367.2×106 double-
precision values (2.8GB) are calculated at every iteration. Fixedgrid stores
this data in a dynamically allocated 4D array: CONC[s][z][y][x].

Data organization in memory is critically important. Accelerator archi-
tectures derive much of their strength from SIMD operations and/or asyn-
chronous explicit memory transfers. For these operations to succeed, the data
must conform to the architecture requirements. When Fixedgrid executes
on the CBEA, data transferred between SPE local storage and main memory
must be contiguous, 8-byte aligned, no larger than 16 KB, and in blocks of 1,
2, 4, 8, or multiples of 16 bytes. Transfers of less than 16 bytes are highly inef-
ficient. To meet these requirements in three dimensions, each row of the data
matrices is statically padded to a 16-byte boundary, effectively adding buffer
y-z planes (see Figure 7) and aligned with attribute ((aligned(128))).
Two-dimensional Fixedgrid simulations are padded in the same way, but
with a vector instead of a plane (z = 1).

Aligning and padding permits access to all data, however not every ele-
ment can be accessed efficiently. One single-/double-precision floating-point
array element uses 4/8 bytes of memory. Since transfers of 16 bytes or more
are most efficient on the CBEA, an array element with row index i where
address(i)|16 6= 0 should be fetched by reading at least 16 bytes starting at
row index j where 0 ≤ j < i and address(j)|16 == 0 into a buffer and then ex-
tracting the desired element from the buffer. Preprocessor macros can be used
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to calculate basic vector metrics (i.e. number of elements per 16-byte vector)
and statically support both 4-byte and 8-byte floating point types with a clear,
simple syntax.

Fixedgrid uses second order time splitting to reduce truncation error in
2D/3D transport (see Figure 3). A half time step (∆t

2 ) is used when calculating
mass flux along the domain minor axes, and a whole time step is used when
calculating mass flux along the domain major axis. Note that this reduces
the truncation error but doubles the work required to calculate mass flux for
the minor axes. It is therefore desirable for 2D row and 3D x/y-discretization
to be highly efficient. Concentrations of the same chemical species are stored
contiguously to maximize locality and avoid buffering in transport calculations.

The block nature of Fixedgrid’s domain makes it ideally parallelizable.
Distributing a large matrix across many compute nodes is a thoroughly-explored
problem. This study considers execution on one node.

6 Two-dimensional Transport

This section discusses the implementation, analysis, and optimization of Fixed-

grid’s 2D transport module for the CBEA using a function offload approach.
Transport in the concentration matrix is calculated in rows (discretization
along the x-axis) and in columns (discretization along the y-axis), as shown
in Figure 4. The 2D transport module was ported from the original Fortran,
rather than written it from scratch, as an exercise in porting an existing sci-
entific code to the CBEA. This was a nontrivial effort and resulted in three
new versions of the transport module. Each new version was carefully profiled
and analyzed to gauge the benefit of the changes introduced. Performance is
reported in Section 6.4.

(a) Row-order decomposition. (b) Column-order decomposi-
tion.

Fig. 4 Domain decomposition for two-dimensional transport
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6.1 Naive Function Offload

A function offloading approach was used to accelerate the 2D transport mech-
anism. Function offloading identifies computationally-intense functions and
moves these functions to the SPEs. The main computational core for 2D trans-
port is the discretize() function, which calculates mass flux in a single row
or column. A naive offload was applied to move the unmodified function code
to the SPEs while ignoring the architecture details of the SPE, such as the
SPE’s SIMD ISA and support for overlapping computation and communica-
tion. When discretize() is invoked, each SPE receives the main-memory
address of a fixedgrid spe argv t structure (Listing 1) containing the pa-
rameters to the discretize() function. The SPE fetches the parameters via
DMA. fixedgrid spe argv t is exactly 128 bytes long and aligned on a 128-
byte boundary to maximize transfer speed. The PPU signals the SPE to invoke
the offloaded function via mailbox registers.

1 typedef union

2 {
3 double dbl ;
4 uint64 t u64 ;
5 uint32 t u32 [ 2 ] ;
6 } a rg t ;

8 typedef struct

9 {
10 a rg t arg [ 1 6 ] ;
11 } f i x e d g r i d s p e a r gv t
12 a t t r i b u t e ( ( a l i gn ed (128) ) ) ;

Listing 1 User-defined data types for passing arguments to the SPE program

The only memory available to the SPE directly is its own 256KB of local
storage, which is shared between code and data. Considering code size and
neglecting overlays, approximately 2000 double-precision variables can be held
in SPE local storage. Any data exceeding this limit is processed piecewise.
Data in main memory must be contiguous and aligned on a 16-byte boundary
to be eligible for DMA transfer. Column data in the concentration matrix is
problematic for the CBEA, since it is incontiguous and odd-indexed columns
(for double-precision data) are never on a 16-byte boundary.

The PPU was used to buffer column data contiguously in main memory,
permitting DMA copy to and from SPE local storage. This is a straight-forward
method for solving data discontinuity, but it triples the number of copies
required for column-wise updates and consumes O(y × N) additional main-
memory elements, where y is the number of double-precision elements in a
column and N is the number of SPEs. However, no additional local storage is
consumed.

6.2 Improved Function Offload

Naive function offload neglects the SPE’s SIMD ISA and asynchronous mem-
ory I/O capabilities. Offloaded function performance can be improved through
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triple-buffered asynchronous DMA, loop unrolling, and SIMD intrinsics. Tripple-
buffered DMA enables each SPE to simultaneously load the next row or column
into local storage, process the current row or column, and write previously-
processed data back to main memory. Six buffers are required to triple-buffer
incontiguous data: three in local storage and three for data reorganization in
main memory by the PPE. Only three local storage buffers are required for
contiguous data. Asynchronous DMA was used in the 2D transport function
to reduce runtime by approximately 23%.

The vector data types and vector arithmetic functions provided in the CBE
SDK library of SIMD intrinsics simplify vector programming on the SPE.
These intrinsics signal the SPE compiler to vectorize certain operations, al-
though the compiler can recognize and auto-vectorize some code. Both manual
vectorization through SIMD intrinsics and compiler auto-vectorization were
used to reduce runtime by a further 18%.

The SPU hardware assumes linear instruction flow and produces no stall
penalties from sequential instruction execution. A branch instruction may dis-
rupt the assumed sequential flow. Correctly predicted branches execute in one
cycle, but a mispredicted branch incurs a penalty of approximately 18-19 cy-
cles. The typical SPU instruction latency is between two and seven cycles,
so mispredicted branches can seriously degrade program performance. Func-
tion inlining and loop unrolling were used to avoid branches in the offloaded
function.

The byte-size of a data element must be carefully considered when opti-
mizing the offloaded function. If single-precision floating point data is used, a
vector on the SPU contains four elements, as opposed to just two for double-
precision floating point data. Since data must be aligned on a 16-byte boundary
to be eligible for DMA transfer, retrieving column elements of the concentra-
tion matrix which are not multiples of the vector size will result in a bus error.
Thus, two/four columns of data must be retrieved when using single/double
precision vector intrinsics. This reduces runtime by increasing SPE bandwidth,
but puts additional strain on the SPE local storage.

6.3 Scalable Incontiguous DMA

Incontiguous data can be transferred directly to SPE local storage via DMA

lists. A DMA list is an array of main memory addresses and transfer sizes,
stored as pairs of unsigned integers, which resides in SPE local storage. Each
element describes a DMA transfer, so the addresses must be aligned on a
16-byte boundary and the transfer size may not exceed 16KB.

To transfer a column of y elements in the concentration matrix requires a
DMA list of y entries. The same DMA list can be used for both writing to and
reading from main memory. Single-/double-precision variables are four/eight
bytes long, so at least four/two columns should be fetched simultaneously,
even if only one column is desired. When the DMA list is processed, the two
columns are copied to the same buffer in local storage with their elements
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interleaved. The desired column is then extracted by the SPE from the local
storage and fed into the offloaded function. Scalability is greatly improved by
moving the array copy loops to the SPEs, but O(y × 2 × 3) additional local
storage elements are required. However, no additional buffers are required in
main-memory.

Figure 5 shows how DMA lists improve 2D transport performance. “Row
discret” and “Col discret” give the inclusive function time for transport cal-
culations in the rows/columns of the concentration matrix, respectively. In
Figure 5(b), “Row discret” is clearly decreasing as more SPEs are used, yet
“Col discret” remains relatively constant. When DMA lists are used (Fig-
ure 5(c)) both “Col discret” and “Row discret” decrease as more SPEs are
used.

6.4 Analysis and Comparison

This section discusses the performance of Fixedgrid’s 2D transport module
on three CBEA systems, a distributed memory multicore system, and a shared
memory multicore system. The experiments calculate ozone (O3) concentra-
tions on a domain of 600 × 600 × 12 grid cells for 12 hours with a ∆t = 50
seconds time step. The CBEA systems presented are:

JUICEnext: a 35-node IBM BladeCenter QS22 at Forschungszentrum Jülich.
Each node has 8GB XDRAM and four 3.2GHz PowerXCell 8i CPUs with
eight SPEs each.

CellBuzz: a 14-node IBM BladeCenter QS20 at Georgia Tech. Each node has
1GB XDRAM and two 3.2 GHz Cell BE CPUs with eight SPEs each.

Monza: a 10-node PlayStation 3 cluster at Virginia Tech. Each Monza node
has 256 MB XDRAM and one 3.2GHz Cell BE CPU with six SPEs.

The performance of the CBEA systems is compared with the performance of
two homogeneous multicore systems:

Jugene: a 16-rack IBM BlueGene/P at Forschungszentrum Jülich.2 Each rack
contains 32 nodecards, each with 32 nodes. Each node contains an 850MHz
4-way SMP 32-bit PowerPC 450 CPU and 2GB DDR RAM (512MB RAM
per core). Jugene premiered as the second fastest computer on the Top 500
list and presently ranks in 6th position.

Deva: a Dell Precision T5400 workstation with two 2.33GHz Intel Quad-core
Xeon ES5410 CPUs and 16GB DDR RAM.

The experiments were compiled with the GCC on all CBEA platforms.
IBM XLC was used on Jugene, and the Intel C Compiler (ICC) was used
on Deva. All experiments were compiled with maximum optimization (-O5

2 We classify the BlueGene/P as a homogeneous multicore system, even though it may be
considered a heterogeneous multicore system. The head nodes and “Double Hummer” dual
FPUs introduce a degree of heterogeneity, however the BlueGene/P is homogeneous on the
node-level.
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(a) Speedup for optimized function offload with and without
DMA lists

(b) Inclusive function times for optimized function offload.

(c) Inclusive function times for optimized function offload with
DMA lists

Fig. 5 Performance of the 2D transport module executing on JUICEnext (IBM BladeCenter
Q22) when matrix columns are buffered by the PPU (Opt. Fcn. Offload) and when DMA
lists are used (Scalable DMA)
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or -O3 where appropriate) and double-precision floating point operations.3

The presented results are the average of three runs on each platform. The
measurement error was insignificant, so error bars are not shown.

Tables 1 and 2 list the wall clock runtime performance on the CBEA sys-
tems and homogeneous multicore systems, respectively. These experimental
results show the importance of leveraging all levels of heterogeneous paral-
lelism in the CBEA. Initial versions of the 2D transport module, which make
little or no use of heterogeneous parallelism, perform poorly in comparison to
the final version, which uses asynchronous memory I/O and SIMD. It is clear
that the PPU can be a severe scalability bottleneck if it preprocesses for the
SPEs. It is more efficient to to use methods which can be offloaded to the
SPEs, even though this introduces additional copy operations and consumes
SPE local storage. Figure 6 shows the wall clock runtime performance and
speedup of the final version of Fixedgrid’s 2D transport module on all five
systems.

The CBEA is intended for compute-intensive workloads with many fine-
grained and course-grained parallel operations. By porting the original Fortran
code, we were unable to fully exploit every level of heterogeneous parallelism
in the CBEA. Furthermore, 2D transport in the chosen domain size does not
challenge the capabilities of the test systems. We believe this explains the
low scalability of the 2D transport module, compared to the homogeneous
systems. The analysis of the 3D transport module in Section 7.4 corroborates
this theory.

The low runtimes on the shared memory machine are attributable to hard-
ware support for double-precision arithmetic and more mature compiler tech-
nology. Kurzak and Dongarra found that the LINPACK benchmark is four-
teen times slower on the Cell BE when double-precision arithmetic is used
compared to single-precision arithmetic [25]. Their results and these experi-
mental results suggest that a CBEA implementation with hardware support
for double-precision arithmetic would out-perform a homogeneous processor
of similar clock rate.

CellBuzz and Monza do not support double-precision arithmetic in hard-
ware, yet they occasionally out-perform JUICEnext, which advertises full
hardware pipelining for double-precision arithmetic. By examining the mem-
ory I/O performance of JUICEnext, DMA writes to main memory were found
to be significantly slower on JUICEnext than on all other platforms. Technical
support at Forschungszentrum Jülich is seeking a solution. Without access to
another IBM BladeCenter QS22, it is difficult to determine if the PowerXCell
8i chipset can achieve its advertised potential.

3 At the time of this writing, compiler technologies are significantly less mature for het-
erogeneous multicore chipsets. A more fair comparison of platforms should use -O0 for all
platforms, however we wish to present the state-of-the-art performance of these platforms,
as it is what the user will expect from his application.
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Monza (PlayStation 3 Cluster)
Näıve Fcn. Offload Opt. Fcn. Offload Scalable DMA

# SPEs Wall clock Speedup Wall clock Speedup Wall clock Speedup
1 2324.197 13.74 677.282 47.16 394.100 81.04
2 1165.798 27.40 369.438 86.45 201.853 158.23
3 797.546 40.05 291.917 109.41 138.606 230.43
4 627.608 50.89 269.018 118.72 107.201 297.93
5 553.026 57.75 284.881 112.11 90.589 352.57
6 654.322 48.81 275.304 116.01 79.043 404.07

CellBuzz (IBM BladeCenter QS20)
Näıve Fcn. Offload Opt. Fcn. Offload Scalable DMA

# SPEs Wall clock Speedup Wall clock Speedup Wall clock Speedup
1 2066.130 11.61 545.152 45.48 394.487 62.84
2 1052.147 23.56 295.112 84.01 202.896 122.19
3 715.939 34.63 190.461 130.16 138.319 179.23
4 570.133 43.48 156.472 158.44 107.043 231.60
5 435.496 56.93 139.371 177.88 89.903 275.76
6 381.251 65.03 128.880 192.36 76.296 324.94
7 334.724 74.06 122.472 202.42 70.469 351.81
8 307.779 80.55 115.022 215.53 59.325 417.89

JUICEnext (IBM BladeCenter QS22)
Näıve Fcn. Offload Opt. Fcn. Offload Scalable DMA

# SPEs Wall clock Speedup Wall clock Speedup Wall clock Speedup
1 1617.694 23.97 640.491 60.55 390.172 99.39
2 858.288 45.18 446.678 86.82 201.607 199.29
3 654.199 59.28 406.151 95.48 140.669 296.89
4 648.914 59.76 357.931 108.35 109.456 391.73
5 642.692 60.34 352.095 110.14 90.817 486.46
6 642.466 62.10 351.066 110.46 79.706 587.38
7 644.576 60.16 359.384 107.91 74.491 634.91
8 639.315 60.66 353.773 109.62 64.920 744.14

Table 1 Wall clock runtime in seconds and percentage speedup for the 2D transport module
on three CBEA systems. The domain is double-precision ozone (O3) concentrations on a
60km2 area mapped to a grid of 600×600 points and integrated for 12 hours with a ∆t = 50
seconds timestep. Global extremes are emphasized

Jugene (IBM BlueGene/P) Deva (2x Quad-Core Xeon)
# Threads Wall clock Speedup Wall clock Speedup

1 89.134 100.00 151.050 100.00
2 50.268 177.32 78.320 192.86
3 35.565 250.62 53.427 282.72
4 29.348 303.72 41.094 367.57
5 24.897 358.01 33.119 456.09
6 22.574 394.84 28.151 536.58
7 20.287 439.37 24.527 615.84
8 18.717 476.22 22.386 674.75

Table 2 Wall clock runtime in seconds and percentage speedup for the 2D transport mod-
ule on two homogeneous multicore systems. The domain is double-precision ozone (O3)
concentrations on a 60km2 area mapped to a grid of 600× 600 points and integrated for 12
hours with a ∆t = 50 seconds timestep. Global extremes are emphasized
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(a) Wall clock runtime

(b) Speedup

Fig. 6 Wall clock runtime in seconds and speedup for the 2D transport module on three
CBEA systems and two homogeneous multicore systems

7 Three-dimensional Transport

This section discusses the implementation, analysis, and optimization of Fixed-

grid’s 3D transport module on the CBEA using a vector stream processing

approach. Transport is calculated according to Equations 2 and 3 along the
x-, y-, and z-axes using the stencil shown in Figure 2. The 3D module was
written from scratch to achieve maximum performance. Performance is given
in Section 7.4.

7.1 Vector Stream Processing

Stream processing is a programming paradigm for exploiting parallelism. Given
a stream of data, a set of computational kernels (functions or operations)
are applied to each element in the stream. Often the kernels are pipelined.
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Fig. 7 Fixedgrid data storage scheme for the 3D transport module showing padding and
vectorization with double-precision data types

This method is particularly useful when programming several separate com-
putational units without explicitly managing allocation, synchronization, and
communication. Stream processing is appropriate for programs using dimen-
sion splitting to reduce multidimensional operations to sets of 1D operations.
The 1D operations can be implemented as kernel functions and the domain
data streamed in parallel through the kernels.

Vector stream processing extends stream processing by making every ele-
ment in the data stream a vector and using vectorized kernel functions. This
approach uses every level of heterogeneous parallelism in the CBEA by over-
lapping memory I/O with SIMD stream kernels on multiple cores. In order to
achieve this, data reorganization in the stream must be minimal. Interleaving
caused by transferring incontiguous data via DMA lists (Section 6.3) implic-
itly arranges stream data into vectors, so DMA lists are an integral part of
this approach. A SIMD kernel can be applied directly to this unorganized data
stream. Contiguous data must either be vectorized or processed with a scalar
kernel.

Fixedgrid uses dimension splitting to calculate 3D transport separately
along the x-, y-, and z-axis with the same kernel function. Similar to the 2D
module in Section 6.3, DMA lists are used to transfer incontiguous y- and
z-axis data to SPE local storage in the 3D module. Fixedgrid uses second
order time splitting to reduce truncation error in 3D transport (see Figure 3).
This doubles the work required to calculate mass flux along the x- and y-axis,
so discretization in these directions should be highly efficient.

7.2 Streaming Vectorized Data with the CBEA

Streams of vector data are formed in the 3D module by combining DMA in-
trinsics with a triple-buffering scheme. Triple-buffering permits a single SPE
to simultaneously fetch data from main memory, apply the kernel function,
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and write processed data back to main memory. A separate DMA tag is kept
for each buffer, and MFC instruction barriers keyed to these tags prevent
overwriting an active buffer while allowing simultaneous read/write from dif-
ferent buffers by the same MFC. A stream of data from main memory, through
the SPU, and back to main memory is maintained. Redirecting the outward-
flowing data stream to the inward-flowing stream of another SPE allows kernel
function pipelining. The concentration matrix and associated data structures
in main memory are divided into blocks, which are streamed simultaneously
through the SPEs according to block starting address.

Scalar elements transfered via DMA lists are interleaved into SPE local
storage as vectors, so data organization is not required for y- or z-axis data
(see Figure 7). X-axis data is contiguous, so the data must either be vectorized
manually or processed with a scalar kernel. There are two ways to vectorize
scalar data: manually interleave multiple scalar data streams, or copy the
scalar value to every vector element. Manually interleaving multiple streams
requires copying four/two buffers of single-/double-precision data to SPE lo-
cal storage and interlacing the data to form vectors before processing. This
approach requires many scalar operations and an additional DMA transfer.
The SPU is optimized for vector operations, so it is approximately 8% faster
to copy the scalar value to every vector element via the spu splats intrinsic,
process with the vectorized kernel, and return to scalar data by discarding
all vector elements except the first. By carefully manipulating the DMA tags
associated with local storage buffers, the spu splats operations for one buffer
(i.e. chemical concentrations) can overlap with the next buffer fetch (i.e. wind
field data). This improves performance by a further 4%.

Synchronization in the data stream is required at the start and end of a
mass flux computation. Mailbox registers and busy-wait loops are two common
methods of synchronization, but they may incur long SPE idle times and
waste PPE cycles. MFC intrinsics can synchronize streaming SPEs and avoid
these problems. The PPE signals an SPE by placing a DMA call on the proxy
command queue of an SPE context, causing the MFC to fetch the data to local
storage. The SPE waits on the PPE by setting an MFC instruction barrier and
stalling the SPU until the barrier is removed by a proxy command from the
PPE. This allows the MFC to continue data transfers asynchronously while
the SPU waits and results in virtually zero SPE idle time.

The streaming operations were encapsulated in a small library of static in-
line functions and user-defined data types. Local storage buffers are described
by a data type with fields for local storage address, main memory address, and
buffer size. Functions for fetching, processing, and flushing buffers maximize
the source code readability and ease debugging. The unabridged source code
for x-axis mass flux calculation is shown in Listing 2.
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1 /∗ Start bu f f e r 0 t rans fe r ∗/
2 f e t c h x bu f f e r (0 , 0) ;

4 /∗ Start bu f f e r 1 t rans fe r ∗/
5 f e t c h x bu f f e r (1 , NX ALIGNED SIZE) ;

7 /∗ Process bu f f e r 0 ∗/
8 t r an s po r t b u f f e r (0 , s i z e , dt ) ;

10 /∗ Loop over rows in t h i s b lock ∗/
11 for ( i =0; i<block −2; i++)
12 {
13 w = i % 3 ;
14 p = ( i +1) % 3 ;
15 f = ( i +2) % 3 ;

17 /∗ Write bu f f e r w back to main memory ( nonblocking ) ∗/
18 wr i t e x bu f f e r (w, i ∗NX ALIGNED SIZE) ;

20 /∗ Start bu f f e r f t rans fe r ( nonblocking ) ∗/
21 f e t c h x bu f f e r ( f , ( i +2)∗NX ALIGNED SIZE) ;

23 /∗ Process bu f f e r p ∗/
24 t r an sp o r t b u f f e r (p , s i z e , dt ) ;
25 }

27 /∗ Disc re t i z e f i n a l row ∗/
28 w = i % 3 ;
29 p = ( i +1) % 3 ;

31 /∗ Write bu f f e r w back to main memory ( nonblocking ) ∗/
32 wr i t e x bu f f e r (w, i ∗NX ALIGNED SIZE) ;

34 /∗ Process bu f f e r p ∗/
35 t r an s po r t b u f f e r (p , s i z e , dt ) ;

37 /∗ Write bu f f e r p back to main memory ( nonblocking ) ∗/
38 wr i t e x bu f f e r (p , ( i +1)∗NX ALIGNED SIZE) ;

40 /∗ Make sure DMA is complete be fore we e x i t ∗/
41 mfc wr i te tag mask ( (1<<w) | (1<<p) ) ;
42 spu mfcstat (MFC TAG UPDATE ALL) ;

Listing 2 X-axis mass flux calculation for blocks with more than one row where a whole
row fits in local storage

7.3 The Vectorized Transport Kernel Function

The 3D advection/diffusion kernel function was vectorized to use the SPE’s
SIMD ISA. Because the advection discretization is upwind-biased, different
vector elements may apply different parts of Equation 2, based on the wind
vector’s sign. Disassembling the wind vector to test each element’s sign in-
troduces expensive branching conditionals and scalar operations. It is more
efficient to calculate both parts of Equation 2 preemptively, resulting in two
vectors of possible values, and then bitwise mask the correct values from these
vectors into the solution vector. The spu cmpgt, spu and, and spu add intrin-
sics, each mapping to a single assembly instruction, are the only commands
required to form the solution vector. spu cmpgt forms a bit-mask identifying
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elements with a certain sign, and spu and and spu add assemble the solu-
tion vector. Although half the calculated values are discarded, all branching
conditionals in the kernel function are replaced with only a few assembly in-
structions and scalar operations are eliminated entirely. Performance of the
vectorized kernel is approximately an order of magnitude above a scalar kernel
with branches. The original C kernel is shown in Listing 3 and the vectorized
kernel is shown in Listing 4.

1 in l ine real t

2 a dv e c d i f f ( rea l t c e l l s i z e ,
3 rea l t c2 l , rea l t w2l , rea l t d2l ,
4 rea l t c1 l , rea l t w1l , rea l t d1l ,
5 rea l t c , rea l t w, rea l t d ,
6 rea l t c1r , rea l t w1r , rea l t d1r ,
7 rea l t c2r , rea l t w2r , rea l t d2r )
8 {
9 rea l t wind , d i f f t e rm ;

10 rea l t advec term , advec termL , advec termR ;

12 wind = ( w1l + w) / 2 . 0 ;
13 i f (wind >= 0 . 0 ) advec termL = (1 . 0 / 6 . 0 ) ∗ ( −c 2 l + 5.0∗ c 1 l +

2.0∗ c ) ;
14 else advec termL = (1 . 0 / 6 . 0 ) ∗ ( 2 .0∗ c 1 l + 5.0∗ c − c1r ) ;
15 advec termL ∗= wind ;
16 wind = (w1r + w) / 2 . 0 ;
17 i f (wind >= 0 . 0 ) advec termR = (1 . 0 / 6 . 0 ) ∗ ( −c 1 l + 5.0∗ c + 2.0∗

c1r ) ;
18 else advec termR = (1 . 0 / 6 . 0 ) ∗ ( 2 .0∗ c + 5.0∗ c1r − c2r ) ;
19 advec termR ∗= wind ;
20 advec term = ( advec termL − advec termR ) / c e l l s i z e ;
21 d i f f t e rm = ( ( ( d1 l+d) /2) ∗( c1 l−c ) − ( ( d+d1r ) /2) ∗( c−c1r ) ) / (

c e l l s i z e ∗ c e l l s i z e ) ;
22 return advec term + d i f f t e rm ;
23 }

Listing 3 Stream processing kernel

7.4 Analysis and Comparison

This section discusses the performance of Fixedgrid’s 3D transport module
on two CBEA systems, a distributed memory multicore system, and a shared
memory multicore system. The experiments calculate ozone (O3) concentra-
tions on a 60km2 × 1.2km area mapped to a grid of 600 × 600 × 12 points
and integrated for 12 hours with a ∆t = 50 seconds timestep. With the excep-
tion of Monza, the 3D experiments were performed on the same systems and
with the same compiler options as in Section 6.4. Monza results are not shown
because the PlayStation 3 has insufficient RAM to calculate a domain of this
size without paging. A single experiment took approximately 35 hours to com-
plete on Monza, making the results incomparable to the other CBEA systems.
Again, the presented results are the average of three runs on each platform.
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1 in l ine vector real t

2 a dv e c d i f f v ( vector real t c e l l s i z e ,
3 vector real t c2 l , vector real t w2l , vector real t d2l ,
4 vector real t c1 l , vector real t w1l , vector real t d1l ,
5 vector real t c , vector real t w, vector real t d ,
6 vector real t c1r , vector real t w1r , vector real t d1r ,
7 vector real t c2r , vector real t w2r , vector real t d2r )
8 {
9 vector real t acc1 , acc2 , acc3 ;

10 vector real t wind , d i f f t e rm , advec term ;
11 vector real t advec term pos , advec term neg ;
12 vector real t advec termR , advec termL ;

14 acc1 = spu add (w1l , w) ;
15 wind = spu mul ( acc1 , HALF) ;
16 acc1 = spu mul ( c1 l , FIVE) ;
17 acc2 = spu mul ( c , TWO) ;
18 advec te rm pos = spu add ( acc1 , acc2 ) ;
19 advec te rm pos = spu sub ( advec term pos , c 2 l ) ;
20 acc1 = spu mul ( c1 l , TWO) ;
21 acc2 = spu mul ( c , FIVE) ;
22 advec term neg = spu add ( acc1 , acc2 ) ;
23 advec term neg = spu sub ( advec term neg , c1r ) ;
24 acc1 = ( vector real t ) spu cmpgt (wind , ZERO) ;
25 acc1 = spu and ( acc1 , advec te rm pos ) ;
26 acc2 = ( vector real t ) spu cmpgt (ZERO, wind ) ;
27 acc2 = spu and ( acc2 , advec term neg ) ;
28 advec termL = spu add ( acc1 , acc2 ) ;
29 advec termL = spu mul ( advec termL , SIXTH) ;
30 advec termL = spu mul ( advec termL , wind ) ;
31 acc1 = spu add (w1r , w) ;
32 wind = spu mul ( acc1 , HALF) ;
33 acc1 = spu mul ( c , FIVE) ;
34 acc2 = spu mul ( c1r , TWO) ;
35 advec te rm pos = spu add ( acc1 , acc2 ) ;
36 advec te rm pos = spu sub ( advec term pos , c 1 l ) ;
37 acc1 = spu mul ( c , TWO) ;
38 acc2 = spu mul ( c1r , FIVE) ;
39 advec term neg = spu add ( acc1 , acc2 ) ;
40 advec term neg = spu sub ( advec term neg , c2r ) ;
41 acc1 = ( vector real t ) spu cmpgt (wind , ZERO) ;
42 acc1 = spu and ( acc1 , advec te rm pos ) ;
43 acc2 = ( vector real t ) spu cmpgt (ZERO, wind ) ;
44 acc2 = spu and ( acc2 , advec term neg ) ;
45 advec termR = spu add ( acc1 , acc2 ) ;
46 advec termR = spu mul ( advec termR , SIXTH) ;
47 advec termR = spu mul ( advec termR , wind ) ;
48 acc1 = spu sub ( advec termL , advec termR ) ;
49 advec term = VEC DIVIDE( acc1 , c e l l s i z e ) ;
50 acc1 = spu add ( d1l , d ) ;
51 acc1 = spu mul ( acc1 , HALF) ;
52 acc3 = spu sub ( c1 l , c ) ;
53 acc1 = spu mul ( acc1 , acc3 ) ;
54 acc2 = spu add (d , d1r ) ;
55 acc2 = spu mul ( acc2 , HALF) ;
56 acc3 = spu sub ( c , c1r ) ;
57 acc2 = spu mul ( acc2 , acc3 ) ;
58 acc1 = spu sub ( acc1 , acc2 ) ;
59 acc2 = spu mul ( c e l l s i z e , c e l l s i z e ) ;
60 d i f f t e rm = VEC DIVIDE( acc1 , acc2 ) ;
61 return spu add ( advec term , d i f f t e rm ) ;
62 }

Listing 4 Vectorized stream processing kernel
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The measurement error was insignificant, so error bars are not shown. Ta-
bles 3 and 4 list the wall clock runtime performance on the CBEA systems
and homogeneous multicore systems, respectively.

Figure 8 shows the wall clock runtime performance of Fixedgrid on two
CBEA systems and two homogeneous multicore systems. JUICEnext, with
hardware support for fully-pipelined double precision arithmetic, achieves the
best performance. Both CBEA systems achieve performance comparable to
two nodes of the IBM BlueGene/P and eight Intel Xeon cores in a single chip.

There is a performance asymptote beginning around the 5 SPE mark. We
believe this is due to the element interconnect bus (EIB) end-to-end control
mechanism. Ainsworth and Pinkston characterized the performance of the EIB
in [1] and highlighted the end-to-end control mechanism as the main CBEA
bottleneck. The EIB is a pipelined circuit-switched ring-topology network. The
EIB’s data arbiter does not allow a packet to be transferred along more than
six hops (half the diameter of the ring). If a request is greater than six hops,
the requester must wait until a data ring operating the opposite direction
becomes free. This limits concurrently communicating elements to six. When

JUICEnext (IBM QS22) CellBuzz (IBM QS20)
# SPEs Wall clock Speedup Wall clock Speedup

0 8756.225 100.00 6423.170 100.00
1 6338.917 138.13 6930.159 92.68

2 3297.401 265.55 3595.270 178.66
3 2301.286 380.49 2508.892 256.02
4 1796.828 487.32 1957.122 328.19
5 1515.433 577.80 1644.511 390.58
6 1325.122 660.79 1416.271 453.53
7 1243.254 704.30 1346.096 477.17
8 1126.720 777.14 1124.675 571.11

Table 3 Wall clock runtime in seconds and percentage speedup for the 3D transport on
two CBEA systems. The domain is double-precision ozone (O3) concentrations on a 60km2

× 1.2km area mapped to a grid of 600× 600× 12 points and integrated for 12 hours with a
∆t = 50 seconds timestep. Global extremes are emphasized

Jugene (IBM BlueGene/P) Deva (2x Quad-Core Xeon)
# Threads Wall clock Speedup Wall clock Speedup

1 2647.364 100.00 3664.473 100.00
2 1696.784 156.02 2121.569 172.72
3 1551.104 170.68 1603.652 228.51
4 1347.977 196.40 1446.672 253.30
5 1581.657 167.38 1385.619 264.46
6 1485.877 178.17 1139.558 321.57
7 1550.012 170.80 1134.279 323.07

8 1506.631 175.71 1196.477 306.27

Table 4 Wall clock runtime in seconds and percentage speedup for the 3D transport mod-
ule on two homogeneous multicore systems. The domain is double-precision ozone (O3)
concentrations on a 60km2

× 1.2km area mapped to a grid of 600 × 600 × 12 points and
integrated for 12 hours with a ∆t = 50 seconds timestep. Global extremes are emphasized
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(a) Wall clock runtime

(b) Speedup

Fig. 8 Wall clock runtime in seconds and speedup for the 3D transport module on three
CBEA systems and two homogeneous multicore systems

the MIC and five SPEs communicate on the EIB – as occurs when five SPEs
stream data simultaneously – the arbiter stalls communication from all other
processing elements. The EIB’s 204.8 GB/second peak bandwidth is enough
to support streaming on all SPEs, so the control mechanism bottleneck is
significant.

Fundamental hardware differences make a fair comparison between homo-
geneous and heterogeneous chipsets difficult. If equal effort were spent optimiz-
ing Fixedgrid for both BlueGene/P and CBEA, it is likely the BlueGene/P
would achieve better performance. However, if compiler technologies were as
mature for the CBEA as they are for the BlueGene/P, the CBEA’s perfor-
mance would likely overtake the BlueGene/P’s performance again. A com-
parison of thousands of BlueGene/P nodes with thousands of CBEA nodes
would be a stronger test of scalability. The experimental results strongly sug-
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gest that, on a per-node basis, heterogeneous multicore chipsets out-perform
homogeneous multicore chipsets.

8 Conclusions and Future Work

The two- and three-dimensional chemical constituent transport modules in
Fixedgrid, a prototypical atmospheric model, were optimized for the Cell
Broadband Engine Architecture (CBEA). Geophysical models are comprehen-
sive multiphysics simulations and frequently contain a high degree of paral-
lelism. By using the multiple layers of heterogeneous parallelism available in
the CBEA, the 3D transport module achieved performance comparable to two
nodes of the IBM BlueGene/P system at Forschungszentrum Jülich, ranked
6th on the current Top 500 supercomputing list, with only one CBEA chip.

Function offloading was examined as an approach for porting a 2D trans-
port module written in Fortran 90 to the CBEA. The results show that function
offloading is applicable to many scientific codes and can produce good results.
Function offloading does not always leverage the streaming capabilities of the
CBEA. Codes with a high degree of instruction-level parallelism (ILP) will see
a good speedup with this approach, due to the SPE’s SIMD ISA. Codes with
data-level parallelism (DLP) are less likely to achieve maximum performance,
since there are a relatively small number of SPEs. When both ILP and DLP
are present, maximum performance will only be achieved when every level of
parallelism in the CBEA is used, as in vector stream processing.

By using DMA lists to transfer incontiguous matrix column data, 2D trans-
port scalability was improved by over 700%. This approach is applicable to
any code transferring incontiguous data between main memory and the SPE
local storage. DMA list overhead limits application performance when random
access to both rows and columns of a matrix are required. Matrix representa-
tions providing efficient random access to incontiguous data will be explored.
“Strided” DMA commands for the MFC would solve these issues entirely, but
at a cost of increased hardware complexity.

Vector stream processing seeks to use all available parallelism in the CBEA
by overlapping memory I/O with SIMD stream kernels on multiple cores. This
method was implemented in a few light-weight static inline functions accom-
panied by user-defined types. Together, these constructs combine DMA in-
trinsics, DMA lists, and a triple-buffering scheme to stream data through the
SPE local storage at the maximum rate permitted by the EIB data arbiter. By
using the MFC proxy command queue and MFC instruction barriers instead
of mailbox registers or busy-wait synchronization, vector stream processing
achieves almost zero SPE idle time and maximizes SPE throughput. Careful
consideration of data organization and data contiguity in multi-dimensional
arrays reduces data reordering in the stream to only one dimension (i.e. the
contiguous dimension must be vectorized). All levels of heterogeneous paral-
lelism in the CBEA are used: the SPE’s SIMD ISA, the MFC’s nonblocking
DMA intrinsics, and the many cores of the CBEA. Fully-optimized, Fixed-
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grid calculates ozone (O3) transport on a domain of 600× 600× 12 grid cells
for twelve hours with a 50 second time step in approximately 18.34 minutes.

Future work will address the limitations of the Element Interconnect Bus.
By pairing SPEs and using one for data transfer and one for computation, it
may be possible to achieve better scalability for more than five SPEs by spread-
ing DMA requests over a wider area on the EIB ring. Rafique et al. explored
similar methods for I/O-intensive applications with good results [29]. Nodes
in an IBM BladeCenter installation can use off-chip SPEs for a maximum of
16 SPEs. Off-chip SPEs have their own EIB, so it may be advantageous to use
them for file I/O or checkpointing. Spreading memory requests over multiple
EIBs also be explored.

The stream kernel discards 50% of the calculated values in favor of higher
throughput. A method for reducing useless arithmetic operations will be ex-
plored. The PPE can quickly determine the sign of a wind vector, so perhaps
the SPEs could be grouped into positive- and negative-sign groups. The PPE
could then assign blocks to an SPE according to wind vector sign rather than
starting address.

Programming language technologies for heterogeneous multicore chipsets
are still relatively immature. The bulk of the performance improvement came
from vectorized kernel functions, so better support for compiler auto-vectorization
should be explored. While some auto-vectorization support is available, the
performance of the auto-generated kernel was far below that of the hand-
tuned kernel. A comparison of Listing 3 with Listing 4 should convince any
programmer that more intelligent compilers are needed. Indeed, the majority
of low-level optimizations we did by hand could have been done automatically
by an advanced compiler.

Immediate future work concerns accelerating Fixedgrid’s chemical kinet-
ics module for the CBEA. Large-scale production models, such as STEM [8],
WRF/Chem [20], and CMAQ [27], spend as much as 90% of their computa-
tion time in the chemical kinetics module. All of these models use chemical
kinetics generated by the Kinetics Pre-Processor (KPP) [14]. We are currently
examining approaches for accelerating KPP-generated mechanisms for a range
of multicore technologies, including the CBEA. KPP for accelerated chipsets
will be immediately beneficial to three production geophysical models.
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