10,560 research outputs found

    Walker-Assisted Gait in Rehabilitation: A Study of Biomechanics and Instrumentation

    Get PDF
    While walkers are commonly prescribed to improve patient stability and ambulatory ability, quantitative study of the biomechanical and functional requirements for effective walker use is limited. To date no one has addressed the changes in upper extremity kinetics that occur with the use of a standard walker, which was the objective of this study. A strain gauge-based walker instrumentation system was developed for the six degree-of-freedom measurement of resultant subject hand loads. The walker dynamometer was integrated with an upper extremity biomechanical model. Preliminary system data were collected for seven healthy, right-handed young adults following informed consent. Bilateral upper extremity kinematic data were acquired with a six camera Vicon motion analysis system using a Micro-VAX workstation. Internal joint moments at the wrist, elbow, and shoulder were determined in the three clinical planes using the inverse dynamics method. The walker dynamometer system allowed characterization of upper extremity loading demands. Significantly differing upper extremity loading patterns were Identified for three walker usage methods. Complete description of upper extremity kinetics and kinematics during walker-assisted gait may provide insight into walker design parameters and rehabilitative strategies

    Standardized loads acting in knee implants

    Get PDF
    The loads acting in knee joints must be known for improving joint replacement, surgical procedures, physiotherapy, biomechanical computer simulations, and to advise patients with osteoarthritis or fractures about what activities to avoid. Such data would also allow verification of test standards for knee implants. This work analyzes data from 8 subjects with instrumented knee implants, which allowed measuring the contact forces and moments acting in the joint. The implants were powered inductively and the loads transmitted at radio frequency. The time courses of forces and moments during walking, stair climbing, and 6 more activities were averaged for subjects with I) average body weight and average load levels and II) high body weight and high load levels. During all investigated activities except jogging, the high force levels reached 3,372–4,218N. During slow jogging, they were up to 5,165N. The peak torque around the implant stem during walking was 10.5 Nm, which was higher than during all other activities including jogging. The transverse forces and the moments varied greatly between the subjects, especially during non-cyclic activities. The high load levels measured were mostly above those defined in the wear test ISO 14243. The loads defined in the ISO test standard should be adapted to the levels reported here. The new data will allow realistic investigations and improvements of joint replacement, surgical procedures for tendon repair, treatment of fractures, and others. Computer models of the load conditions in the lower extremities will become more realistic if the new data is used as a gold standard. However, due to the extreme individual variations of some load components, even the reported average load profiles can most likely not explain every failure of an implant or a surgical procedure

    Development and evaluation of custom prosthetic devices for a companion animal utilizing additive manufacturing.

    Get PDF
    BACKGROUND AND SIGINIFICANCE: Few options exist for companion animals in need of prosthetic devices. With the rise of rapid prototyping technology, the availability and customization of prosthetic devices for individual companion animals is now a viable and cost effective alternative to the current options of a peg leg prosthetic, or wheel-assisted prosthetic device. The goals of this study were to describe the (1) specific needs and (2) biomechanics of a feline with bilateral thoracic limb amputation, (3) develop custom prosthetic devices utilizing rapid prototyping technology, and (4) describe the biomechanics of a feline with bilateral thoracic limb amputation using the custom prosthetic devices. The feline being studied in this project is a 2 year old Maine Coon feline weighing 9 lbs. She was a stray that was found with severe frostbite on her thoracic limbs. These sections of her thoracic limbs were amputated to remove the necrotic tissue. SPECIFIC AIMS: The goals of this study is to describe the (1) specific needs and (2) biomechanics of feline with bilateral thoracic limb amputation, (3) develop custom prosthetic devices utilizing rapid prototyping technology, and (4) describe the biomechanics of a feline with bilateral thoracic limb amputation with the use of the custom prosthetic devices. MATERIALS & METHODS: Fused Deposition Modeling (FDM) technology was utilized to fabricate the prosthetic devices that were designed and put through a Finite Element Analysis to simulate static loading and fatigue testing during various stages of the gait cycle. The devices were mechanically tested to ensure device failure did not occur during static loading, as well as fatigue tested to resemble continued use. vii Kinematic gait analysis was performed prior to and after use of the prosthetic devices, and outcomes were compared between the scenarios. Gait data was also compared to published feline gait data to determine any effects to the feline’s gait resulting from the amputation, and if this effect was corrected through the use of the prosthetic devices. RESULTS: FDM was a cost effective way to fabricate strong, durable prosthetic devices designed specifically for a companion animal with dual thoracic limb amputation. Mechanical testing ensured that the prosthetic devices can survive over 10,000 loading cycles at 6 N, and 3000 N of vertical force. The gait analysis performed without the use of the prosthetic devices show increased flexion of the elbows, stifle, and tarsus joint during ambulation. Gait analysis during the use of the prosthetic devices removes this additional flexion. CONCLUSION: Use of prosthetic devices can have a positive influence in the gait of companion animals with amputations. The comparison between the two data sets shows removal of the additional flexion found in the thoracic limbs when the prosthetic devices are used. This project showcases the feasibility of using additive manufacturing to create cost effect and durable prosthetic devices for use in companion animals

    Finite Element Analysis and Modelling of Perlon - Fiberglass of a Prosthetic socket

    Get PDF
    Finite element analysis can be a useful tool in investigating the mechanical interaction between the residual limb and its prosthetic socket, and in computer-aided design and computer-aided manufacturing of prosthetic sockets. The intention of this paper was to analyze prosthetic socket of distinct materials and for different geometry for optimum design solution by finite element analysis. The finite element method (FEM) is a very powerful tool for analysing the behaviour of structures, especially when the geometry and mechanics are too complex to be modelled with analytical methods. A modified three dimensional finite element model of socket was developed in workbench of ANSYS 14.0 to find out the stress distribution and deformation pattern under functionally appropriate loading condition during normal gait cycle.  A variety of materials were used for the analysis of the socket like The optimization technique results showed that the best optimal design of the prosthetic above knee socket is in lay-up 4perlon 2fiber glass 4perlon design under temperature 20 . This study focuses on the analysis of patellar tendon bearing prosthetic sockets with integrated compliant features designed to relieve contact pressure between the residual limb and socket. In this study, the numerical results of stress distribution model of the prosthetic above knee socket showed that the values of maximum stress according to Von-Mises criterion results are increased with the increasing of temperatures. The best designs results of the prosthetic above knee socket are (94.64%) in lamination lay-up 4-2-4 under 20  where it took from pervious study. The procedure developed through this work can be used by future researchers and prosthetic designers in understanding how to better design transfemoral prosthesis. Keywords: Prosthetic; Safety factor; Finite element model; Socke

    Biomechanical Test of a New Endoprosthesis for Cylindrical Medullary Canals in Dogs

    Get PDF
    Exo-endoprosthesis is a limb salvage procedure for animals, although only expensive metal devices have been described. Now-a-days, new materials for this type of implant could be considered due to novel and affordable manufacturing techniques. However, a factor of safety (FoS) should be considered. There are kinetic and kinematic studies of canine natural gaits, which can be used to establish an FoS for mechanical tests for new non-metallic devices. Polyetheretherketone (PEEK) is used in different specialties in human medicine. Its mechanical properties (and its close mechanical stiffness to that of bone) make this polymer an alternative to metals in veterinary traumatology. PEEK could also be used in 3D printing. The suitability of a novel inner part of an exo-endoprosthesis manufactured by fuse deposition modeling (FDM) was presented in this study for long canine bones. Mechanical characterization of 3D-printed PEEK material and ex vivo mechanical tests of a customized endoprosthesis were performed to address it. Young's modulus of 3D-printed PEEK suffered a reduction of 30% in relation to bulk PEEK. Customized 3D-printed PEEK endoprostheses had promising outcomes for the tibiae of 20 kg dogs. Pure compression tests of the non-inserted endoprostheses showed a maximum force of 936 +/- 199 N. In the bending tests of non-inserted endoprostheses, the PEEK part remained intact. Quasistatic mechanical tests of bone-inserted endoprostheses (compression-bending and pure compression tests) reached a maximum force of 785 +/- 101 N and 1,642 +/- 447 N, respectively. In fatigue tests, the samples reached 500,000 cycles without failure or detriment to their quasistatic results. These outcomes surpass the natural weight-bearing of dogs, even during a galloping pace. In conclusion, the 3D-printed PEEK part of the endoprosthesis for an exo-endoprosthesis can withstand loading, even during a galloping pace.Depto. de Medicina y CirugĂ­a AnimalFac. de VeterinariaTRUEComunidad de Madridpu

    Study of Creep-Fatigue Interaction in the Prosthetic Socket below Knee

    Get PDF
    The increasing numbers of amputees due to insurgence actions in Iraq urges the researches to conduct this study. Two stresses of fatigue and heat are generated as a result of limbs movement during extremely hot weather. The objective of this research is to Study the effect of temperature in hot climate countries on a socket made of composite materials during the gait. Where alternating pressures on the inner surface of the socket are generated and lead to variable stresses causing fatigue failure of material. It is evident that as temperature rises, the mechanical properties decrease over time due to creep which causes socket failure due to fatigue and creep interaction. The socket failure at room temperature is determined by fatigue test to obtain S-N curve. Also, stress distribution on the socket is studied at 60 CÂş. Keywords: amputee, fatigue, creep, below knee, piezoelectric senso

    3D Printed PCU/UHMWPE Polymeric Blends for Artificial Knee Meniscus

    Get PDF
    3D printing was used to fabricate porous artificial knee meniscus material from biocompatible polymeric blends of polycarbonate-urethane (PCU) and ultra-high-molecular-weight polyethylene (UHMWPE) to enable “weep” lubrication that mimics the native meniscus. 3D printed and molded pure PCU, as well as molded PCU and UHMWPE, were used for comparison. Preliminary printing was done to evaluate the impact of process parameters on the results. The samples were subject to a variety of rotational oscillating friction and wear tests under simulated body fluid and loading conditions to replicate the natural motion of the knee. Results show that 3D printed PCU samples yielded a 27% wear depth reduction compared to molded PCU samples, which may be attributed to their porous structure and flexibility. The cross-sectional area of the 3D printed blend and pure PCU samples showed 13.61% and 6.34% porosity, respectively, while no porosity was observed on the molded PCU and UHMWPE samples. The porosity of 3D printed PCU samples enabled them to absorb 46% more fluid than its molded version. These findings support 3D printing method as a good alternative to fabricate highly porous, customizable PCU implants that mimic the lubrication mechanisms of the native meniscus

    Evaluation of a Bisphosphonate Enriched Ultra-High Molecular Weight Polyethylene for Enhanced Total Joint Replacement Bearing Surface Functionality

    Get PDF
    Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material. Work by others has shown that the use of oral and intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic osteolysis. However, the systemic delivery and the high solubility of BPs results in a predominant portion of the drug being excreted via the kidney without reaching its target, bone. This doctoral research project is focused on the development and evaluation of a novel method to administer BPs locally using the inherent wear of UHMWPE for possible use as an anti-osteolysis treatment. For new materials to be considered, they must be mechanically and tribologically comparable to the current gold standard, UHMWPE. In order to evaluate this material, mechanical, drug elution and tribological experiments were performed to allow assessment of material properties. Tensile tests showed comparable yield stress and pin-on-disk testing showed comparable wear to standard virgin UHMWPE. Further, drug elution tests have shown that BP was released from the enriched material both in static and dynamic conditions. Additionally, an aggressive 2 million cycle total knee simulator experiment has shown statistically similar wear results for the two materials. Overall, this research has provided the groundwork for further characterization and development of a new potential material for total joint replacements as an enhancement to standard UHMWPE. This material shows significant potential as an alternative bearing material to indirectly increase TJR longevity by addressing osteolysis related issues
    • …
    corecore